冶金设备常见故障分析

2024-04-16

冶金设备常见故障分析(精选6篇)

篇1:冶金设备常见故障分析

电厂设备常见故障分析与处理

编写: 审核: 批准:

日期: 年 月 日

电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

目 录

一、电厂设备汽机专业常见故障分析与处理

1、汽前泵非驱动端轴承温度高„„„„„„„„„„„„„„„„„„„„„„„„„„10

2、汽前泵非驱动端轴承烧毁„„„„„„„„„„„„„„„„„„„„„„„„„„„10

3、开式水泵盘根甩水大„„„„„„„„„„„„„„„„„„„„„„„„„„„„„10

4、IS离心泵振动大、噪音大„„„„„„„„„„„„„„„„„„„„„„„„„„„11

5、单级离心泵不打水或压力低„„„„„„„„„„„„„„„„„„„„„„„„„„12

6、电前泵非驱动端轴瓦漏油严重„„„„„„„„„„„„„„„„„„„„„„„„„12

7、采暖凝结水泵轴承烧毁„„„„„„„„„„„„„„„„„„„„„„„„„„„„13

8、磷酸盐加药泵不打药„„„„„„„„„„„„„„„„„„„„„„„„„„„„„13

9、胶球系统收球率低„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„13

10、胶球泵轴封漏水„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„14

11、氢冷升压泵机械密封泄漏„„„„„„„„„„„„„„„„„„„„„„„„„„„14

12、开式水泵盘根发热„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„15

13、开式水泵轴承发热„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„15

14、采暖补水装置打不出水„„„„„„„„„„„„„„„„„„„„„„„„„„„„16

15、低压旁路阀油压低„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„16

16、小机滤油机跑油漏到热源管道上引起管道着火„„„„„„„„„„„„„„„„„„16

17、发电机密封油真空泵温度高„„„„„„„„„„„„„„„„„„„„„„„„„„17

18、循环水泵出口逆止门液压油站漏油„„„„„„„„„„„„„„„„„„„„„„„17

19、循环水泵出口逆止门液压油站油泵不打油„„„„„„„„„„„„„„„„„„„„18 20、主油箱润滑冷油器内部铜管泄漏„„„„„„„„„„„„„„„„„„„„„„„„18

21、顶轴油油压力低„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„19

22、主油箱MAB206离心式油净化装置投不上 „„„„„„„„„„„„„„„„„„„19

23、汽泵、汽前泵滤网堵塞造成给水流量小„„„„„„„„„„„„„„„„„„„„„20

24、冷段供高辅联箱和四段抽气供小机节流孔板泄漏„„„„„„„„„„„„„„„„„20

25、汽泵入口法兰泄漏„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„21

26、高加正常疏水和事故疏水手动门法兰泄漏„„„„„„„„„„„„„„„„„„„„21

27、采暖补水装置不进水„„„„„„„„„„„„„„„„„„„„„„„„„„„„„21

电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

14、烟风道系统常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„41

15、离子燃烧器常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„42

16、直流燃烧器与旋流燃烧器常见故障„„„„„„„„„„„„„„„„„„„„„„42

17、点火枪常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„44

18、送风机及油站常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„44

19、离心式一次风机及油站常见故障„„„„„„„„„„„„„„„„„„„„„„„45 20、引风机及油站常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„46

21、密封风机常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„47

22、磨煤机及油站常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„47

23、给煤机常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„49

24、除灰空压机常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„50

25、冷干机常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„50

26、仪用空压机常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„51

27、空气预热器气动马达运行声音异常故障„„„„„„„„„„„„„„„„„„„„52

28、干燥器常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„52

29、负压吸尘器常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„53 30、火检风机常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„53

31、等离子水泵常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„54

32、电动挡板门常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„54

33、气动插板隔绝门常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„55

34、电除尘常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„55

35、除灰MD、AV泵常见故障 „„„„„„„„„„„„„„„„„„„„„„„„„„56

36、一、二电场除灰系统输灰不畅发生堵灰常见故障„„„„„„„„„„„„„„„„57

37、三、四、五电场除灰系统输灰不畅发生堵灰常见故障„„„„„„„„„„„„„„58

38、灰库顶切换阀常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„58

39、灰库给料机常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„59 40、灰库搅拌机常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„59

41、细灰库落料伸缩节常见故障„„„„„„„„„„„„„„„„„„„„„„„„„60

42、灰库气化风机常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„60

43、立式排污水泵常见故障„„„„„„„„„„„„„„„„„„„„„„„„„„„61

电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

23、盘式除铁器故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„76

24、#8皮带犁煤器故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„77

25、排污泵故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„77

26、皮带伸缩装置故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„78

27、多管冲击式除尘器故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„78

28、斗轮机行走变频器故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„79

29、斗轮机回转变频器故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„80 30、6kV开关进退困难„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„80 31、6kV开关不能正常合闸与分闸„„„„„„„„„„„„„„„„„„„„„„„„„81

32、引风机油站故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„81

33、变压器油温表故障„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„81

34、主封母线微正压装置频繁动作„„„„„„„„„„„„„„„„„„„„„„„„„82

35、变压器假油位„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„82

36、变压器渗漏油„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„83

37、变压器油色谱分析异常„„„„„„„„„„„„„„„„„„„„„„„„„„„„83 38、220kV升压站SF6断路器频繁打压„„„„„„„„„„„„„„„„„„„„„„„„84

39、电源接通后,电动机不转,然后熔丝绕断„„„„„„„„„„„„„„„„„„„„84 40、通电后电动机不转动,有嗡嗡声„„„„„„„„„„„„„„„„„„„„„„„„85

41、电动机过热或冒烟„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„86

42、电动机轴承过热„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„86

43、电动机有不正常的振动和响声„„„„„„„„„„„„„„„„„„„„„„„„„87

44、电动机外壳带电„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„87

45、电动机运行时有异常噪声„„„„„„„„„„„„„„„„„„„„„„„„„„„88

四、电厂设备热工专业常见故障分析与处理

1、取样表管堵„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„89

2、温度测点波动„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„89

3、温度测点坏点„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„90

4、吹灰器行程开关不动作或超限位„„„„„„„„„„„„„„„„„„„„„„„„90

5、低加液位开关误动作„„„„„„„„„„„„„„„„„„„„„„„„„„„„„91

6、石子煤闸板门不动作„„„„„„„„„„„„„„„„„„„„„„„„„„„„„91

电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

5、托辊不转、声音异常„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„104

6、清扫器清扫不干净„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„104

7、清扫器声音异常„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„105

8、减速机轴承有不规则或连续声音„„„„„„„„„„„„„„„„„„„„„„„„„105

9、减速机齿轮有不规则或连续声音„„„„„„„„„„„„„„„„„„„„„„„„„105

10、减速机振动„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„105

11、减速机温度高„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„106

12、减速机输入或输出轴不转„„„„„„„„„„„„„„„„„„„„„„„„„„„106

13、减速箱漏油„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„107

14、滚筒轴承有异音、发热„„„„„„„„„„„„„„„„„„„„„„„„„„„„107

15、滚筒胶面严重磨损或掉落,造成皮带打滑或跑偏„„„„„„„„„„„„„„„„„107

16、制动器制动架闸瓦不能完全打开„„„„„„„„„„„„„„„„„„„„„„„„108

17、制动器制动时间过长„„„„„„„„„„„„„„„„„„„„„„„„„„„„„108

18、制动器闸瓦温升高,磨损快,制动轮温升高„„„„„„„„„„„„„„„„„„„108

19、制动器闸瓦磨损快„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„109 20、液力偶合器油温升高„„„„„„„„„„„„„„„„„„„„„„„„„„„„„109

21、液力偶合器运行时易熔塞喷油„„„„„„„„„„„„„„„„„„„„„„„„„109

22、液力偶合器运行时漏油„„„„„„„„„„„„„„„„„„„„„„„„„„„„110

23、液力偶合器停车时漏油„„„„„„„„„„„„„„„„„„„„„„„„„„„„110

24、液力偶合器启动、停车时有冲击声„„„„„„„„„„„„„„„„„„„„„„„110

25、液力偶合器噪声大„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„110

26、柱销联轴器声音异常„„„„„„„„„„„„„„„„„„„„„„„„„„„„„111

27、柱销联轴器驱动失效„„„„„„„„„„„„„„„„„„„„„„„„„„„„„111

28、落煤筒漏粉„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„111

29、落煤筒堵煤„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„111 30、多管冲击式除尘器压差不正常„„„„„„„„„„„„„„„„„„„„„„„„„112

31、多管冲击式除尘器风机振动大„„„„„„„„„„„„„„„„„„„„„„„„„112

32、多管冲击式除尘器水箱补不满水„„„„„„„„„„„„„„„„„„„„„„„„113

33、多管冲击式除尘器风机启动时联轴器有异音„„„„„„„„„„„„„„„„„„„113

34、叶轮给煤机挑杆与挡煤板卡死„„„„„„„„„„„„„„„„„„„„„„„„„113

电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

65、多吸头排污泵渗油„„„„„„„„„„„„„„„„„„„„„„„„„„„„„123 66、供油泵不吸油,压力表与真空表剧烈跳动„„„„„„„„„„„„„„„„„„„123 67、供油泵油泵不吸油,真空度高„„„„„„„„„„„„„„„„„„„„„„„„124 68、供油泵压力计有压力,但油泵仍不上油„„„„„„„„„„„„„„„„„„„„124 69、供油泵流量低于设计要求„„„„„„„„„„„„„„„„„„„„„„„„„„124 70、供油泵消耗功率过大„„„„„„„„„„„„„„„„„„„„„„„„„„„„125 71、供油泵内部声音反常,油泵不上油„„„„„„„„„„„„„„„„„„„„„„125 72、供油泵振动„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„125 73、供油泵轴承过热„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„126 74、斗轮机液压系统油泵噪音大„„„„„„„„„„„„„„„„„„„„„„„„„126 75、斗轮机液压系统工作压力不稳定„„„„„„„„„„„„„„„„„„„„„„„127 76、斗轮机液压系统油压不足,油量不足,液压缸动作迟缓„„„„„„„„„„„„„127 77、斗轮机臂架升降不均匀,有抖动现象„„„„„„„„„„„„„„„„„„„„„127 78、斗轮机液压系统油路漏油„„„„„„„„„„„„„„„„„„„„„„„„„„128 79、斗轮机轴承声音异常„„„„„„„„„„„„„„„„„„„„„„„„„„„„128 80、斗轮机斗轮驱动失效„„„„„„„„„„„„„„„„„„„„„„„„„„„„128 81、斗轮机行走机构减速机启动不了„„„„„„„„„„„„„„„„„„„„„„„128 82、犁式卸料器犁不干净„„„„„„„„„„„„„„„„„„„„„„„„„„„„129 83、犁煤器犯卡„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„129 84、犁煤器轴断„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„129

电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

故障现象:开水泵在运行过程中盘根甩水大,造成轴承室内进水轴承损坏。原因分析:

1)、盘根压兰螺丝松,2)、盘根在安装时压偏未安装到位,盘根安装时未挫开90°,接口在一条直线上。3)、盘根材质太硬将轴套磨损。处理方法:

1)、将盘根压兰螺丝进行均匀紧固,但不能紧固太紧,造成盘根与轴抱死发热。2)、安装盘根时对称均匀地将盘根压入盘根室内,接口必须错开90°以上

3)、将盘根更换为柔韧性发软的盘根(浸油盘根或高水基盘根),有条件的话将盘根改造为注胶盘根。

检修后效果:使用注胶盘根,盘根甩水在每分钟10~20滴,减小泵体的维护检修工作量。防范措施:

1)、盘根应选用耐磨柔韧性比较好的盘根。2)、安装盘根时应正确安装。

4、IS离心泵振动大、噪音大

故障现象:泵体振动大,并且泵体有异音 原因分析:

1)、泵轴与电机轴不同心。2)、泵轴弯曲。

3)、泵体各部件动静摩擦。4)、轴承间隙过大或损坏。

5)、泵转子不平衡。

6)、地脚不牢。

7)、对轮连接梅花垫损坏。

处理方法:

1)、将泵与电机重新找正。2)、将泵轴校正或更换新轴。3)、检查、调整泵内动静间隙。4)、更换或修复轴承。5)、泵转子找动平衡。

1电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

处理后的效果:油档处无漏油,回油正常。防范措施:

1)、加强巡视,发现油位低,及时检查油档处是否漏油。

2)、加强点检及时检查供油压力是否超出设计压力并加强电泵的滤油工作。3)、提高检修质量。

7、采暖凝结水泵轴承烧毁

故障现象:采暖凝结水泵检修后试运时轴承烧毁

原因分析:检修人员责任心不强在泵体检修后轴承室未加油造成轴承烧毁

防范措施:加强检修检修人员的责任心,加强检修三级验收过程。在设备试运前应全面检查轴承室油位和所有紧固螺栓是否紧好。

8、磷酸盐加药泵不打药

故障分析:磷酸盐加药泵启泵后运转正常,泵体无异音,盘根压兰无泄漏,出口压力为零。原因分析:

1)、泵出口泄压阀未关闭 3)、泵出口安全阀泄漏

2)、泵体体出入口单向阀钢球上和单向阀阀座上有杂物或钢球变形。3)泵体单向阀接合面垫片损坏。处理方法:

1)、将泵出口泄压阀关闭。

2)、检查安全阀阀座和阀芯是否有麻坑和其它缺陷,如有则进行研磨,或更换安全阀。3)、检查单向阀钢球上是否有污垢变形、阀座上有杂质裂纹等,仔细清理钢球和阀座接合面并更换接合面垫片。

防范措施:定期对加药泵入口滤网检修检查清理,发现滤网破损,应及时更换。

9、胶球系统收球率低处理

故障现象:胶球系统投运后收球率不到10%。原因分析:

1)、收球网未关到位。

2)、收球网有缺陷,胶球无法回到收球室。3)、胶球泵出入口门打不开。处理方法:

3电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

4)、解体检查,测量轴,或校正或更换。5)、解体检查硬更换两端的轴承。6)、更换机械密封密封圈。7)、更换机械密封弹簧。防范措施:

1)、设备检修时应精心检修。2)、认真检查设备,做好事故预想。

12、开式水泵盘根发热

故障现象:开式水水泵盘根运行过程中盘根发热。原因分析: 1)、填料压的过紧。

2)、盘根密封冷却水水量不足。3)、盘根安装不当或材料规格不当。处理方法:

1)、填料不应压的过紧。2)、增大密封冷却水水量。

3)、选用合适的盘根,并进行正确安装。防范措施:

1)、按要求安装盘根。

2)、利用大小修对冷却水管道进行检查。3)、及时维护合发现问题。

13、开式水泵轴承发热 故障现象:泵轴承过热 原因分析:

1)、轴承室内油位过低。2)、轴承间隙不对。3)、泵与电动机中心不好 处理方法:

1)、注油至正常油位。2)、调整轴承间隙。

5电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

2)、滤油机下方没有放置油盘。

3)、滤油机下方热源管道未保温在点检时未发现。防范措施:

1)、加强培训力度,提高员工工作责任心。

2)、滤油前应先检查接口是否绑扎牢固,无问题后在再开滤油机。3)、滤油机下方应放置油盘

4)、应将绑扎的滤油胶管改为带专用接头的滤油管。

5)、加强点检力度,认真检查滤油机下方热源管道保温是否完善。并做好隔离措施。

17、发电机密封油真空泵温度高

故障现象:发电机密封油真空泵在运行过程中泵体温度最大达到85℃。原因分析:

1)、发电机密封油真空泵出入口滤网堵塞 2)、发电机密封油真空泵出口管道堵塞 处理方法:

1)、更换发电机密封油真空泵出入口滤网

2)、检查发电机密封油真空泵出口管道。发现管道排气口在厂房房顶未保温,在出口处管道冻结,造成排气不畅。后在13.7米平台上方用锯弓将管道锯开一斜口,进行临时排气。在小修时将管道并到密封油排油风机入口管道上。处理后的结果:泵体运行正常。防范措施:

1)、在冬季应加强点检工作,发现排气口处有结冰应及时处理。2)、应及时检查密封油真空泵油位,发现油位低应立即补油。

18、循环水泵出口逆止门液压油站漏油处理

故障现象:循环水出口逆止门液压油站阀块有一螺丝死堵漏油严重,造成油箱油位下降,油泵出口压力低。

原因分析:螺丝死堵密封“O”型圈损坏。

处理方法:先用〔20槽钢焊接到阀体上将油缸回座杆档住,使阀门在油站无油压后无法关闭,然后将油泵停运,更换新的“O”型圈。防范措施:

1)、大小修应对液压油站的所有密封“O”型圈进行更换。

7电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

防范措施:

1)、应使用耐腐蚀的氟橡胶密封件。2)、对铜管检漏时应件隔离门关严。3)、工作结束后,将所有法兰紧固均匀。

21、顶轴油油压力低

故障现象:顶轴油系统压力低。原因分析: 1)、顶轴油泵损坏。2)、顶轴油泵出力调整低。3)、油管泄漏。消除方法:

1)、更换新顶轴油泵。

2)、将顶轴油泵出口压力调到合适范围内。3)、查出油管泄漏点,进行补焊处理。防范措施: 1)、加强设备巡检

2)、检修顶轴油泵时,严格按照检修工艺处理。

22、主油箱MAB206离心式油净化装置投不上。

故障现象:主油箱MAB206离心式油净化装置投运后,转动正常。分杂分水效果差 原因分析: 1)、比重环孔径过小 2)、分离温度不对 3)、流量过大

4)、沉淀桶中聚满沉淀物 5)、碟片组间被堵塞

6)、油净化装置出入口门未打开 处理方法:

1)、更换大孔径的比重环 2)、调整分离温度 3)、降低流量

9电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

处理后的效果:运行一年多,一直未泄漏。

防范措施:在机组小修期间,将法兰节流孔板更换为焊接节流孔板。

25、汽泵入口法兰泄漏

故障现象:汽泵入口法兰泄漏严重

原因分析:由于汽泵入口给水管道振动大,在启泵前水锤造成泵入口法兰泄漏 处理方法:先将泵入口法兰螺栓螺栓紧固,然后在泵入口给水管道上加一固定支架。处理后的效果:运行一年多,一直未泄漏。防范措施:

1)、要求运行人员在汽泵前泵前灌水时应先将泵体排空阀打开,开启前置泵入口给水阀门时应逐渐开大,不得一下全开。

2)、加强对给水管道支吊架检查,发现变形,焊口开裂应及时处理

26、高加正常疏水和事故疏水手动门法兰泄漏

故障现象:高加正常疏水和事故疏水手动门法兰漏水严重 处理方法:将高加解裂后将齿形垫片更换为金属缠绕垫片。

防范措施:将所有高加系统法兰垫片都更换为金属缠绕垫片,系统投运后,将法兰进行热紧。紧固法兰螺栓应对角均匀紧固

27、采暖补水装置不进水

故障现象:采暖系统分水联箱压力低,整个采暖系统压力低于0.4MPa,采暖补水装置闪蒸箱安全门动作,溢流管排水口返汽。

原因分析:采暖补水装置闪蒸箱为与水箱为浮球阀隔断,当闪蒸箱水水位高时将不锈钢浮球浮起阀门打开,水位下到一定高度时浮球阀关闭,如果不锈钢浮球有裂纹进水,则浮球无法浮起阀门打不开,水箱内进不了水,采暖系统就不进水,系统压力降低。

处理方法:将采暖补水装置闪蒸箱人孔打开,将不锈钢浮球取出,检查是否进水,并查出裂纹,重新补焊。防范措施:

1)、加强巡视,发现问题及时处理。

2)、在采暖系统轮修时,应全面检查浮球阀进行检查,并将浮球连接杆处进行加固补焊。

28、高加加热管泄漏

故障现象:高加水位“高”、“高-高”报警。水位计指示高 原因分析:

1电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

1)、循环水进水温度高,进出口水温端差小 2)、凝汽器有漏空气地方,密封不好 处理方法:

1)、检查水塔淋水盘水嘴是否有脱落,并安装好。

2)、凝汽器是一个庞大的系统,因此凝汽器检漏是一项工作量非常大的工作,主要是将所有与凝汽器系统接合面(包括法兰、焊口、人孔等)处喷氦气,然后在真空泵排气口处接一测头用仪器测量,如果接合面漏氦气就进入凝汽器内通过真空泵到排气口处,仪器就能显示出来。

在找漏过程中主要按照系统一处一处找。#2机真空低的主要问题是,主汽疏水阀门内漏,将疏水扩容器底部冲刷∮50mm的孔洞。另外机组在施工时在疏水扩容器开一人孔后封闭,由于焊接质量问题,焊缝有200mm长的裂缝,造成真空低,后将孔洞和裂纹进行补焊。

处理后的效果:真空度达到设计要求。防范措施:

1)、加强对主汽疏水门进行点检工作,发现内漏大小修时进行研磨或更换。2)、大小修时疏水扩容器进行测厚检查,发现壁厚减薄则进行更换。

3)、更换与凝汽器相连的法兰垫片和管道,必须将法兰螺栓紧固牢固,管道焊口进行检验。

31、锅炉暖风器疏水至除氧器管道接管座焊口开裂

故障现象:锅炉暖风器疏水到除氧器管道投运后,管道振动大造成管道阀门法兰泄漏,除氧器接管座开裂。原因分析:

1)、锅炉暖风器疏水管道水锤现象严重,造成管道振动大。2)、锅炉暖风器疏水至除氧器接管座材质重在质量问题。处理方法:

1)、在接管座开裂后机组降负荷,将四段抽汽和辅汽供除氧器管道阀门关闭,在泄漏处临时加一套管。在小修时更换接管座。

2)、将锅炉暖风器疏水管道改为用支架加固牢固,在小修时将原碳钢管更换为不锈钢管道,并将法兰门更换为焊接门。

3)、对除氧器其它接管座做金相分析。

处理后的效果:管道振动减少,系统运行稳定。

3电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

原因分析:冬天温度低,由于加硫酸大部分在室外,原施工时管道未加伴管,造成管道内结晶将管道堵塞。

处理方法:将加酸管道加装伴热管。

处理后的效果:系统投运后酸管道一直未出现堵塞现象。

防范措施:冬季应加强对酸管伴热管道点检,发现不热应立即查找原因,并处理。

35、发电机漏氢

故障现象:发电机漏氢量量大,一天需补氢21m3/d, 原因分析:机组正常运行补氢量应小于14 m3/d,补氢量大应是氢气系统有漏点,存在漏点的地方主要是

1)、管道、阀门法兰接合面。2)、阀门盘根压兰处。3)、管道丝扣接口处

4)、密封油排油风机排气口处 5)、氢管道排污阀未关严

处理方法:将所有的法兰、丝扣接口处先用测氢仪测量是否有漏氢,然后用肥皂水喷到法兰合接口处,观察是否有气泡产生就可确认是否漏氢。然后将法兰或接口进行紧固或用胶粘。将系统管道漏点处理完后,最后确认排油风机排气口处也泄漏。说明发电机轴瓦处漏氢只能在机组小修时将发电机轴瓦进行调整。防范措施:

1)、打开氢管道排污门后应及时关闭,并确认关闭牢固。2)、大小修应对所有的接头和法兰及盘根泄漏处进行彻底处理。

36、给水再循环手动门自密封泄漏

故障现象:给水再循环手动门自密封泄漏严重,顺门体门架法兰漏水。原因分析:

1)、阀门自密封垫为钢体密封,质量存在问题,2)、阀门选型不符

处理方法:将系统隔离,系统消压后阀门解体,将自密封取出后发现自密封钢圈已冲刷出沟道,由于无备件,将自密封回装打磨后直接与阀体焊死。待小修时更换其它型号的阀门。检修后的效果:阀门投运一直未漏,效果比较好。防范措施:

5电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

胀口处火焰被吸进去,则说明此根管泄漏。然后用加工好的锥形铜堵将两侧不锈钢管封堵好。并将所有的焊缝进行找漏,有泄漏处则进行补焊。处理后的效果:凝结水水质达到合格水平,安全防范措施:

1)、工作时严格按照安全、技术措施执行,做好隔离通风工作。2)、工作时应有专人监护,工作人数不少于3人。3)、做好防腐层和循环水的化学监督。

39、循环水泵轴承润滑冷却水滤网堵塞

故障现象;在春天季节中循环水泵轴承润滑冷却水滤网堵塞严重,基本上2~3小时就得进行清理。

原因分析:由于春天季节中从水厂供过来的补给水里,含有大量的柳絮,柳絮体积比较大无法通过20目的循环水泵轴承润滑冷却水滤网,造成滤网堵塞,清理工作量大。处理方法:

1)、原轴承润滑冷却水滤网只有两路,在滤网堵塞后,如果清理不及时就会使循环水泵轴承冷却水断水,造成循环水泵轴承烧毁,给机组带来很大的隐患。在小修时根据实际情况又增加了两路润滑冷却水滤网,这样如果有两路润滑冷却水滤网堵塞,则立即将另为两路润滑冷却水滤网阀门打开,就不致于轴承断水。

2)、润滑冷却水滤网堵塞后,应立即将堵塞的滤网更换,然后再将拆下的滤网进行清理。处理后的效果:能保证循环水泵轴承冷却正常用水。防范措施:

1)、加强点检力度,发现滤网堵塞应立即更换滤网。2)、更换下的滤网应及时清理,并备好。40、消防水管法兰泄漏造成跳机

故障现象:发电机励磁变压器旁消防水管道法兰泄漏造成,励磁变压器进水,发电机保护跳机。

原因分析:发电机励磁变压器旁设置有6KV配电室特殊消防水雨淋阀,由于法兰垫片使用胶皮垫,长期使用老化,造成泄漏跑水。

处理方法:将法兰垫片更换为金属缠绕垫片,并将发电机励磁变压器旁的所有消防水法兰作带压堵漏预防性卡具。防范措施:

7电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

1)、使用质量过关的垫片。2)、清理结合面,使其平整、光滑。3)、螺栓对角紧时,紧力要合适。防范措施:

检修阀门时,应严格执行工艺标准。

9电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

(2)电动机故障。(3)枪管烧变形或卡涩。(4)阀芯与阀座结合面损坏。

(4)吹灰器内管,提升阀密封填料损坏。(5)吹灰器入口法兰石墨金属缠绕垫失效损坏。处理方法:

(1)联系电热人员检查控制系统及膨胀电源线是否拉卡在设备上。

(2)吹灰器外枪管炉内部分烧弯曲变形迅速就地手动或用手动摇把退出,如枪管脱离滑动轴承支架应重新调整并校正枪管,如枪管变形严重应更换新的。

(3)隔绝单项系统后检修提升阀,用专用工具对提升阀进行拆卸并对阀芯与阀座进行研磨检修,如阀芯或阀座损坏严重及进行更换。

(4)隔绝单项系统后对内管密封填料进行更换,注意填料压盖螺栓适度拧紧。(5)重新更换法兰密封垫片。防范措施:

(1)严格检修工艺。

(2)加强点检,及时发现问题及时处理。

3、短吹灰器常见故障

吹灰器的是吹扫锅炉受热面集灰,保持受热面清洁的,以提高传热效果,保证锅炉热效率,防止受热面结焦的设备。故障现象:

(1)吹灰器启动失败及吹灰器不自退。(2)吹灰器内漏。

(3)吹灰器内管密封处漏汽严重,提升阀提升杆处漏水。(4)吹灰器入口蒸汽法兰漏汽。原因分析:

(1)控制部分故障。(2)电动机故障。

(3)螺旋管滑道,凸轮损坏卡涩。(4)阀芯与阀座结合面损坏。

(4)吹灰器内管,提升阀密封填料损坏。

1电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

(4)阀门检修时,认真检查阀芯、阀座结合面损坏情况,根据检查制定检修方案。(5)阀门研磨过程中,严格按照检修文件包进行,选用合适的研磨工具。

(6)系统能隔绝重新更换相同规格的阀门,系统无法隔绝采用待压堵漏的方法进行修补。防范措施:

(1)严格检修工艺。

(2)加强点检,及时发现问题及时处理。

5、高压气动阀门常见故障 见汽机高压气动阀门常见故障。

6、暖风器管道常见故障

暖风器在冬季可以保持一、二风机入口温度为规定的环境温度(设计25℃)保护空气预热器前后温差和正常经济运行。故障现象:(1)管道振动。(2)支吊架松动。(3)法兰漏水。

(4)暖风器换热管冻,暖风器无法正常投运。原因分析:

(1)汽水两相流动。(2)支吊架拉杆螺栓松动。

(3)管道振动连接螺栓松,法兰漏水。

(4)系统操作不当,造成暖风器疏水不畅在暖风器内部冻住。处理方法:

(1)运行人员进一步调整暖风器供汽阀门开度。

(2)重新加装支吊架(滑动支架、固定支架),保证管道有一定的坡度。(3)重新拧紧拉杆连接螺栓并加装锁紧螺母点焊牢固。

(4)为了保证暖风器运行,在一次风机吸入口用劈柴和柴油点火,保证火焰全部吸入风道内部,可以烤化疏水。二次风入口由于与地面高度相距太远,需搭架子高度在6米以上用劈柴和柴油点火,保证火焰全部吸入风道内部,可以疏通冻住的疏水。防范措施:

(1)进入冬季加强点检,发现问题及时处理。

3电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

(3)管子发生泄漏。(4)管排磨损。(5)管排变形。

(6)管子发生蠕胀现象。原因分析:

(1)烟速过低。吹灰失灵。管子有泄漏。

(2)由于积灰,吹灰蒸汽温度低,尾部烟道漏风,给水品质不合格造成内壁腐蚀,外壁腐蚀。

(3)厂家焊口质量不佳,管子磨损及内外壁腐蚀,管子焊口附近应力集中,管材有缺陷造成泄漏。

(4)管排排列不均形成烟气走廊,尾部烟道后墙防磨板损坏,烟气流速过高,管夹子松动发生碰撞,吹灰不当。

(5)管排支架或活动连接块损坏或脱落,造成管排变形。

(6)运行中严重超温使管子过热,蒸汽品质有问题使管子内壁有大量的结垢,换管时管材不对。管内有异物造成管子蠕胀。

(7)各人孔门、看火孔关闭不严造成漏风,管子鳍片没有密封焊严。处理方法:

(1)适当提高烟速,检查吹灰器使其正常运行工作,杜绝受热面管子的泄漏。(2)清除积灰,加强吹灰,提高蒸汽温度,消除尾部烟道不严造成的漏风,提高汽水品质,长期停炉时应做好充氮保护。

(3)在焊接质量方面,采取有效的措施防止腐蚀和外壁磨损,消除管子的附加应力,换新管子时应进行光谱分析,保证不错用管子并不准使用有缺陷的材料。换管时确保无异物落入管子中,新管必须通球,保证吹灰蒸汽温度,加强吹灰管疏水。

(4)校正管排,消除烟气走廊,修复防磨护板,调整烟气流速,减少对迎风面管子的冲刷,调整、修理管夹自装置,使其牢固。

(5)检查恢复已损坏的支架和固定连接板,恢复开焊或脱落的活动连接块,按时吹灰。(6)保证各人孔门关闭严密,所有管子鳍片都应密封焊。(7)利用临修、小修对受热面进行全面检查。(8)提高检修人员检修素质,严格检修工艺。

9、水冷壁管排泄漏常见故障

5电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

(3)保证焊接质量,采取有效措施防止腐蚀和外壁磨损,消除管子的附加应力,换新管应做光谱分析,保证不用错管子,并不准使用有缺陷的材料。换管时确保无异物落入管子中,新管子必须通球,防止炉膛上部结焦,保证吹灰蒸汽温度,加强吹灰管的疏水。(4)校正管排,消除烟气走廊修复修防磨护板,调整烟气流速,减少对迎风面管子的冲刷,调整、修理管夹自装置,使其牢固,适当吹灰。校正弯曲的管子,消除管子与管子之间的碰装和摩擦。

(5)按设计要求合理配煤。适当调整喷燃器摆动角度。加强炉膛吹灰,经常检查使炉膛各门孔关闭严密。修后炉膛出口受热面管排平整。

(6)检查恢复已损坏的支架和固定连接板,恢复开焊或脱落的活动连接块,按时吹灰,防止管排结焦,校正已变形的管排。

(7)严格运行操作,不使蒸汽超温,严格控制汽水品质,换新管时严把质量关,保证不错用管材,换管时防止异物落入管中,所换管子必须进行通球。

(8)保证各门孔关闭严密,内护板按设计要求安装焊接。所有管子鳍片都应有密封焊接。及时焊补各膨胀节,确保严密。防范措施:

(1)利用大小修按照防磨、防爆计划对受热面进行全面、仔细的检查。(2)提高检修人员检修素质,严格检修工艺。(3)制定应急预案,发现问题及时解决。

10、省煤器管排泄漏常见故障

省煤器是利用排烟余热加热给水,降低排烟温度,节省燃料。经过省煤器的给水提高了温度,降低了给水与汽包的温差,可以减少汽包的热应力,改善汽包的工作条件。故障现象:(1)管排积灰。

(2)管子内壁结垢、外壁腐蚀。(3)管子泄漏。(4)管排变形。

(5)管子发生蠕胀现象。(6)漏风。

(7)防磨罩损坏或脱落。(8)管子磨损。

7电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

(1)利用临修、小修对受热面进行仔细检查。(2)严格检修工艺。

11、云母水位计常见故障

云母水位计是运行人员监护汽包水位的重要测量装置,通过观察水位可以有效的帮助运行人员进行操作,保证机组安全经济的运行,防止发生汽包烧干锅或汽包满水事故的发生。故障现象:(1)云母片泄漏。(2)云母片不清晰。原因分析:

(1)汽包水位计超期运行,造成云母片老化或表体变形,形成泄漏。(2)汽包水位计在运行中多次冲洗,使云母片减薄,形成泄漏。

(3)汽包水位计长期运行,汽包内水质差,水位计云母板内有结垢现象,使光线无法透过。

(4)紧固水位计云母板时,紧力过大或不均匀使石墨垫片呲开,造成光线无法透过。处理方法:

(1)如运行中处理,隔绝系统并拆下外罩充分冷却24小时,降低水位计螺栓与螺母热应力。

(2)汽包水位计应定期检修,在机组临修、小修中应及时更换云母片,避免应超期运行,造成老化。

(3)认真检查表体,发现云母板紧固螺栓和螺母有蠕胀超标或损坏现象时,应及时更换。发现表体有严重变形或沟道应更换水位计。

(4)汽包水位计更换云母板时,应选用透光率好的云母板,避免使用茶色的云母板。(5)紧固水位计云母板压盖螺栓时,用力要适中,各个螺栓的紧力要一致。(6)定期调整水位计后彩色玻璃为合适位置。防范措施:

(1)加强云母水位计检修工艺的培训,提高职工的检修水平。(2)加强点检,出现问题及时处理。

12、中央空调系统常见故障

中央空调系统在电厂运行中启到重要的作用,在夏季和冬季保证控制室电气设备正常

9电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

(4)弹簧支吊螺杆没有调整。处理方法:

(1)弹簧加载螺栓松,需要重新调整。

(2)重新调整弹簧加载螺栓,保持压盖保持水平并上下动作灵活。(3)重新制作弹簧标记块并安装好。

(4)重新调整弹簧支吊架,保持螺杆长度合适。防范措施:

(1)加强点检,出现问题及时处理。

(2)利用临修、小修对弹簧支吊架重新进行调整。(3)提高员工检修工艺培训,严格检修工艺。

14、烟风道系统常见故障

烟风道系统由送、引、一次风及风道、烟道、烟囱及其附件组成的通风系统。烟风系统的作用是送风机、一次风机克服送风流程(包括空气预热器、风道、挡板、支撑)的阻力,将空预器加热的空气送至炉膛及制粉系统,以满足燃烧和干燥燃料的需要。通过引风机克服烟气流程(包括受热面、电除尘、烟道支撑、挡板等)的阻力,将烟气送入烟囱,排入大气。烟风系统可以根据设计需要保持炉膛的适当的压力。故障现象:

(1)人孔门漏风、灰。

(2)风道内支撑迎风面磨损严重。(3)档板门操作卡涩。轴头漏灰。原因分析:

(1)人孔门端盖钢板强度不够。密封垫损坏。螺栓强度不够。(2)煤中含灰量大。空气、烟气流速太高。(3)挡板门与风道两侧膨胀卡涩。

(4)挡板门轴头填料盒强度不够,密封调料材料少,质量差。处理方法:

(1)更换厚钢板,用石棉绳和水玻璃重新制作垫片。更换强度高的连接螺栓。(2)适当调整空气、烟气流速。对磨损严重的支撑进行更换,对磨损轻微的做好修补。(3)利用临修、小修传动挡板,切去影响的挡板。

(4)利用临修、小修重新更换轴头端盖并填加耐高温、耐磨的填料环。

1电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

流,喷口都是狭长形。

旋流燃烧器是利用其能使气流产生旋转的导向结构,使出口气流成为旋转射流,托电二期锅炉为轴向叶轮式旋流燃烧器,前后三层对冲燃烧。燃烧器有一根中心管,管中可插油枪。中心管外是一次风环通道,最外圈是二次风环形通道。这种燃烧器对锅炉负荷变化的适应性好,并能适应不同性质的燃料的燃烧要求,且其结构尺寸较小,对大容量锅炉的设计布置位置较为方便。故障现象:

(1)炉膛燃烧吊焦。

(2)燃烧器入口插板门漏粉。(3)燃烧器出口浓向分流板磨损严重。(4)燃烧器外壳有裂纹。原因分析:

(1)没有按设计煤种供应燃料,造成燃料中灰分的ST温度过低,炉膛热负荷过高,炉膛出口烟道截面太小,喷燃器调整不当,炉膛门孔关闭不严,墙式吹灰器失灵,炉膛出口受热面管排不平整,造成受热面结焦。

(2)火焰中心偏向#1角,阻塞了喷口面积,使#1角阻力增大,发生结渣。(3)插板门安装不合适。法兰连接螺栓松动。(4)一次风流速过高。(5)燃烧器材料与设计不符。处理方法:

(1)严格按照设计煤种要求合理配煤。适当调整喷燃器摆动角度。加强炉膛吹灰,经常检查使炉膛各门孔关闭严密。修后炉膛出口受热面管排平整。(2)检查#1角燃烧器角度是否与其它三个角一致。(3)运行中测量各台磨风速,调整到合适的流量。

(4)利用临修、小修传动燃烧器入口二次风各挡板门是否开度一致。

(5)利用临修、小修重新调整插板门安装位置并对法兰连接螺栓重新进行热紧。(6)利用临修、小修重新更换浓向分流板。

(5)用补焊钢板的方法对有裂纹的燃烧器外壳进行加固。防范措施:

(1)加强点检,发现问题及时分析并做响应的调整。

3电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

(2)液压调节头油管接头损坏。(3)轴承箱内部测点有松动。(4)风机轴承箱油管有损坏。(5)消音器与暖风器安装位置不对。处理方法:

(1)利用临修,拆下轴承箱整个转子,更换轴封骨架密封。(2)紧固液压调节头油管接头。(3)联系热工紧固轴承箱内部测点螺栓。(4)更换损坏的轴承箱油管。

(5)利用小修重新更换消音器与暖风器前后位置。防范措施:

(1)加强点检,发现问题及时处理。

(2)提高职工的检修工艺培训,严格检修质量。(3)定期检查油位和油取样工作。

(4)利用临修、小修对送风机进行全面、仔细的检查。

19、离心式一次风机及油站常见故障 故障现象:

(1)一次风机周期性振动超标。(2)电机润滑油站润滑油乳化。

(3)电机润滑#1油泵启动后系统压力不足联启#2油泵。(4)一次风机入口有异音 原因分析:

(1)叶轮轴向密封环铜条损坏。入口调节挡板门开度不一致。暖风器、消音器间距小造成吸风量不足。

(2)油冷却器端盖螺栓松油水连通。

(3)#1油泵出口阀门内弹簧卡涩,动作失灵。(4)消音器与暖风器安装位置不对。处理方法:

(1)利用临修,更换新的铜密封环,联系热工重新传动入口调节门,保持两侧开度一致。(2)检查并处理两侧调节挡板们执行机构,保持一致。

5电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

(1)加强点检,发现问题及时处理。

(2)提高职工的检修工艺培训,严格检修质量。(3)定期检查油位和油取样工作。

(4)利用临修、小修对引风机进行全面、仔细的检查。

21、密封风机常见故障 故障现象:

(1)密封风机振动超标。(2)轴承箱轴封漏油。(3)滤网报警。原因分析:

(1)风机低部支撑框架强度不够。(2)风机轴承损坏。(3)轴承箱润滑油变质。(4)轴承轴封(毛毡)失效。(5)电机、风机地脚螺栓松动。(6)滤网堵。处理方法:

(1)在风机底座钢梁上重新加固横梁。(2)重新更换新的轴承。

(3)进一步调整轴承端盖膨胀间隙,保证轴承良好运行。(4)定期更换轴承箱润滑油及轴封毛毡。(5)检查电机及风机外壳地脚螺栓。(6)清理密封风机入口滤网。防范措施:

(1)加强点检,发现问题及时处理。

(2)提高职工的检修工艺培训,严格检修质量。(3)定期检查油位和油取样工作。

(4)利用临修、小修对密封风机进行全面、仔细的检查。

22、磨煤机及油站常见故障 故障现象:

7电力技术实用资料(鉴赏2015)

运行维护技术培训教材——电厂设备常见故障分析与处理

(8)重新调整喷嘴环通流截面。重新调整磨辊加载螺栓,保持受力均匀。适当提高一次风量。

(9)定期清理或更换磨煤机密封风滤网。防范措施:

(1)利用临修、小修对磨煤机内部进行彻底的检查。(2)加强点检,出现问题及时处理。

(3)提高职工的检修工艺的培训,严格检修工艺的质量。(4)利用临修、小修对磨煤机进行全面、仔细的检查。

23、给煤机常见故障 故障现象:

(1)给煤机皮带卡涩,给煤机跳。(2)给煤机驱动马达及减速箱振动大。(3)给煤机轴承有异音(4)给煤机皮带损坏。(5)清扫链连接销磨损严重。(6)清扫电机损坏。原因分析:

(1)原煤斗有大块煤、木头、耐磨陶瓷砖卡涩给煤机。(2)给煤机驱动滚筒上的缓冲销松动。(3)轴承不定期补油造成轴承进粉损坏。(4)给煤机皮带长时间运行磨损。(5)清扫链伸长磨损连接销。(6)清扫电机骨架密封损坏。处理方法:

(1)通知输煤专业人员加强巡检,发现大煤块、木头等不合格物及时进行清理。(2)更换驱动滚筒缓冲销。

(3)更换轴承及轴护套,检查润滑脂油管是否畅通。(4)定期调整给煤机皮带,保持张紧滚筒在中间位置。

(5)适当调整落煤口调节板,减少煤块下落缓冲力。定期调整清扫链长度。(6)更换清扫电机骨架密封。对磨损严重的皮带进行更换。

篇2:冶金设备常见故障分析

摘要:

当前科学技术的进步推动了船舶建造业的发展,船舶上电气设备的数量越来越多,在船舶建造的过程中,其所涉及到的电气设备种类多且十分复杂。电气设备能否平稳运行也会对整个船舶的性能产生重要的影响。船舶上的电气设备维护难度大,同时对技术的要求也更为严格,所以要在日常工作中做好各项工作,若船舶出现故障,应及时做好排查和维护工作。

关键词:船舶电气;电气设备;故障因素;常见故障

当前,我国船舶建造水平日益提高,自动化和电气化水平提升。船舶当中也开始应用越来越多的电气设备,但是电气设备本身就有着非常强的复杂性,若电气设备出现故障,对故障的排查和检修需要较长的时间。在船舶的管理工作中,工作人员一定要熟练掌握故障解决的有效方式,同时还要不断地总结和积累经验,对其进行科学的分析。工作中常用的有分析法和排除法,在分析和排除故障时要保证每个环节的严谨性和科学性。

一、船舶电气设备的故障分类。

船舶电气设备较多,所以我们可以将这些设备看成是一个综合性的系统,其中包含了电力系统、照明系统、电力拖动系统、内部通讯系统、外部通讯系统和导航内部监控系统等,也正是因为系统的多样性和复杂性,电气设备发生故障的可能性也大大增加。在船舶设计中,其所选用的材料以及不同构件之间所使用的技术也有着非常明显的差异,航行的线路以及沿途的环境条件也有所不同,所以若不能有效地对电气设备进行全方位监管,就会使船舶电气设备受到一定的不利影响,船舶运行的过程中也会出现一些故障。

1、发电机常见故障分析。

因为发电机会在较长的时间处于非工作状态,所以容易出现内部电刷滑环接触不良的问题,同时励磁机也容易出现故障从而也会导致电磁场失磁。若不能产生励磁,电压也无法转换成电流,所以也就影响了其自身的效果。如果发电机其中的一个部分出现参数错误,会使得发电机产生逆功率的现象,若没有及时采取有效措施进行发电机养护,就会影响到内部绝缘体的绝缘性。

此外发电机内部还容易受潮,影响其绝缘的效果。此外还要注意设备运行的过程中是否出现了发电机线路断开的问题。其次,发电机在正常运行的情况下,因为电力设备不能提供足够高的电压,因此系统就会出现运转异常的现象,通常其主要表现为设备的电压明显处于非正常状态。

2、主配电板常见故障分析。

电气设备运行时,主配电板通常是振动的,而振动的频率也会因为位置的不同产生一定的差异。振动频率较高的设备就比较容易由于振动出现裂痕,甚至还会出现电板开裂的问题,这些问题若不能及时解决,就会影响设备的正常使用。虽然在设备管理过程中,工作人员已经在配电板的外壳位置设置了防尘措施,但是电板的接线位置依然会受到灰尘因素的影响。灰尘会影响线路两端的串联效果,电路板也容易产生接触不良甚至是短路的问题。在主配电板方面其出现故障后多表现为电流异常,而这一故障也会对配电板的正常运转产生一定的阻碍作用。

3、电网系统常见故障分析。

为了保证电力系统的正常运转,通常会借助继电器来维持电路的平稳运行,同时使电流维持在一个稳定的水平。但在实际的工作中,由于在很长一段时间内都没有对继电器和相关的硬件设备进行全面的检查和维修,设备的部件会出现松动的问题。虽然在这样的条件下,设备依然能够运转,但是继电器的性能已经无法正常发挥,所以对电路的稳定性也造成了一定的不利影响。

照明系统中绝缘电阻通常要比正常的水平低,若不能及时采取有效措施加以控制,就会增加主配电板电路的运行负荷,当这种负荷超过极限时,就会产生短路故障。继电器部件也可能会出现一些故障和问题。这一故障主要表现为电气设备接触器的触头出现异常反应,如果出现这一问题,必须要采取有效措施加以控制和处理。如果接线盒出现松动,则会使电气设备出现接地故障,这时,设备上的绝缘指示灯会出现同时亮灭的情况。

4、电动机常见故障分析。

电动机故障较为严重,所以也需要在电气设备运行中格外重视。因为电压出现高低不稳定变化的情况,系统容易出现短路故障,从而使得电机的温度逐渐升高,乃至超过电机能够承受的最高温度,这时电机就会出现冒烟的现象。此外,在设备运行的过程中还可能出现负载部分转容超出限度,进而导致堵塞问题,这种问题会导致铁心和转子在运行的过程中发生摩擦,从而引发更加严重的问题。

二、船舶电气设备常见故障检修方法分析。

1、硬件替换法。

在初步确定故障的具体位置后,通常采取硬件替换的方式来处理。在已确定的故障位置进行故障零件的替换,从而确定这一故障是否为设备的主要故障。如果更换之后,设备的性能得以恢复,说明之前确定的故障位置和故障类型就是主要的故障。而如果无法正常运转,则应继续进行故障排查,直至找到出现故障的根源所在。硬件替换方式相对比较方便,但是其效率相对较低。对于紧急的故障无法进行及时有效的处理。此外还需要在船舶上有足够多的硬件设备,因此这种方式一般应用在非紧急故障的处理中。

2、经验指引法。

维修人员应对船舶上的电力设备进行定期维修,同时还要对检修过程中出现故障的位置和具体原因进行详细的记录,以便更好地总结和归纳在船舶电力设备检修中容易出现的问题以及产生这些问题的常见原因。充分将理论与实践相结合。经验较为丰富的船员可以为新手船员介绍自己的经验体会,同时还可以对其进行细致的指导,如此就可以更好地认识故障,排除故障,同时也能在一定程度上降低故障发生率。若下次出现了相同的故障,也能够根据以往的经验进行妥善处理。这种方法也是船舶电气设备检修工作中应用最为广泛的方法。

3、直观检测法。

这种方法主要是指检测人员按照电气设备外观的状态判定故障的具体位置和类型。用五官去感知和观察电气设备的外观,同时用专业的仪器设备进行全面排查,从而判断设备是否存在故障,在对多项数据进行全面分析和研究后,可以判断出设备是否处于正常运行的状态。在检查中使用耳朵听设备运行过程中是否有异常的声音。若设备处于正常的运转状态,其声音是细微且均匀的。

用鼻子来嗅设备的气味,因为电气设备在运行的过程中一般由绝缘材料构成,所以如果运行过程中,设备的温度过高,就会出现非常明显的异味,但是若设备处于正常的运行状态,则不会产生这种异味。检修中还可以用手触摸设备的`表面,判断设备的温度是否在正常范围内。设备在运行的过程中会产生一定的热量,这种热量会使得设备表面的温度有所上升,而正常的温度上升对设备的性能无明显影响。在检修过程中,触摸设备之前,一定要采取有效的保护措施,避免发生触电事故,保证人员安全。这种方法在检查的过程中借助仪器设备和数据报告来判断并排除设备的故障,所以使用这一方法需要有多项指标的支持,在检测的过程中也需要有高精密度的仪器,只有这样,才能更准确地判断出设备的故障位置和类型。

4、短路排查法。

船舶电气系统具有高度的独立性,在一个独立的大系统当中还包含了多个独立的小系统,电力是使不同系统共同运转的主要媒介。所以如果某一个部分出现故障,可以利用系统中的原有电路断点进行短接处理,从而确定故障的具体位置。但是需要注意的是,采用这种方法完成短接和排查工作后,一定要及时拆除短接的线路,防止由于短接线路的影响而出现更为严重的故障问题。

三、船舶电气设备故障的有效预防。

船舶电气设备故障发生之前会出现一些现象,因此在设备运行和维护的工程中,一定要做好前期工作,对设备连接的位置进行定期排查,若在检查的过程中发现线路老化和其他不良情况,要及时进行更换处理。在日常保养工作中还要保持周围环境的整洁度,使设备运行环境具有良好的干燥度和通风性,进而保证设备的正常散热,避免由于温度过高而出现故障。

四、结语。

当前,我国的船舶行业发展迅速,同时其在发展中也逐渐应用了多个现代化技术,因此船舶制造水平也越来越高。在船舶制造中,电气设备得到了较为普遍的应用。船舶技术的改进和发展使得船舶中的电气设备越来越多,设备运行过程中出现的问题也越来越复杂,种类也随之增多。当前,对于船舶电气设备的维护和故障检修还需要不断改进和完善,同时还要重视设备的日常管理,采取有效措施对故障进行科学预测,进而能够更好地进行电气设备故障预防,保证船舶电气设备的正常运转,推动船舶建设制造业的不断进步。

参考文献:

[1]袁成岗。船舶电气系统故障分析和保障措施探讨[J]。科学大众(科学教育),,(12)。

篇3:配电房设备常见故障与分析

在电力系统运行中, 配电房是供电过程的关键环节, 其中的配电装置不仅承担受电任务, 同时还承担着配电任务, 对于输配电运行可靠性具有重要影响。当前, 各个企业的发展都离不开电力供应, 如果切断电源, 不仅会给企业造成财产损失, 同时也会影响到社会的稳定发展。由此可见, 电力供应是关乎国计民生的大事, 应当采取合理措施加强配电房设备管理。

配电房系统运行具有一定的复杂性, 由此也就导致配电设备容易出现故障, 从而影响到电力供应, 对此, 明确配电房设备的常见故障, 并熟练掌握处理故障的措施就显得尤为重要。对于配电房设备故障处理, 值班人员首先应当采取措施控制事态发展, 找出故障根源, 并及时解除故障, 以将故障影响降到最小。

2 配电房设备常见故障

2.1 变压器故障

配电变压器是电力系统运行中的重要设备, 如果变压器出现故障, 则会对正常的生产及生活都产生影响, 制约正常用电。常见的变压器故障主要包括电路及磁路故障, 电路故障主要包括引线和绕组故障两种, 如接触不良、材料性能差、制造工艺不亮灯, 都会导致系统出现短路故障。磁路故障主要是指铁芯或夹件之间发生故障, 如绝缘损坏、铁芯接地不良导致放电等, 由此对变压器运行产生制约。变压器的故障主要表现为运行过程中声音异常、内部绝缘遭到损坏、雷击等。

2.2 三相负荷不平衡

在配电房的电力系统运行过程中, 由于三相电流的幅值有一定差异, 并不完全相同, 从而会出现一个浮动范围, 如果幅值差超出规定的浮动范围, 则会出现三相负荷不平衡的情况。根据配电房设备的常见故障来看, 主要是由于存在大量的不平衡三相负荷, 而且大部分属于单相符合, 浮动范围较大, 从而使得变压器的三相负荷不能够维持平衡, 而且无法保持对称性运行, 使得其中产生零序性电流, 这样不仅会导致变压器损耗严重, 同时还会降低变压器的有效容量, 性能下降, 影响到其后续的使用寿命。三相负荷的不平衡性, 会导致电力系统及用户都出现障碍, 除了缩短变压器的使用寿命外, 还会导致电动机的转矩及过载能力下降, 并导致输电线路损耗较大, 最终会增加线路维护成本。

2.3 雷击

由于配电房系统运行主要是电力运行, 无论是输电还是配电, 都很容易遭受雷击, 从而导致配电房系统出现故障, 尤其是大风大雨天气, 会导致配电房过于潮湿, 出现漏电现象, 而雷击则会导致配电房设备遭到损坏, 从而出现运行故障, 影响到电力系统正常运行, 这样也会给后期的维修工作带来较大难度。因此, 针对雷击现象, 应当在天气转晴后立即采取措施进行维修处理, 以最大限度的减少由于故障带来的经济损失。

2.4 保护装置故障

保护装置主要是指对配电房系统运行进行有效维护的装置, 这样能够提升系统运行可靠性和安全性, 从而将损失降到最低。保护装置中的低压保护装置故障会导致出现永久性的故障, 从而导致相关的重要线路出现跳闸现象, 如果抢修较慢, 势必会导致恢复送电的时间延长, 由此给用户造成巨大损失, 这主要是由于对配电房设备的日常维护工作不到位, 使得低压空气开关无法起到其应有的保护作用, 而且分支保险也无法出现熔断现象, 从而导致整个系统出现故障。

3 配电房常见故障控制对策

3.1 加强变压器管理

针对变压器运行过程中出现的故障类型, 需要采取应对措施进行有效控制。对于变压器运行时出现的声音异常, 应当立即停止变压器运行, 并进行故障检修处理, 如果内部接触不良, 则将相关零部件卸下, 并重新安装处理, 如果是绝缘击穿, 出现放电现象导致声音异常, 则可能是由于套管出现裂痕, 对此要重新更换套管, 并确保安装正确, 然后进行试运行, 变压器声音恢复正常则代表故障维修成功。如果是由于内部绝缘损坏导致的短路故障, 则要重新选择绝缘材料, 如选择高配置的低压熔丝, 对于铜线、铝线等材料则严禁选用, 对于变压器中的各个部分应当合理分配电力负荷, 避免三相或者单相的长期符合情况, 以免温度过高, 导致配电变压器出现损坏现象。如果遭遇雷击, 则主要是由于安装不合格的避雷器导致, 对此需要及时更换新的避雷器, 并确保避雷器与线路的定额电压相符合, 以发挥其避雷作用, 避免再次被雷击。

3.2 平衡三相负荷

对于配电房平衡三相负荷的管理, 应当注重严格按照标准规范进行布线设计, 并根据实际情况对三相负荷进行合理分配, 如果现有变压器不能够满足要求, 则要根据设备运行情况增加相应的电源供应, 以保证变压器的稳定运行。如果变压器出现故障, 则应当从布线开始检查, 包括线材型号选择、电能计量及分配等都要严格检验, 重新进行线路布置, 以免再次发生同样的故障。此外, 配电房的日常运行还应当加强维护与管理, 确保线路运行能够保证稳定性和可靠性, 从而提升电力供应水平。

3.3 预防雷击

雷击对于配电房的危害较大, 甚至会出现火灾, 从而给用电企业带来巨大的财产及生命损失, 也会严重制约到我国社会的和谐发展。因此, 在配电房的外面可以安装一个性能较好的避雷针, 并将避雷针的可承受电压设计成与线路额定电压相符, 这样当出现雷雨天气时, 可以将雷电通过配电线路接到地下疏散, 避免了对输配电系统造成损坏。在日常的电力系统运行中, 值班人员应当加强配电房设备的检查与维护, 尤其是避雷设备, 如果设备老化, 则要及时进行更新处理, 以保证设备性能不断优化, 能够随时承担打雷天气, 从而提升电力系统运行水平, 满足配电房设备维护需求。

3.4 强化保护装置控制

根据对保护装置故障的调查结果发现, 低压保护系统只是单纯的空气开关, 其在配电房系统运行中的应用主要体现出经济性, 而在日常过程中只能够起到开合作用, 如果出现故障, 根本无法起到应有的保护作用, 而且熔断器也无法在故障出现时立即熔断, 从而增加了故障成本。对此, 可以接通熔断器与系统, 保证两者的正常运行, 并更换低压保护系统, 确保其在系统出现故障时能够起到保护作用, 以免其他系统部件出现损坏。

4 结束语

在现代化社会发展的今天, 电力供应已经成为人们日常生活和工作不可离开的重要组成部分, 因此, 对于输配电运行的配电房设备管理也就提出了更高的要求。在未来的发展过程中, 应当加强配电房的日常维护与管理, 及时处理系统故障, 以确保系统运行的可靠性、稳定性和经济性, 更好的满足我国社会主义现代化建设需求。

参考文献

[1]廖毓聪.配电房的常见故障及处理方法[J].电工文摘, 2010 (04) .

[2]吴日, 张勇军, 万国成.配电网用户事故出门情况分析[J].电气应用, 2012 (02) .

[3]李国庆, 李国友, 张楠, 等.基于GSM的变压器铁心接地电流在线监测装置的研究[J].变压器, 2011 (10) .

[4]吴日, 张勇军, 何毅思, 等.保护配电变压器的“防火墙”方法的研究[J].变压器, 2012 (10) .

[5]周理, 周芝峰.电力变压器的温度保护及探讨[J].煤矿机械, 2010 (10) .

篇4:通信电源设备的常见故障分析

【关键词】通信电源设备;故障;分析

一、引言

通信离不开电源,通信电源是通信的保障,所以保证通信电源系统的安全运行,对保证通信系统的畅通乃至通信的安全有着积极的意义。通信电源系统是对通信局站各种通信设备及建筑负荷等提供用电的设备和系统的总称。主要由备用发电系统、高压供电系统、变压器系统、不间断电源系统、后备电源系统、直流系统、接地防雷系统以及动力环境监控系统等多个子系统组成。电源系统故障分为一般性故障和紧急故障。一般性故障指不会影响通信安全的故障,包括交流防雷器雷击损坏、系统内部通信中断、单个模块无输出、监控单元损坏等;紧急故障指影响通信安全的故障,包括交流输入与控制损坏而导致交流停电、直流采样和控制电路损坏而导致直流负载掉电等。如果不能及时有效地对故障进行处理,将导致通信系统的瘫痪,带来严重的损失,因此,必须对通信电源常见的故障与处理给予充分重视。

二、交流配电单元的故障

1、防雷器单元

防雷器是由四个片状防雷单元组成,其中三个防雷单元具有状态显示功能,可以显示防雷单元是否处于完好状态。防雷单元窗口颜色为绿色时,表示防雷单元处于完好状态;某个防雷单元窗口颜色为红色时,则表示该防雷单元已损坏,应尽快更换防雷模块。

如果防雷器没有损坏,而监控单元报防雷器告警,就需要检查防雷器的接触是否良好,可以将防雷模块拔下来重插。如果是菲尼克斯的防雷模块,则需要检查底座是不是良好。

2、交流输入缺相

当监控单元或后台报告交流输入缺相时,确定真缺相则无需理会;如果交流实际没有缺相,那么可能是交流变送器出现故障。可以用万用表测量变送器的端子是否有3V左右的直流电压,如果某一个没有,则说明交流变送器损坏,应急解决办法是将该端子的检测线并到其他两个端子的任意一个上;长久解决办法则须更换交流变送器。

更换交流变送器的方法:首先必须断开电源系统的交流电和关掉监控单元的电源,否则可能对人身造成伤害或烧坏交流变送器。更换时如果连接线上没有标识,那么在拆交流变送器之前需要要做好相应的标识,否则在安装时会造成不便。

注意事项:安装好交流变送器后,需要检查连线无误后,方可送上交流电,然后打开监控单元的电源。核实交流显示是否与实际测量电压相符。

3、交流接触器不吸合

对于采用交流接触器自动切换的电源系统,如果交流接触器不吸合,那么可能是下面几个情况引起的:①交流输入的A相缺相;②交流接触器线圈供电保险丝烧坏(此故障出现在早期的电源柜);③控制交流接触的辅助交流接触器损坏(早期电源上有辅助交流接触器);④交流接触器控制板(CEPU板)出现故障;⑤交流接触器线圈烧坏。

解决方法是用万用表进行检查,断开交流输入用万用表测量交流接触器的线圈,如果开路,那么说明交流接触器损坏,更换交流接触器即可。

交流接触器更换方法:首先必须将电源柜的交流电断开,更换前将各个连接线用标签做好标识;由于这两个交流接触器是机械互锁的,所以要注意安装好交流接触器之间的辅助触点和控制线;将交流接触器两端的交流导线连接牢靠,不能有松动。

三、直流配电单元故障处理

1、监控单元出现直流断路器断开报警

如果直流断路器确实已经断开,属于正常报警,无需处理;若断路器没有断开,而监控单元报警,则是由于检测线出现断开所致。处理方法是检查断路器的检测线,也可以用“替换法”来定位问题所在。

2、直流断路器故障

蓄电池下电保护用的直流断路器使用的是常闭触点,在不控制的情况断路器是闭合的。如果给了断路器的断开控制信号而断路器不断开,说明断路器已经故障,更换即可。

3、直流输出电流显示不正确

直流电流显示不正确分两种情况:①显示值与实测值比较偏大或偏小,原因是电流传感器的斜率选择不正确,在监控中将调整斜率调整合适即可;②电流显示出现异常情况,非常大或电流值显示不稳定。对于用分流器检测电流的设备来说是检测通道不通导致的:一种可能是分流器两边的检测线接触不良,可以关掉监控单元的电源,取下检测线用电烙铁将其焊接好即可;另外一种可能就是检测线接插件插针歪或接触不好,可以用镊子之类的工具将歪针校正或将接插件插好即可。

四、整流器故障处理

1、整流器无输出

整流器不工作,面板指示灯均不亮

首先检查整流器的交流输入开关是否合上,其次检查整流器的输入熔丝是否熔断;另一种情况是模块可能发生故障,此时需要更换故障模块。

整流器输入灯亮,输出灯不亮,故障灯亮

首先用万用表测量交流输入电压是否在正常范围内(160-280Vac),如果交流电压不正常,那么整流器处于保护状态;另一种情况是整流器出现了故障。

2、过热

整流器内部主散热器上温度超过85℃时,模块停止输出,此时监控单元有告警信息显示。模块过热可能是因为风扇受阻或严重老化、整流器内部电路工作不良引起,对前一种原因应更换风扇,后一种原因需对该电源模块进行维修。

3、风扇故障

风扇故障的特征是风扇在该转的时候不转。这时应检查风扇是否被堵塞,如果是,清除堵塞物;否则,则是风扇本身损坏或连接控制部分发生故障,需拆下模块进行维修。

4、过流保护

整流器具有过流保护功能。若输出短路,则模块回缩保护,输出电压低于20V时整流器关机,此时面板上的限流指示燈亮。故障排除后,模块自动恢复正常工作。

结束语

总之,电源作为通信系统的核心设备,是整个通信网络稳定运行的保障。因此,工作人员必须认真做好通信电源的维护工作,不断总结分析常见故障的原因和处理方法,做到有效预防、处理及时。要对大规模的通信网提供安全可靠的供电并保证通信不间断,同时在人员较少的清况下还要对种类繁杂、数量众多、分布广泛的电源设备进行日常维护和故障抢修,因此建立一套科学完善的通信电源维护机制和制度,实现维护工作效率最大化、科学化,使管理水平日益增高,以适应行业的更快速发展,就变得势在必行,这也是通信电源专业追求的目标。

篇5:诺西设备常见故障处理经验交流

关于MCPA基站前期维护中遇到问题的总结

我维护中心在前期维护诺西MCPA基站中,发现一些由于工程建设及对设备指标不清楚造成的维护难题。通过以下案例说明问题类别,望分公司网络部给予解决。

案例一

伊宁市消防局基站开通,开通后始终高掉话、有无法操作等告警,工程督导开始判断为RRU故障,但更换RRU后故障依旧,现场查看BBU及RRU侧光模块均为单模2Km模块(实际光纤距离约为150米),BBU侧发光-4db,RRU侧收光-7db,光功率没问题,但在了解安装过程的情况时发现,该站从RRU至ODF终端盒之间使用了大约70米多模野战光纤,由此怀疑为单模多模光纤混用造成,将RRU至ODF终端盒之间的野战光纤更换为单模尾纤该站恢复正常。

案例二

伊宁市七小基站搬迁后,7606告警始终无法消除,将基站重启后告警消失,运行一段时间后该告警又重新出现,现场检查两端光模块一致均为单模2Km,尾纤也均为单模,BBU发光为-4db,而RRU收光为-13db左右,怀疑为收光过低引起,更换RRU至BBU的光纤纤心将收光提高至-7db该站恢复正常。案例三

伊宁市五中基站开通后工作正常,但经常有7606告警,过一会又自动消失,现场检查发现光纤型号没问题光功率也在正常范围,怀疑为光模块问题,到BBU侧发现该站BBU侧使用了3G基站的6.14G模块,将该模块更换为2G基站常用模块后,该站恢复正常,再未出现7606告警。

案例四

某日机房派单伊宁市边防中队基站退服,我维护中心到达现场发现RRU侧供电正地址:伊犁环城北路达达木图兵团加油站旁

电话:0999-8033069

伊犁网络维护中心

常,BBU收RRU光为-15db,BBU发光为-12db,初步怀疑为BBU发光问题,在检查BBU尾纤时发现,BBU至ODF的尾纤被扎带扎的很紧,将扎带剪断BBU发光增至-7db,网管通知该站运行正常,但2天后网管派单该站运行正常无占用,我维护人员将BBU至ODF的尾纤更换后该站恢复正常。

通过以上案例我们发现,故障基本出在BBU与RRU的接口处,案例一是由于工程中将单模多模光纤混合使用造成,案例二是由于对设备光功率指标不了解造成,案例三由于光模块用错造成,案例四是由于工程中绑扎尾纤不当造成。综上所述,我维护中心希望分公司网络部协助解决一下问题:

1、目前诺西基站(包括各县有华为的基站)常用的2G及3G基站光模块都有那些类型,如何区分,最好将2G及3G光模块拍成照片并加以说明以便区别。

2、目前诺西、华为基站中使用的光模块的指标给出具体值。(指标主要包括发光功率、过载点、灵敏度)3、4、5、规范施工队光纤绑扎布防工艺。

要求厂家说明拉远站中常使用的野战光纤如何区分是多模光纤还是单模光纤 规范开基站时光模块的使用不得将2G和3G光模块混合使用,更不能将单模和多模光模块混合使用。

6、提高拉远站的光纤熔接质量。

伊犁网络维护中心设备部

2012年7月23日

地址:伊犁环城北路达达木图兵团加油站旁

篇6:冶金设备常见故障分析

牵引变电所主要电气设备常见故障浅析

北京铁路局宋志刚

牵引变电所主要电气设备常见故障浅析

北京铁路局宋志刚

摘要:本文以牵引供变电基础理论结合现场实践及行业经验,针对牵引变电所主要电气设备常

见故障进行了归类分析,为提高牵引变电所主要电气设备运行维护提出建设性意见。

关键词:牵引变电所电气设备 故障

前言

随着电气化铁路的飞速发展,牵引变电所电气设备安全可靠供变电越显重要,特别是变压器、断路器、开关、互感器及并补装置等设备日常正常运行为列车提速发挥着举足轻重的作用。因此牵引变电所主要电气设备日常运行维护必须到位,同时必须明晰常见设备故障根源及表征,尽可能消除或缩小设备故障,提高牵引变电所供电质量。现以牵引供变电基础理论结合现场实践及行业经验,浅析如下:

1牵引变压器

故障判断是一个综合过程,需通过现场直观判断、详细测量及综合分析等几个环节。其中,现

场直观判断最直接、最简捷。对变压器故障而言,直接判断可通过声音、气味、颜色、体表、渗漏油及温度的异常来进行。

1.1 声 音

变压器正常运行时,会发出连续均匀的“嗡嗡”声。如果变压器出现故障或运行不正常,声音

就会出现异常:

(1)电网发生过电压,例如中性点不接地电网有单相接地或电磁共振时,变压器声音比平常尖

锐;

(2)变压器过载运行时,音调高、音量大。如带有电弧炉、可控硅整流器等负荷时,因负荷变

化大,又因谐波作用,变压器会瞬间发出“哇哇”声或“咯咯”间歇声,监视测量仪表指针发生摆动;

(3)个别零件松动(如铁芯的穿芯螺丝夹得不紧)或有零件遗漏在铁芯上时,变压器会发出强烈

而不均匀的“噪音”,或有“锤击”和“吹风”之声;

(4)变压器的跌落式熔断器或分接开关接触不良时,有“吱吱”的放电声;

(5)变压器高压套管脏污,表面釉质脱落或有裂纹存在,可听到“嘶嘶”声;

(6)变压器铁芯接地断线,会产生劈裂声;

(7)变压器内部局部放电或电接不良,会发出“吱吱”或“劈啪”声,且次声音随离故障部位

远近而变化;

(8)变压器绕组短路,将有“劈啪”声,严重时会有巨大轰鸣声,随后可能起火;

(9)变压器绕组高压引出线之间或它们对外壳闪络放电时,有爆裂声音;

(10)变压器的某些部件因铁芯振动而造成机械接触时,会产生连续的、有规律的撞击或摩擦声。

1.2 气味、颜色

变压器内部故障及各部件过热将引起一系列气味和颜色的变化:

(1)瓷套管端子的紧固部分松动,接触面过热氧化,会引起变色和异常气味;

(2)变压器漏磁的断磁能力不好及磁场分布不均,引起涡流,会使油箱局部过热引起油漆变色;

(3)瓷套管污损产生电晕、闪络会发出奇臭味;

(4)冷却风扇、油泵烧毁会发出烧焦气味;

(5)吸潮过度、垫圈损坏、进入油室的水量太多等原因会造成吸湿计变色。

1.3 体 表

变压器故障时都伴随着体表的变化。主要有:(1)呼吸口不灵或内部故障可引起防爆膜龟裂、破损。(2)大气过电压,内部过电压等,会引起瓷件、瓷套管表面龟裂,并有放电痕迹。

1.4 渗漏油

变压器运行中渗漏油的主要原因是:

(1)油箱与零部件联接处的密封不良,焊件或铸件存在缺陷,运行中额外荷重或受到震动等;

(2)内部故障使油温升高,引起油的体积膨胀,发生漏油或喷油。

1.5 温 度

变压器的很多故障都伴随着急剧的温升:

(1)由于涡流或夹紧铁芯用的穿芯螺栓损坏会使变压器油温升高;

(2)绕组局部层间或匝间的短路,内部接点有故障,二次线路上有大电阻短路等,均会使变压

器油温升高;

(3)过负载、环境温度过高,冷却风扇和输油泵故障,散热器阀门忘记打开,渗漏油引起油量

不足等原因都会造成变压器温度不正常。

以上所述仅能作为对变压器故障的现场直观的初步判断,因为变压器的故障不仅仅是某一方面的直观反映,它涉及诸多因素,有时甚至会出现假象。因此,只有进行详细测量和综合分析,才能准确可靠地找出故障原因,判明事故性质,提出较合理的处理办法,使故障尽快得到消除。

2断路器、开关设备故障

随着铁道电气化的发展, 高压断路器设备的装用量将大幅度上升, 了解高压断路器设备的故障

原因, 采取积极的防范措施, 对提高牵引变电所供电的可靠性是很有帮助的。

2.1 绝缘事故

绝缘事故的主要原因: 一方面是高压断路器的绝缘件设计制造质量不符合技术标准的要求, 拉

杆拉脱,使运动部分操作不到位。另一方面是高压断路器在安装、调试、检修过程中工装工艺不到位。所以, 严格高压断路器工装工艺流程、外购件检验、装配环境清洁度以及必备的检测手段等是杜绝绝缘事故发生的重要措施。必须引起设计、制造和应用部门的高度重视。

2.2 拒动、误动事故

拒动和误动事故是指高压断路器拒分、拒合和不该动作时而乱动。其中拒分事故约占同类型事

故的50% 以上, 是主要事故。分析其主要原因是因为制造质量以及安装、调试、检修不当, 二次线接触不良所致。因此, 使用部门应该和制造部门有机地结合起来, 尽可能使高压断路器的设计定型、材质选择、必备的备品备件、工艺要求、调试需知等合理、实用, 将人的行为过失可能发生的事故局限在先, 做到防患于未然。

2.3 开断与关合事故

开断与关合事故是油断路器在开断过程中喷油短路、灭弧室烧损严重、断路器开断能力不足、关合速度后加速偏低等所致。因此, 在高压断路器的安装、检修、调试过程中, 重视油断路器的排气方向、动静触头打磨、灭弧室异物排除、断路器开断能力的核定与选型、合分速度特性的调整等, 以遏制开断与关合事故的发生, 切勿疏忽大意。

2.4 截流事故

截流事故发生的主要原因多数都是由于动、静触头接触不良引起的, 主要原因是动静触头或者

隔离插头接触不良, 在大电流的长期作用下过热, 以至触头烧融、烧毁、松动脱落等。所以, 对于高压断路器触头弹簧的材质选择与热处理、触头压力的调整, 是防止截流事故发生的重要技术措施。

2.5 外力及其它事故

外力及其他事故主要是指操动机构的漏油、漏气、部件损坏以及频繁打压、不可抗拒的自然灾

害、小动物短路。主要原因是密封圈易老化损坏, 管路、阀体清洁度差, 接头制造及装配质量不良等。此类问题, 多年来一直是困扰国产高压断路器可靠运行的老大难。

2.6 真空断路器的事故

高压真空断路器以自身优越的开断性能和长周期寿命的优势, 普遍得到了使用部门的认可。随

着高压真空断路器的广泛应用, 改进之后的新一代真空断路器普遍使用纵向磁场电极和铜铬触头材料, 对于降低短路开断电流下的电弧电压、减少触头烧损量起到了积极的作用;但是, 由于灭弧室及波纹管漏气, 真空度降低所造成的开断关合事故, 呈上升趋势,不容忽视。此外, 对于切电容器组出现重燃、陶瓷真空管破裂仍时有发生, 同时当前真空断路型号繁杂、生产厂家众多, 产品质量分散性大, 给使用部门的设备选型和运行造成了一定的难度。

2.7 SF6 高压断路器的事故

SF6 高压断路器以良好的绝缘性能及优越的灭弧介质而被广泛的应用于电力系统的各类电压

等级的开断设备中。国产SF6 高压断路器存在的共性问题是: 漏气、水分超标、灭弧室爆炸、绝缘拉杆脱落、断裂、击穿、水平拉杆断销等。拉杆脱落必然要发生重大事故, 必须重视;罐内灭弧室内的异物或者零部件的脱落, 都将引起高压断路器内部绝缘的击穿、闪络。所以, 努力提高SF6 高压断路器装配环境的清洁度和严格工艺过程的控制, 对于确保设备安全运行至关重要。

2.8 隔离开关的事故

隔离开关由于触头接触不良、局部过热烧融、绝缘子断裂和机构卡涩等问题, 是长期以来困扰

隔离开关安全运行的问题, 据有关资料介绍, 当前此类问题仍很严重。这就需要从设备设计、制造、运行、维护、管理等各个环节齐抓共管, 标本兼治, 从根本问题上着手来克服这一被动局面。互感器

3.1电流互感器在工作时二次侧不得开路

电流互感器在正常工作时,由于其二次负荷很小,因此接近于短路状态。根据磁动势平衡方程

可知,互感器一次电流产生的磁动势的绝大部分被二次电流产生的磁动势所抵消,所以总的磁动势很小,通常激磁电流只有一次电流的百分之几。但二次开路时,二次电流为0。而一次电流等于激磁电流,此时的激磁电流被迫突然增大几十倍,将产生如下严重后果:1铁芯由于磁通剧增而过热,并产生剩磁,降低准确度,长时间甚至会烧毁铁芯。2二次绕组因其匝数远超过一次绕组匝数,所以可感应出高电压,危及人身和设备的安全。电流互感器在运行时其二次侧所接测量仪表或继电器需要测试、检修时,可先将电流互感器二次侧线线圈短接,再拆下该仪表或继电器。在安装时,电流互感器二次侧的接线一定要牢靠和接触良好,并且不允许串接熔断器和开关。

3.2电压互感器在工作时二次侧不能短路

电压互感器的一、二次侧都是在并联状态下工作的,二次绕组工作时接近于空载,即开路状态。如发生短路,将产生很大的短路电流,烧毁互感器,甚至影响一次线路的安全运行。因此,电压互感器的二次侧都必须装设熔断器以进行短路保护。

3.3电流和电压互感器的二次侧有一端必须接地

接地是为了人身和二次设备的安全。如二次回路没有接地点,则接在互感器一次侧的高电压,将通过互感器一、二次线圈间的分布电容和二次回路的对地电容形成分压,将高电压引入二次回路,其值决定与二次回路对地电容的大小。如果互感器二次回路有了接地点,则二次回路对地电容为零,从而达到了保证安全的目的。

3.4电流和电压互感器在连接时要注意其端子的极性

在安装和使用互感器时,一定要注意端子的极性。否则,其二次侧所接的仪表、继电器中流过的电流就不是设计时的电流,因此引起计量和测量不准确,并可能引起继电保护装置的误动作或拒动。

4并联补偿装置

4.1合闸过渡过程问题

由于电容器和电抗器都是能量元件,在合闸过程中会有充电及励磁的过程,致使电源中产生除工频(50 Hz)信号以外的非周期(直流)分量及高次谐波分量。这些非周期分量及高次谐波分量在一定时间内衰减完毕,系统达到稳态。非周期分量及高次谐波分量的大小取决于合闸时电源的状态、电容及电感的容量。在电容及电感的容量固定不变时,合闸瞬间电压的高低决定了非周期分量及高次谐波分量的大小及其衰耗所需时间。非周期分量的衰减主要通过电容,而高次谐波分量的衰减主要通过电感。若在交流电压波形的峰值时合闸,将产生最大的高次谐波分量,这是因为电容和电感在这种条件下感受到的电压变化率为最大,电容相当于短路状态,电感将承受最大电压。最大的电压变化率所产生的能量,将用最长的时间被消耗掉,系统达到稳态的时间也最长。电压在交流波形的过零点时,电压变化率为最小,此时合闸,负载两端的电压逐渐上升至最大,使系统达到稳态所需的时间最短。牵引并补装置设计上2 L /C = 2 XL ·XC , 其中, XL /XC = 12% ,其值为200Ω 以上,远大于回路的电阻值R ,故合闸投运并补装置的过程为振荡充电过程。uC =Em(sinωt +ψ)+(U0-Em sinψ)cosω0 t-ωEm cosψ/ω0 ·sinω0 t

式中, uC 为电容器电压, Em 为电源电动势最大值,U0 为合闸前电容器上的残压,ω为角频率,ω0 为谐振角频率,ψ为合闸初相角。一般情况下,电容器本身并联有经特殊设计的放电线圈FD,在5 s之内可把电容器的残压降至50 V以下,同时电容器系统跳闸再合闸时,供电调度一般掌握间隔在10min以上,故合闸投运并补装置时为零初始状态(U0 = 0)。据i = C ×duC /dt可得, iC90(90°合闸时的冲击电流)≈ 2 iC0(0°合闸时的冲击电流)。在图1所示电路、电容器采用4串8并3 200 kVar补偿时,电源电压初相角为0°,合闸产生的冲击电流约为电抗器额定值的3倍,初相角接近90°合闸产生的冲击电流约为电抗器额定值的6倍。另据资料研究表明,在考虑变压器、放电线圈的电抗值和27.5 kV母线对地电容值的情况下,冲击电流更要大些。

4.2运行中着火问题

在磁县变电所发生电抗器着火事故后,我段与原石家庄铁路分局供电水电分处有关人员共同核对了各保护装置整定值、测量了电容器组、放电线圈各项指标均未发现问题,另在线避雷器也未动作,排除了外部过电压袭击和保护拒动等原因。经与生产厂商共同确认,最后将原因归结于电抗器累积效应造成的绝缘破坏,但通过进一步的分析发现,若在电抗器绝缘受到损伤而未发展到着火事故前,甚至初期着火后,有关保护动作及时将故障切除,就完全可以避免这起事故的发生。

上一篇:老舍 猫 说课下一篇:心无旁骛——藏头诗