电气常见故障分析

2022-06-26

第一篇:电气常见故障分析

牵引变电所主要电气设备常见故障浅析

供变电课程报告

牵引变电所主要电气设备常见故障浅析

北京铁路局宋志刚

牵引变电所主要电气设备常见故障浅析

北京铁路局宋志刚

摘要:本文以牵引供变电基础理论结合现场实践及行业经验,针对牵引变电所主要电气设备常

见故障进行了归类分析,为提高牵引变电所主要电气设备运行维护提出建设性意见。

关键词:牵引变电所电气设备 故障

前言

随着电气化铁路的飞速发展,牵引变电所电气设备安全可靠供变电越显重要,特别是变压器、

断路器、开关、互感器及并补装置等设备日常正常运行为列车提速发挥着举足轻重的作用。因此牵引变电所主要电气设备日常运行维护必须到位,同时必须明晰常见设备故障根源及表征,尽可能消除或缩小设备故障,提高牵引变电所供电质量。现以牵引供变电基础理论结合现场实践及行业经验,浅析如下:

1牵引变压器

故障判断是一个综合过程,需通过现场直观判断、详细测量及综合分析等几个环节。其中,现

场直观判断最直接、最简捷。对变压器故障而言,直接判断可通过声音、气味、颜色、体表、渗漏油及温度的异常来进行。

1.1 声 音

变压器正常运行时,会发出连续均匀的“嗡嗡”声。如果变压器出现故障或运行不正常,声音

就会出现异常:

(1) 电网发生过电压,例如中性点不接地电网有单相接地或电磁共振时,变压器声音比平常尖

锐;

(2) 变压器过载运行时,音调高、音量大。如带有电弧炉、可控硅整流器等负荷时,因负荷变

化大,又因谐波作用,变压器会瞬间发出“哇哇”声或“咯咯”间歇声,监视测量仪表指针发生摆动;

(3) 个别零件松动(如铁芯的穿芯螺丝夹得不紧)或有零件遗漏在铁芯上时,变压器会发出强烈

而不均匀的“噪音”,或有“锤击”和“吹风”之声;

(4) 变压器的跌落式熔断器或分接开关接触不良时,有“吱吱”的放电声;

(5) 变压器高压套管脏污,表面釉质脱落或有裂纹存在,可听到“嘶嘶”声;

(6) 变压器铁芯接地断线,会产生劈裂声;

(7) 变压器内部局部放电或电接不良,会发出“吱吱”或“劈啪”声,且次声音随离故障部位

远近而变化;

(8) 变压器绕组短路,将有“劈啪”声,严重时会有巨大轰鸣声,随后可能起火;

(9) 变压器绕组高压引出线之间或它们对外壳闪络放电时,有爆裂声音;

(10) 变压器的某些部件因铁芯振动而造成机械接触时,会产生连续的、有规律的撞击或摩擦声。

1.2 气味、颜色

变压器内部故障及各部件过热将引起一系列气味和颜色的变化:

(1) 瓷套管端子的紧固部分松动,接触面过热氧化,会引起变色和异常气味;

(2) 变压器漏磁的断磁能力不好及磁场分布不均,引起涡流,会使油箱局部过热引起油漆变色;

(3) 瓷套管污损产生电晕、闪络会发出奇臭味;

(4) 冷却风扇、油泵烧毁会发出烧焦气味;

(5) 吸潮过度、垫圈损坏、进入油室的水量太多等原因会造成吸湿计变色。

1.3 体 表

变压器故障时都伴随着体表的变化。主要有:(1) 呼吸口不灵或内部故障可引起防爆膜龟裂、

破损。(2) 大气过电压,内部过电压等,会引起瓷件、瓷套管表面龟裂,并有放电痕迹。

1.4 渗漏油

变压器运行中渗漏油的主要原因是:

(1) 油箱与零部件联接处的密封不良,焊件或铸件存在缺陷,运行中额外荷重或受到震动等;

(2) 内部故障使油温升高,引起油的体积膨胀,发生漏油或喷油。

1.5 温 度

变压器的很多故障都伴随着急剧的温升:

(1) 由于涡流或夹紧铁芯用的穿芯螺栓损坏会使变压器油温升高;

(2) 绕组局部层间或匝间的短路,内部接点有故障,二次线路上有大电阻短路等,均会使变压

器油温升高;

(3) 过负载、环境温度过高,冷却风扇和输油泵故障,散热器阀门忘记打开,渗漏油引起油量

不足等原因都会造成变压器温度不正常。

以上所述仅能作为对变压器故障的现场直观的初步判断,因为变压器的故障不仅仅是某一方面的直观反映,它涉及诸多因素,有时甚至会出现假象。因此,只有进行详细测量和综合分析,才能准确可靠地找出故障原因,判明事故性质,提出较合理的处理办法,使故障尽快得到消除。

2断路器、开关设备故障

随着铁道电气化的发展, 高压断路器设备的装用量将大幅度上升, 了解高压断路器设备的故障

原因, 采取积极的防范措施, 对提高牵引变电所供电的可靠性是很有帮助的。

2.1 绝缘事故

绝缘事故的主要原因: 一方面是高压断路器的绝缘件设计制造质量不符合技术标准的要求, 拉

杆拉脱,使运动部分操作不到位。另一方面是高压断路器在安装、调试、检修过程中工装工艺不到位。所以, 严格高压断路器工装工艺流程、外购件检验、装配环境清洁度以及必备的检测手段等是杜绝绝缘事故发生的重要措施。必须引起设计、制造和应用部门的高度重视。

2.2 拒动、误动事故

拒动和误动事故是指高压断路器拒分、拒合和不该动作时而乱动。其中拒分事故约占同类型事

故的50% 以上, 是主要事故。分析其主要原因是因为制造质量以及安装、调试、检修不当, 二次线接触不良所致。因此, 使用部门应该和制造部门有机地结合起来, 尽可能使高压断路器的设计定型、材质选择、必备的备品备件、工艺要求、调试需知等合理、实用, 将人的行为过失可能发生的事故局限在先, 做到防患于未然。

2.3 开断与关合事故

开断与关合事故是油断路器在开断过程中喷油短路、灭弧室烧损严重、断路器开断能力不足、

关合速度后加速偏低等所致。因此, 在高压断路器的安装、检修、调试过程中, 重视油断路器的排气方向、动静触头打磨、灭弧室异物排除、断路器开断能力的核定与选型、合分速度特性的调整等, 以遏制开断与关合事故的发生, 切勿疏忽大意。

2.4 截流事故

截流事故发生的主要原因多数都是由于动、静触头接触不良引起的, 主要原因是动静触头或者

隔离插头接触不良, 在大电流的长期作用下过热, 以至触头烧融、烧毁、松动脱落等。所以, 对于高压断路器触头弹簧的材质选择与热处理、触头压力的调整, 是防止截流事故发生的重要技术措施。

2.5 外力及其它事故

外力及其他事故主要是指操动机构的漏油、漏气、部件损坏以及频繁打压、不可抗拒的自然灾

害、小动物短路。主要原因是密封圈易老化损坏, 管路、阀体清洁度差, 接头制造及装配质量不良等。此类问题, 多年来一直是困扰国产高压断路器可靠运行的老大难。

2.6 真空断路器的事故

高压真空断路器以自身优越的开断性能和长周期寿命的优势, 普遍得到了使用部门的认可。随

着高压真空断路器的广泛应用, 改进之后的新一代真空断路器普遍使用纵向磁场电极和铜铬触头材料, 对于降低短路开断电流下的电弧电压、减少触头烧损量起到了积极的作用; 但是, 由于灭弧室及波纹管漏气, 真空度降低所造成的开断关合事故, 呈上升趋势,不容忽视。此外, 对于切电容器组出现重燃、陶瓷真空管破裂仍时有发生, 同时当前真空断路型号繁杂、生产厂家众多, 产品质量分散性大, 给使用部门的设备选型和运行造成了一定的难度。

2.7 SF6 高压断路器的事故

SF6 高压断路器以良好的绝缘性能及优越的灭弧介质而被广泛的应用于电力系统的各类电压

等级的开断设备中。国产SF6 高压断路器存在的共性问题是: 漏气、水分超标、灭弧室爆炸、绝缘拉杆脱落、断裂、击穿、水平拉杆断销等。拉杆脱落必然要发生重大事故, 必须重视; 罐内灭弧室内的异物或者零部件的脱落, 都将引起高压断路器内部绝缘的击穿、闪络。所以, 努力提高SF6 高压断路器装配环境的清洁度和严格工艺过程的控制, 对于确保设备安全运行至关重要。

2.8 隔离开关的事故

隔离开关由于触头接触不良、局部过热烧融、绝缘子断裂和机构卡涩等问题, 是长期以来困扰

隔离开关安全运行的问题, 据有关资料介绍, 当前此类问题仍很严重。这就需要从设备设计、制造、运行、维护、管理等各个环节齐抓共管, 标本兼治, 从根本问题上着手来克服这一被动局面。

3 互感器

3.1电流互感器在工作时二次侧不得开路

电流互感器在正常工作时,由于其二次负荷很小,因此接近于短路状态。根据磁动势平衡方程

可知,互感器一次电流产生的磁动势的绝大部分被二次电流产生的磁动势所抵消,所以总的磁动势很小,通常激磁电流只有一次电流的百分之几。但二次开路时,二次电流为0。而一次电流等于激磁电流,此时的激磁电流被迫突然增大几十倍,将产生如下严重后果:1铁芯由于磁通剧增而过热,并产生剩磁,降低准确度,长时间甚至会烧毁铁芯。2二次绕组因其匝数远超过一次绕组匝数,所以可感应出高电压,危及人身和设备的安全。电流互感器在运行时其二次侧所接测量仪表或继电器需要测试、检修时,可先将电流互感器二次侧线线圈短接,再拆下该仪表或继电器。在安装时,电流互感器二次侧的接线一定要牢靠和接触良好,并且不允许串接熔断器和开关。

3.2电压互感器在工作时二次侧不能短路

电压互感器的

一、二次侧都是在并联状态下工作的,二次绕组工作时接近于空载,即开路状态。如发生短路,将产生很大的短路电流,烧毁互感器,甚至影响一次线路的安全运行。因此,电压互感器的二次侧都必须装设熔断器以进行短路保护。

3.3电流和电压互感器的二次侧有一端必须接地

接地是为了人身和二次设备的安全。如二次回路没有接地点,则接在互感器一次侧的高电压,

将通过互感器

一、二次线圈间的分布电容和二次回路的对地电容形成分压,将高电压引入二次回路,其值决定与二次回路对地电容的大小。如果互感器二次回路有了接地点,则二次回路对地电容为零,从而达到了保证安全的目的。

3.4电流和电压互感器在连接时要注意其端子的极性

在安装和使用互感器时,一定要注意端子的极性。否则,其二次侧所接的仪表、继电器中流过的电流就不是设计时的电流,因此引起计量和测量不准确,并可能引起继电保护装置的误动作或拒动。

4并联补偿装置

4.1合闸过渡过程问题

由于电容器和电抗器都是能量元件,在合闸过程中会有充电及励磁的过程,致使电源中产生除工频(50 Hz)信号以外的非周期(直流)分量及高次谐波分量。这些非周期分量及高次谐波分量在一定时间内衰减完毕,系统达到稳态。非周期分量及高次谐波分量的大小取决于合闸时电源的状态、电容及电感的容量。在电容及电感的容量固定不变时,合闸瞬间电压的高低决定了非周期分量及高次谐波分量的大小及其衰耗所需时间。非周期分量的衰减主要通过电容,而高次谐波分量的衰减主要通过电感。若在交流电压波形的峰值时合闸,将产生最大的高次谐波分量,这是因为电容和电感在这种条件下感受到的电压变化率为最大,电容相当于短路状态,电感将承受最大电压。最大的电压变化率所产生的能量,将用最长的时间被消耗掉,系统达到稳态的时间也最长。电压在交流波形的过零点时,电压变化率为最小,此时合闸,负载两端的电压逐渐上升至最大,使系统达到稳态所需的时间最短。牵引并补装置设计上2 L /C = 2 XL ·XC , 其中, XL /XC = 12% ,其值为200Ω 以上,远大于回路的电阻值R ,故合闸投运并补装置的过程为振荡充电过程。uC =Em ( sinωt +ψ) + (U0 - Em sinψ) cosω0 t -ωEm cosψ/ω0 ·sinω0 t

式中, uC 为电容器电压, Em 为电源电动势最大值,U0 为合闸前电容器上的残压,ω为角频率,ω0 为谐振角频率,ψ为合闸初相角。一般情况下,电容器本身并联有经特殊设计的放电线圈FD,在5 s之内可把电容器的残压降至50 V以下,同时电容器系统跳闸再合闸时,供电调度一般掌握间隔在10min以上,故合闸投运并补装置时为零初始状态(U0 = 0) 。据i = C ×duC /dt可得, iC90 (90°合闸时的冲击电流)≈ 2 iC0 ( 0°合闸时的冲击电流) 。在图1所示电路、电容器采用4串8并3 200 kVar补偿时,电源电压初相角为0°,合闸产生的冲击电流约为电抗器额定值的3倍,初相角接近90°合闸产生的冲击电流约为电抗器额定值的6倍。另据资料研究表明,在考虑变压器、放电线圈的电抗值和27.5 kV母线对地电容值的情况下,冲击电流更要大些。

4.2运行中着火问题

在磁县变电所发生电抗器着火事故后,我段与原石家庄铁路分局供电水电分处有关人员共同核对了各保护装置整定值、测量了电容器组、放电线圈各项指标均未发现问题,另在线避雷器也未动作,排除了外部过电压袭击和保护拒动等原因。经与生产厂商共同确认,最后将原因归结于电抗器累积效应造成的绝缘破坏,但通过进一步的分析发现,若在电抗器绝缘受到损伤而未发展到着火事故前,甚至初期着火后,有关保护动作及时将故障切除,就完全可以避免这起事故的发生。

通过以上对牵引变电所主要电气设备常见故障分析,我们必须不断提高设备维护水平,同时要求专业设备厂家不断采取新技术提高设备质量,从而确保牵引变电所安全可靠不间断供变电,为中国铁路高速化做出更大的贡献。

第二篇:住宅电气故障分析及其改进设计

山西省医药规划设计院(有限公司) 杨兆庆1) 摘 要 例举了住宅居民用电中发生的一些电气故障,分析了造成事故的原因,提出了在电气设计方面需要

注意的若干事项及改进措施。

关键词 电气故障 接触电阻 漏电保护

近年来住宅用电负荷不断增长,造成电气线路长时间处于过载状态,导致绝缘老化,电气事故不断发生。据消防部门统计,我国电气火灾已位居火灾成因之首,其中住宅电气火灾 占全部火灾的50 %以上。随着现代社会文明程度的提高,人们不仅对用电安全提出很高要求,而且对可靠连续供电的要求也越来越高。 1 电气故障及其原因分析 1. 1 故障例举

例1 :某住宅入户处装有漏电断路器,但经常跳闸。测量户内电气线路无漏电,将漏电断路器的输出线路脱开,该断路器仍跳闸,因此断定为漏电断路器出故障。在拆卸断路器时看到出线桩头处胶木底座酥松,刮后有粉状物,表明漏电断路器出线端子因接触电阻过大造成热过载,使得胶木碳化漏电所致。经过刮除碳化部分,漏电断路器恢复正常工作。

例2 :一住宅卫生间电淋浴器连续使用后,线路发生断电故障。检查发现断电位置在卫生间吊顶内,该吊顶内有几个照明回路导线交叉纵横,电淋浴器的导线也是从此接入,且接入导线截面偏小,接线处缠绕的胶布已烤焦脱落,导线经高温氧化,接线头已被熔断。幸而吊顶材料为石膏板,否则可能引发电气火灾,故障原因是由于接头处接触电阻热过载引起。 例3 :在某高档住宅设计中,住户配电系统采用如图1 所示接线方式。

总进线处设总漏电断路器, 漏电动作电流整定为300mA ,并带0. 25 s 的延时(实际做法为断路器+ 带延时的漏电附件) ,住户配电箱内照明和空调插座回路未设漏电开关,其他插座回路设有漏电开关。大楼投入使用后,就发生了多起全楼停电事故,住户投诉到物业管理处,物业管理处也无能为力,因为漏电断路器动作跳闸后,故障点很难定位, 如图1 中d1 、d2 、d3 任一点处发生接地故障,总漏电断路器就要动作。在未查清故障点并排除故障以前,很难合闸,只能全部拉闸后一级一级试投来确定故障部位。 图1 住宅配电系统 1. 2 故障原因分析

分析例

1、例2 电气故障不难发现接触电阻过大是造成故障的主要原因。接触电阻与接触压力、接触面积、环境状况及导体材质有关,并且接触电阻是动态的,与电热效应成正比[1 ] 。接触电阻过大,就会造成结点处热过载,尤其在大负荷状态下,电流大,结点处局部温度很高,极易发生短路、断路或引燃邻近易燃物品,从而引发电气火灾。结点处的热过载和导线电流过载性质完全不同,导线电流过载后,则该回路的断路器会起保护作用,而结点处热过载在导线电流值正常情况下也能引发电气故障甚至火灾。

例3 事故在很多楼内能发生,这说明在总进线处设总漏电断路器有一定的问题。总进线处设漏电断路器之后,整个住宅楼内的配电线路和电器设备均纳入了它的保护范围内。按《低压配电设计规范》第4. 4. 22 条规定,多级装设的漏电电流动作保护器,应在时限上有选择性配合。因此,总进线漏电断路器往往设有延时,一般取0. 25 min~0. 30 min ,照明和空 调插座回路不设防电击漏电保护装置,但这并不能保证这些设备和线路不会发生接地短路(漏电) 故障,一旦这些地方发生接地故障,当接地故障电流达不到本回路上所设的断路器 (MCB) 的瞬动电流值时,MCB 不会瞬动切断故障线路,而总进线漏电断路器可能会动作,使整个住宅楼停电,从而扩大了故障范围。

2 电气开关选型不当造成电气故障

近几年我国电气事业发展日新月异,新产品层出不穷,但一些设计单位和施工安装单位往往并没弄清电气开关的特性而随意选用。比如,有些漏电断路器并无过载和短路特性,用在户内回路上,如果户内发生非接地过载和短路时,漏电断路器的零序互感器无泄漏电流,漏电脱扣器就不会动作,这势必会造成严重后果。类似情况还有设计者在各插座回路上选用无过载和短路保护性能的漏电断路器,在入户进线处选用断路器作过载短路保护。由于入户断路器的额定电流值往往比户内回路的额定电流值高出几级,这就会造成户内某一回路电流过载情况很严重时,入户断路器却不动作,该分支回路的导线及漏电断路器很可能被烧毁,甚至酿成事故。

其次,有些设计者为图省事,每回路导线型号单一,往往造成有些回路导线截面偏小不合实际要求;有些设计则是上下级联的额定电流失配,未经验算。再者,不少住户及装修队伍由于不懂电气安全知识,家居装修时随意更换断路器和导线,却弄不清应选多大额定电流值的断路器配多大截面的导线。

3 住宅电气设计的改进

我们已经知道结点处接触电阻大会造成热过载,引发电气故障;总进线设漏电断路器存在一定的问题;电气开关的选用必须了解其特性,正确使用,否则也会引发电气故障。因此,笔者提出下述几点建议和改进措施。

3. 1 近年来家电品种日益增多,家电设备负荷趋大,如电淋浴器、电炒锅、家用空调、饮水机、微波炉等《, 住宅设计规范》规定,每户负荷按2. 5 kW~410 kW设计就显得很不够,建议按610 kW~810 kW甚至1010 kW设计。

3. 2 现在居民家中电器很多,因而希望户内插座多多益善,而以前居民住宅内插座数量过少,居民家中插接板用的较多,很不安全。在美国,电气法规规定墙上两插座间的距离不许 超过3. 6 m ,其家用电器规定电源线不小于1. 8 m ,家用电器买来,左边插座够不着,右边的插座一定能插上,买的电气产品和工程配合,而我国的住宅设计规范规定的室内插座数量偏 少。笔者建议应当扩大插座数量,卧室、起居室设置4 组~5组,厨房、卫生间设置2 组,其余各处也适当增加。

3. 3 分支回路数应当增加,线路截面积应适当留有裕量。以前的住宅分支回路数少,每回路所带负荷增大,实际上等于减少了线路截面,其结果同样是线路温升增加。分支回路数增 加,相当于减少每回路的阻抗,这对降低住宅谐波电压,减少谐波危害也是十分有利的。回路数增加后,就有条件将产生谐波的非线性负荷电器和对谐波敏感的电器做到分回路供电。这样非线性负荷谐波电流在其分支回路的阻抗上产生的谐波电压就不能危害到另一回路的敏感电器。笔者建议每户住宅回路数不低于5 回路,面积大的住宅回路数应更多。线路截面积偏小的后果是电线发热加剧、绝缘老化加速,易导致线间短路和接地故障,引起电气火灾和人身电击事故。线路截面积适当留有裕量,还能满足今后的负荷增大和电气安全的要求。

3. 4 虽然住宅设计规范规定总进线处设总漏电断路器,但笔者认为应将防电气火灾的重点放在每套住宅内部,即总进线不设防电气火灾用漏电断路器,而在每个电表出线处设漏电 断路器,从而大大提高供电的可靠性,因为每套住宅的配电线路和设备均在漏电断路器保护范围内,漏电断路器的整定容易把握,而且防电气火灾漏电断路器一旦动作,停电的范围也 仅限于本套住宅内,不会使故障面扩大。 参考文献

[1 ] 王厚余. 接地的专门问题. 电世界(实用接地技术专辑) __

第三篇:常见配电变压器故障分析

配电变压器是配电网中的主要设备,也是工农业、居民用电中供给动力的主要设备。一旦发生故障,将影响工农业生产和人民的正常生活,给企业带来经济损失。为了减少配电变压器故障发生的概率、提高配变供电可靠性,本文通过对电力系统中配电变压器常见的故障类型及故障原因进行分析,并提出相应的防范措施,给配电运行人员提供参考,以减少配电变压器的故障。

随着经济的飞速发展,电力需求旺盛,配电变压器在电力系统及生产生活中占据着至关重要的地位。虽然经过多年配网改造,配电变压器高低压都配套预防故障的保护装置,使配电变压器损坏发生率由原来每年占总配电变压器台数的30%~40%,下降到目前每年的3%~5%左右,但由于雷击、高温过负荷等原因,故障发生的数量还相当大。配电变压器的故障逐渐成为配网的主要故障。损坏的配电变压器不仅增加了管理费用的压力,还影响了农民生活、生产的正常用电,成为最困扰基层管理单位供电管理的实际问题。需要通过认真总结和分析配电变压器故障的类型和原因,采取正确的预防措施,为配电变压器的运行管理提供借鉴和参考。

1 配电变压器常见故障类型

配电变压器常见故障主要有温度异常、声音异常、三相不平衡、高压保险丝熔断故障、雷击损坏、漏油等。

2 故障原因分析

2.1 温度异常

产生此类故障的原因多为变压器绕组故障,配变在制造或检修时,局部绝缘受到损害,遗留下缺陷;在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高。

2.2 声音异常

变压器正常运行时,由于交变磁通经过铁芯产生电磁力,铁芯发出均匀的“嗡嗡”声。当变压器发出“噼啪”的爆裂声时,可能是绕组或铁芯的绝缘被击穿,或者引线等带电导体与油箱或铁芯距离过小发生放电;变压器匝间短路,不但会发出放电声音,且故障点局部严重发热使油沸腾汽化,会发出“咕噜咕噜”的沸水声。

2.3 三相电压不平衡

造成配变三相电压不平衡的原因可能是因为工作人员不合理分配三相负荷;居民私拉乱接等均能造成三相负荷不平衡,从而引起当负荷轻的相电压升高,负荷重的相电压降低,电流升高,最终导致变压器匝间短路,烧坏变压器。

2.4 高压保险丝熔断故障

造成此类故障的原因一是随着社会经济的不断发展,用电量增加迅速,原有变压器容量

小,造成变压器过载运行;或者是季节气候原因造成用电高峰,使变压器过载运行。由此产生过高的温度则会导致绝缘老化,纸强度降低,导致绝缘破损,进而发生故障。

2.5 雷击损坏

按配网运行规程要求,配电变压器必须在高、低压侧安装合格的避雷器,且接地良好,防止雷击过电压危害变压器高低压线圈及套管,避雷器的防雷接地引下线、变压器的金属外壳和变压器低压侧中性点,应连接在一起,然后再与接地装置相连接,接地电阻应不大于4欧。但实际运行中有许多变压器的接地引下线被盗割和破坏;或由于维护不当造成锈蚀严重接地电阻增大,甚至锈断等都将起不到引雷作用,造成配变雷击故障。

2.6 漏油

变压器漏油主要是变压器经长期运行,各连接处的密封胶垫老化、龟裂,造成渗油,使绝缘油吸潮,导致绝缘性能下降。或者由于密封垫本身的产品质量不过关;焊接质量不良;安装工艺和安装操作不规范;铸件有砂眼以及设备结构不合理和制造问题等等。

3 常见配电变压器故障的预防

针对以上配电变压器常见故障的原因分析可以发现,有相当一部分变压器故障是完全可以避免的。本文总结几点变压器故障的预防措施。

(1)根据用电负荷选择合适的变压器容量。既要避免因选择过小造成配电变压器烧坏;又要防止容量过大,造成浪费。

(2)变压器安装避免供电半径过大,防止末端用户电压过低,避开易爆易燃、污染严重及地势低洼的地方;高压进线及低压出线便于施工、维护。

(3)加强投运前检查。在变压器投入运行前,一般应做下列各项检查工作:①检查试验合格证,不合格不允许使用;②检查油箱油阀是否完整,有无渗油情况;③检查油位是否达到指示范围、无油枕的变压器油应高于分接头25mm,超过散热管的上管口;④检查分接头调压板是否松动,分接头的选定合适;⑤检查外观是否整洁,套管有无污垢,破裂、松动,各部螺丝是否完整无缺;⑥检查高压熔丝配备是否合理。

(4)做好运行维护工作。①要定期检查三相电压是否平衡,变压器的油位、温度、油色是否正常,有无渗漏,呼吸器内干燥剂的颜色是否变化。②定期清理变压器上的污垢,检查套管有无闪络放电,接地是否良好,有无断线、脱焊、断裂现象,定期摇测接地电阻,并加装绝缘护套避免异物落至套管上造成变压器相间短路。③定期进行测温,油浸式自冷变压器上层油温不宜经常超过85℃,最高不超过95℃,不得长期过负荷运行。④合理选择变压器的高低压熔丝。一般情况下变压器的高压侧熔丝选择在1.2-1.5倍高压额定电流,低压侧按额定电流选用,即使发生低压短路故障,熔丝也能对变压器起到应有的保护作用。⑤避免三相负载的不平衡。变压器三相负载不平衡运行,将造成三相电压不平衡。对三相负载不平衡的变压器,应视最大电流的负荷,若在最大负荷期间测得的三相最大不平衡电流或中性线

电流超过额定电流的25%时,应将负荷重新分配。

4 结语

导致配电变压器故障发生的原因是多种多样的,通过对变压器的常见故障分析,采取合理的解决措施和预防手段,可以将变压器故障产生的损失降至最低,确保配电线路的安全可靠运行。

第四篇:120阀常见故障与分析

随着120型分配阀的普及与推广应用,120阀在我国铁道车辆上逐渐起着主导地位,货物列车向着高速重载方向发展。在运用上120阀可靠性能是列车再次提速的保证。因而保证120阀的正常运用,现显得比较重要。现就120阀在日常检修中常发现的故障进行说明,并对其做简要分析。

一、常见故障分析

1、主阀 a.自然缓解

原因分析:自然缓解是指120阀制动机减压40KPa后,保压不到1分钟就产生自动缓解。主要原因是各结合部、摩擦副、模板等漏泄造成的。

b. 副风缸充气快

原因分析:(1)滑阀座充气孔(l

1、l2)偏大; (2) 加速缓解风缸充气慢,也会使副风缸充气快;

(3) 主活塞橡胶有穿孔,使得主活塞上部l9 室的压力空气通过模板进入主活塞下部,进而进入副风缸;

(4) 加速缓解阀的夹心阀ф38与阀座密切性不好, C. 加速缓解风缸充气过慢

充气通路:加速缓解风缸充气是由主阀作用部滑阀室内的副风缸压力空气经滑阀顶面的加速缓解风缸充气孔f2 ,再经滑阀座上的孔h1后通过中间体上的孔h至加速缓解风缸。 产生原因:

(1)滑阀上的加速缓解风缸充气通路或充气孔f2(ф0.9)被堵塞;

(2) 主阀体内加速缓解风缸充气通路堵塞。 c. 加速缓解试验时,加速缓解风缸压力下降 产生原因:

(1)半自动缓解阀的两个止回阀没有压到位。120阀的半自动缓解阀顶杆有两种,一种是铜质顶杆,另一种是工业塑料材质的顶杆。一般来说,铜质顶杆较好。而工业塑料材质的顶杆,在使用过程中易变形,会失去其正常功能;

(2) o形圈橡胶密封圈不密切; (3) 缓解阀膜板有漏风。 d. 充气时,主阀部排气口漏泄 产生原因:

(1)列车管压力空气经滑阀漏出; (2) 副风缸压力空气由滑阀漏出;

(3) 列车管压力空气经紧急二段阀O形圈漏出。

一般来说,我们可以根据漏出空气的音响加以辨别,充气刚开始,列车管压力很快就上升,因此若列车管压力空气通过滑阀漏出,在充气一开始就会发出较高的音响,如果是副风缸的压力空气漏出,印象一定是渐渐增高,而且随着副风缸充气时间越长响声越来越长。

e. 稳定性试验,稳定性不良 产生原因:(1)充气孔过小或被异物堵塞,如充气时间符合要求,一般不会是充气孔的问题。

(2) 稳定弹簧过弱或主膜板老化。

f. 紧急制动位时局减阀盖上的小孔有压力空气漏出

产生原因:制动位时,局减阀活塞两侧,一侧为制动缸压力空气,另一侧为大气。局减阀盖上的小孔处有压力空气漏出,表明局减活塞处有漏泄,其原因主要有:

(1) 局减膜板紧固螺母松动; (2) 局减膜板有气孔;

(3) 局减上活塞、下活塞有砂眼。 g. 充气缓解位局减排气口漏泄过大

产生原因:与局减室相通的气路全部在主活塞滑阀部分,因此,造成漏泄的原因也集中于此,主要有:

(1) 节制阀与滑阀顶面研磨不良或有拉伤,致使副风缸或列车管压力空气经第一阶段局减通路从局减排气口通向大气;

(2) 滑阀研磨不良或被异物拉伤,压力空气窜入第一阶段局减通路,从局减排气口通向大气;

(3) 主阀体或滑阀套漏泄。

2、 紧急阀 a. 不起紧急作用 原因分析:

(1)紧急阀上盖泄露或紧急活塞漏泄; (2) 安定弹簧过硬。当实施紧急制动时,紧急活塞两侧产生的压力差不足克服安定弹簧的阻力,使弹簧压缩,紧急活塞起初虽下移,但未能顶开先导阀,紧急活塞杆的下端面与先导阀顶杆之间有一点间隙(3mm),再加安定弹簧的阻力,不能产生足够的压力差;

(3) 先导阀顶杆活动不灵活。检查顶杆内的O形圈是否压力过大,或者O形圈四周有橡胶毛刺,致使顶杆运动阻力大。

b. 安定试验起紧急制动 原因分析:

(1)安定弹簧过弱。紧急活塞两侧有很小的压力差时就可以使活塞下移产生紧急制动作用。这是常见的故障。

(2) 紧急活塞轴向限孔Ⅲ(Φ2.3)过小或被异物堵塞,列车管常见制动减压时,紧急室的压力空气经活塞杆轴向限孔向列车管逆流,使紧急活塞两侧不能产生大的压差,但如果限孔堵塞,紧急室压力将跟随列车管压力同步下降,从而在紧急活塞两侧形成较大压差,使紧急活塞下移,产生意外紧急制动作用。

C. 紧急制动灵敏度差 产生原因:

(1) 紧急阀上盖漏泄或紧急活塞漏泄;

(2) 紧急活塞杆中的限孔Ⅲ(Φ2.3)过大,使紧急活塞两侧难以形成必要的动作压差,因而无法下移推动先导阀顶杆;

(3) 安定弹簧过硬。紧急活塞两侧的动作压力虽然形成,但因安定弹簧过硬,紧急活塞不易下移; (4) 先导阀顶杆别劲,顶杆内的О形圈压量过大或放风阀轴向内孔有拉伤或橡胶未清除干净,致使先导阀顶杆运动阻力大。

d. 紧急室充风时间不合格

原因分析:(1)紧急室充气时间长:紧急活塞杆上的横向限孔Ⅴ(ф1.1)被杂质堵塞或接触部有漏风;

(2)紧急室充气时间短:紧急活塞杆上的横向限孔Ⅴ(ф1.1)偏大。

二、其他原因分析

1. 在阀制造过程中,一是活塞杆上的О形圈与铜套的尺寸的形位公差未达到技术要求,活塞杆与铜套之间别劲;二是有时没有清除干净阀内的蜡,直接装车,在阀的运用中产生通路被堵塞,影响阀的正常使用。

2. 运用中,由于压缩空气中夹杂着粉尘、小颗粒与油脂等异物,对120阀的运用构成极大的威胁,尤其对滑阀、节制阀和夹心阀影响最大。

当压缩空气中较细的粉尘,进入滑阀与滑阀座之间时,它就相当于一种研磨剂,在滑阀长期作用下,就会使滑阀或滑阀座局部区域偏磨,从而造成漏泄。还有的粉尘能直接划伤滑阀或滑阀座而造成漏泄。

当压缩空气中的小颗粒,进入到滑阀体内时,有时会使滑阀上的作用孔堵塞,有时会使夹心阀漏泄。

3、在检修中,要保证所有的橡胶件不接触汽油等清洗剂。滑阀油脂的使用一般大多数人认为,硅油与硅脂涂抹得越多越好,以致多余的油脂粘到膜板上或被吹进阀体暗道中。有资料表明:油和脂的用量过多不仅对滑阀作用毫无益处,而且将降低橡胶件的耐寒性。

以上仅是对120阀在检修中常见的故障作了分析,对主要产生的原因作了说明。因为120阀的检修问题比较系统全面,我仅作出了一点点个人理解,愿与大家共同探讨。

第五篇:对电动葫芦吊电气故障分析和改进

锐钢捷钢结构分公司

周智

王刚 吴海锋

【摘要】:电动葫芦由于具有结构简单、占地面积小等特点,广泛分布于钢结构车间的各个生产区间。在笔者所管辖下的16台电动葫芦吊中,常见的故障主要有接触器故障、断火器故障、控制电缆故障,本文对这些故障逐一进行了分析和改进,改进后的故障率降低30%以上,效果显著。

【关键词】 电动葫芦、接触器、断火器、控制电缆

电动葫芦是将电动机、减速器、卷筒、制动装置和运行小车等紧凑地合为一体的起重设备。具有重量较小、体积小、占用面积较小,结构简单、成本低廉和使用方便的特点,广泛分布于钢结构车间的各个生产区间。在笔者车间所管辖的16台电动葫芦中,都存在相同的问题:接触器失效、断火限位器失效、控制电缆断线等问题。

一、电动葫芦吊常见故障 1.接触器故障

接触器触头接触不良,使电动机缺相运行,加速了触头烧蚀,甚至出现熔焊现象,而电动机缺相运行使电动机绝缘下降速度加快,缩短电动机使用寿命甚至损坏。触头熔焊甚至导致设备事故和安全事故,因为如果接触器三相触头一旦熔焊,即使松开操作按钮,(此时接触器主电路还是接通的,电动机依然在运行,电动机便失去控制,极易发生事故。)碰到限位保护开关,电动葫芦也不会停止运行,造成严重的设备事故和安全事故。

2.断火器故障

断火器的失效主要可以分为外部故障和内部故障,常见的外部故障是断火器与电葫芦卷筒排绳器之间的连杆损坏(图1 虚线框部分),或是钢绳排绳器直接被外力拉坏造成断火器失去安全限位的作用。断火器内部故障主要表现为:因内部接触点的烧损造成电机的缺相运行,严重时可烧损电动机。

电动葫芦主电路原理图如图1所示

1

3.控制电缆故障

控制电缆故障导致电动葫芦不能正常使用。

二、故障原因分析 1.接触器故障分析

电动葫芦吊升降电机的交流接触器触头接触不良和熔焊,常会有不同的原因所造成,根据对钢结构车间葫芦吊接触器故障维修经验进行总结,主要有三个原因:

(1)长期振动造成接触不良或熔焊

接触器长期工作在振动状态,造成弹簧压力减弱,造成触头压力弹簧、复位弹簧压力减小、导致触点接触不好,长时间拉弧,造成触头烧蚀严重甚至熔焊、接线氧化,接触不良而造成缺相运行。

(2)频繁操作导致触头烧蚀导致接触不良或熔焊

由于电动葫芦长期频繁点动操作、运行负载较大,长时间工作在大电流工况下,导致触头部分烧蚀,接触器触头接触不良,使电动机缺相运行,加速了触头烧蚀,甚至出现熔焊现象,而电动机缺相运行使电动机绝缘下降速度加快,缩短电动机使用寿命甚至损坏。更为可怕导致安全事故。

(3)接触器质量差

所选择接触器质量差,触头的灭弧能力小,使动静触头粘在一起,三相触头动作不同步,造成缺相运行。

2.断火器故障分析

断火器的设计原理是直接控制电动葫芦吊的卷扬电机的一次回路。

2

断路器共有7个接线点,具体连接方式如图3所示。图3中KM1和KM2接触器控制卷扬机的正反向运行;1--4为进线接点,5--6为出线接点,7为公共接点。当排绳器通过连杆对断火器产生拉力作用时,1-5,2-6导通;当排绳器通过连杆对断火器产生推力作用时,3-5,4-6导通。卷扬挂钩上升到预定的上限或下限位时,断火器则会断开所导通的两相一次回路,使电机停止工作,达到应有的保护作用。从电流的角都来说,电机一次回路电流大,在断火器接点接通/断开的瞬间会产生高压电弧,烧蚀触头,时间长后,触头接触不良使电机缺相运行甚至烧毁卷扬电机,或触点熔焊粘死,严重时导致钩子冲顶,达不到安全限位的作用。

3.控制电缆故障分析

控制电缆线折断是由于电动葫芦在操作使用过程不当受力而拉断。原因之一是操作者操作使电缆线受力拉断;原因之二是控制电缆本身线径较小,一旦受力很容易拉断;原因之三是控制电缆线较短,一旦移动极易受力拉断。原因之四是电缆线本身质量原因,电缆线使用一段时间后,电缆表面劣化变硬变脆、开裂,受力钢丝绳折断等。

三、改进方法和措施 1.接触器改进措施

(1)选择质量合格国家认证的接触器,选择柳钢其它二级分厂应用实践后性能优良的产品,如施耐德、ABB等国际品牌接触器。

(2)考虑到电动葫芦吊的频繁点动操作的特点,在安装空间允许的条件下选择容量大一档的接触器。如升降控制接触器原有型号是CJX2-3201,选择大一档的接触器CJX2-4011。

(3)定期点检和维护,

定期检查,检查接触器安装是否有松动、触头磨损情况,并将点检结果形成报表,再结合实际生产情况,开展固定接触器安装螺杆、调整触头压力弹簧、清洗、维修触头表面或更换触头、调整触头超程等维护工作,并做好维护记录。

2.断火器的改进措施

3

为了有效分担启动瞬间电流过大流过断火器触点,在1--5和2--6触点之间接入KM7,在3--5和4--6触点之间接入KM8,基本原理如下(以上升为例):按下上升按钮SB1---KM

1、KT1线圈得电--KM7线圈得电KM7----触点闭合,分担启动电流----延时---KM7线圈得电----KM7触头断开,分流结束。

3.控制电缆改进措施

改进方案:1.控制电缆线在控制开关盒上端50mm处最易折断,改用4平方塑料电缆作一段30cm控制电缆线,如图5所示,改造完成后再也没有发生过折断故障。

四、结论

钢结构公司电动葫芦吊经过改进后的设备故障率大幅度降低。根据2013年初步统计,改进后电动葫芦吊故障率降低40%以上,效果明显。如果要想完全杜绝故障的发生,首先是要认真执行设备的二级点检制度,定期对电动葫芦关键部位进行定期维修和保养,其次是要求操作人员严格执行操作规程,杜绝违规操作对设备的损坏,确保电动葫芦运行稳定。

【参考文献】

【1】刘俊,对电葫芦断火器失效问题的分析及改进,技术应用,2013(9)

【2】李旭辉,上升限位开关失效分析, 黑龙江科技信息,2013(3)

【3】刘英利 曹中权,钢丝绳电动葫芦的故障及其处理方法,起重运输机械,2011(03)

上一篇:当前群众工作存在下一篇:店铺店长述职报告