第六章弯曲内力(讲稿)材料力学教案(顾志荣)

2024-04-15

第六章弯曲内力(讲稿)材料力学教案(顾志荣)(精选2篇)

篇1:第六章弯曲内力(讲稿)材料力学教案(顾志荣)

第六章 弯曲内力

一、教学目标和教学内容

1、教学目标

⑴掌握弯曲变形与平面弯曲等基本概念; ⑵熟练掌握用截面法求弯曲内力;

⑶熟练列出剪力方程和弯矩方程并绘制剪力图和弯矩图; ⑷利用载荷集度、剪力和弯矩间的微分关系绘制剪力图和弯矩图;⑸掌握叠加法绘制剪力图和弯矩图。

2、教学内容

⑴平面弯曲等基本概念; ⑵截面法及简便方法求弯曲内力;

⑶剪力方程和弯矩方程、绘制剪力图和弯矩图;

⑷用载荷集度、剪力和弯矩间的微分关系绘制剪力图和弯矩图; ⑸叠加法绘制剪力图和弯矩图。

二、重点难点

1、平面弯曲的概念;

2、剪力和弯矩,剪力和弯矩的正负符号规则;

3、剪力图和弯矩图;

4、剪力、弯矩和载荷集度的微分、积分关系;

5、叠加法绘制剪力图和弯矩图。

三、教学方式

采用启发式教学,通过提问,引导学生思考,让学生回答问题。

四、建议学时 7学时

五、实施学时

六、讲课提纲

1、平面弯曲的概念及梁的种类 ⑴平面弯曲的概念

简单回顾 轴向拉、压:

图6-1 受力:Fp作用在横截面上,作用线与杆轴线重合。

变形;沿轴线方向的伸长或缩短。

剪切:

图6-2 受力:Fp作用在杆的两侧面上,作用线⊥轴线。

变形:两相邻截面(力作用部位,二力之间)发生相对错动。

扭转:

图6-3

受力:T作用在垂直于杆轴的平面内(横截面内)。变形:相邻截面发生相对转动。

弯曲:讨论杆的弯曲暂时限制在如下的范围;

①杆的横截面至少有一根对称轴(一个对称面)

图6-4 ②载荷作用在对称平面内

在此前提下,可讨论杆件弯曲的 受力特点:所有外力都作用在通过杆件轴线的纵向对称平面内:

图6-5

变形特点:杆件轴线在载荷作用平面内弯成一条曲线。受力、变形具有上述特点的弯曲称为平面弯曲。

⑵何谓梁?

凡是以弯曲为主要变形的杆件,通常称为梁。

⑶梁的种类: ①简支梁

图6-6 ②悬臂梁

图6-7

③外伸梁

图6-8 ④多跨静定梁

图6-9 ⑤超静定梁

图6-10

2、梁的内力及其求法 ⑴梁的内力—剪力与弯矩 ①确定约束反力

图6-11 ②内力分析

用截面法沿m-m截面截开(任取一段)

图6-12 按平衡的概念标上FQ,M。

FQ--与横截面相切—剪力

M—内力偶矩—弯矩

③内力值的确定 用静力平衡条件:Fy0 FAFQ0 得 FQFA

Mo0 FAaM0 得 MFAa

(O--截面形心)

⑵剪力、弯矩的正、负号规定:

剪力:当截面上的FQ使该截面邻近微段有做顺时针转动趋势时为正,反之为负。

图6-13 弯矩:当截面上的弯矩使该截面的邻近微段下部受拉,上部受压为正(即凹向上时为正),反之为负。

图6-14 ⑶求指定截面上的剪力和弯矩

图6-15 求图示梁截面 A、C的内力: 解:①求反力: FA5kN,FB4kN

校核:Fy0 Fpq6FAFB0

316540(无误)②求指定截面上的内力: 截面A左(不截到FA):

Fy0 FpFQA左0

FQA左FP3kN

(使该段有逆时针转动的趋势)MO0

Fp2MA左0

图6-16 MA左326kNm

(上拉下压)

截面A右(截到FA):

y0

FpFQA左FA0 F532kN

图6-17 截面C左(不截到M1):

图6-18 截面C右(截到M1):

图6-19

QA左MO0

Fp2MA右0

MA右326kNm

Fy0

FAFPq2FQC左0

FQC左5320

MO0

Fp4FA2q21MC左0

MC左3452121 4kNm

Fy0

FAFPq2FQC右0

FQC右5320

MO0

Fp4FA2q21M1MC右0MC右34521212

6kNm ⑷小结

基本规律 ①求指定截面上的内力时,既可取梁的左段为脱离体,也可取右段为脱离体,两者计算结果一致(方向、转向相反)。一般取外力比较简单的一段进行分析。

②在解题时,一般在需要内力的截面上把内力(FQ、M)假设为正号。最后计算结果是正,则表示假设的内力方向(转向)是正确的,解得的FQ、M即为正的剪力和弯矩。若计算结果为负,则表示该截面上的剪力和弯矩均是负的,其方向(转向)应与所假设的相反(但不必再把脱离体图上假设的内力方向改过来)。

③梁内任一截面上的剪力FQ的大小,等于这截面左边(或右边)所有与截面平行的各外力的代数和。若考虑左段为脱离体时,在此段梁上所有向上的外力会使该截面上产生正号的剪力,而所有向下的外力会使该截面上产生负号的剪力。

④梁内任一截面上的弯矩的大小,等于这截面左边(或右边)所有外力(包括力偶)对于这个截面形心的力矩的代数和。若考虑左段为脱离体时,在此段梁上所有向上的力使该截面上产生正号的弯矩,而所有向下的力会使该截面上产生负号的弯矩。

另外,若考虑左段梁为脱离体时,在此段梁上所有顺时针转向的外力偶会使该截面上产生正号的弯矩,而所有逆时针转向的外力偶会使该截面上产生负号的弯矩。

3、剪力图和弯矩图

为了知道FQ、M沿梁轴线的变化规律,只知道指定截面上的FQ、M是不够的,并能找到FQmax、Mmax的值及其所在截面,以便对梁进行强度,刚度计算,我们必须作梁的剪力图和弯矩图。

⑴剪力方程和弯矩方程

梁内各截面上的FQ、M一般随横截面的位臵不同而变化,横截面位臵若用沿梁轴线的坐标 x来表示,则梁内各横截面上的FQ、M都可以表示为坐标x的函数,即

FQFQ(x)剪力方程

MM(x)弯矩方程

在建立 F Q(x)、M(x)时,坐标原点一般设在梁的左端。

⑵剪力图和弯矩图 根据FQ(x)、M(x),我们可方便地将FQ、M沿梁轴线的变化情况形象地表现出来,其方法是

横坐标x---横截面位臵

纵坐标F或M---按比例表示梁的内力

QFQ、MFQ画在横坐标的上边、M画在横坐标的下边

⑶剪力图、弯矩图的特点:(举例说明)例题6-1:

图6-20 解:⑴求约束反力

整体平衡,求出约束反力:

FFPFPAl;FBl 注意;约束反力的校核

⑵分段列FQ(x)、M(x)

注意:三定 ①定坐标原点及正向 原点:一般设在梁的左端; 正向:自左向右为正向。②定方程区间 即找出分段点;

分段的原则:载荷有突变之处即为分段点。③定内力正负号

截面上总设正号的剪力、弯矩。三定后即可建立FQ(x)、M(x)

列FQ(x1)、M(x1):

AC段:(根据 图b列方程)

FQ(xPb1)FAFl(0FQ(x2)FAFPFPblFP(a

FPblx2FP(x2a)(a≤x2≤l)⑶绘FQ、M图

据式⑴、⑶作FQ图,如图(d)所示。

据式⑵、⑷作M 图,如图(e)所示。⑷确定FQmax、Mmax

FPal 据FQ图可见,当a>b时,FQ据M图可见,c截面处有,Mmax

maxFPablFPl4若a=b=l/2,则Mmax

特点之一: 在集中力作用处,FQ图有突变(不连续),突变的绝对值等于该集中力的大小;FPblFPalFPl(ab)FP;图有一转折点,形成尖角。(M

图的切线斜率有突然变化)

例题6-2

图6-21 AC段:

FQ(x1)FAMOl(0OM(x2)FAx2M

MlOx2M(a

O若a>b,则集中力偶左侧截面上有最大弯矩

MMOalmax

特点之二: 在集中力偶作用下,弯矩图发生突变(不连续),突变的绝对值等于该集中力偶矩的大小;

MOalMOblMO;但剪力图没有突变。(FQ图连续,并不改变斜率)。例题6-3

图6-22 FQ(x)FAqxql22qx(0

qx22 M(x)FAxqx2qlx2(0≤x≤l)⑵

由FQ、M图可见: 支座处:FQmaxql2

2FQ=0处:M特点之三: maxql8

从例题8-1(集中力)、例题8-2(集中力偶)、例题8-3(均布荷载)可以看到:在梁端的铰支座上,剪力等于该支座的约束反力。如果在端点铰支座上没有集中力偶的作用,则铰支座处的弯矩等于零。例题6-4

图6-23 FQ(x)qx(0≤x≤l)⑴ M(x)qx2(0≤x≤l)⑵

max在固定端处:FQMqlql2

2max

特点之四: 在梁的外伸自由端点处,如果没有集中力偶的作用,则端点处的弯矩等于零;如果没有集中力的作用,则剪力等于零。特点之五: 在固定端处,剪力和弯矩分别等于该支座处的支座反力和约束力偶矩。

特点之六: 最大剪力、最大弯矩及其位臵。

最大剪力发生位臵:梁的支座处及集中力作用处有FQmax,例题6-3及6-4 最大弯矩一般发生在下列部位; ①集中力作用的截面处 例题6-1 ②集中力偶作用的截面处 例题6-2 ③FQ=0处,M有极值 例题6-3 ④悬臂梁的固定端处 例题6-4(外伸梁的支座处往往也有Mmax)例题6-5

图6-24 特点之七: 在梁的中间铰上如果没有集中力偶作用,则中间铰处弯矩必等于零,而剪力图在此截面处不发生突变。

例题6-6 再分析例题6-1;集中作用在l/2处

图6-26 再分析例题6-3:简支梁承受均布载荷

图6-27 特点之八: 对称结构、对称载荷,FQ图反对称,M图对称,据此特点,下面这道题即可方便作出 FQ、M图(只要列出一半的剪力、弯矩方程即可作图)

图6-25 q(x)10x2

q(x)5x

AC段:F1Q(x)FA25xx102.5x2(0

⑵ 例题6-7

图6-26 特点之九: 对称结构,反对称载荷,FQ图对称,M图反对称。

特点之十: 梁中正、负弯矩的分界点称为反弯点,反弯点处 M=0,构件设计中确定反弯点的位臵具有实际意义。

4、q(x)、FQ(x)、M(x)之间的微分和积分关系。

留心例题6-1到例题6-4;特别是例题6-

3、例题6-4,可以发现:dM(x)dxFQ(x),dFQ(x)dxq(x)。是否普遍存在着这样的关系?

⑴q(x)、F

Q(x)、M(x)之间的微分关系。

图6-27 取 dx一段讨论,任设F

Fy0Q(x)、M(x)均为正值。

FQ(x)q(x)dx[FQ(x)dFQ(x)]0

dFQ(x)dxq(x)⑴

Q式⑴的物理意义:梁上任一横截面上的剪力FdFQ(x)dx(x)对x的一阶导数,等于该截面处作用在梁上的分布荷载集度q(x)。

式⑴的几何意义:任一横截面上的分布荷载集度q(x),就是剪力图上相 关点处的斜率。

MO0

M(x)FQ(x)dxq(x)dxdx2M(x)dM(x)0

略去高阶微量

dM(x)dxFQ(x)⑵

dM(x)dx式⑵的物理意义:梁上任一横截面上的弯矩M(x)对x的一阶导数等于该截面上的剪力FQ,(x)。

(x),就是弯矩图上相关点处的式⑵的几何意义:任一横截面处的剪力F斜率。

对⑵式的两边求导,则

dM(x)dx22QdFQ(x)dxq(x)⑶

式⑶的物理意义:梁上任一横截面上的弯矩M(x)对x的二阶导数dM(x)dx22,等于同一截面处作用在梁上的分布荷载集度q(x)

数学上:二阶导数可用来判定曲线的凹向,因此:

式⑶的几何意义:可以根据 M(x)对x的二阶导数的正、负来定出M(x)图的凹向。

⑵根据q(x)、F①若q(x)=0 ∵dFQ(x)dxQQ(x)、M(x)之间的微分关系所得出的一些规律:

=q(x)=0,即FQ(x)=常数

∴F图为一水平直线; 又∵dM(x)dxFQ(x)=常数,即

M图的斜率为一常数

∴ M图为一斜直线。并且 当FQ00时,M图为上升的斜直线(/); 时,M图为下降的斜直线().当FQ②若q(x)0(即分布荷载向下)∵dFQ(x)dxQ=q<0 ∴F图为一下降的斜直线()又∵dM(x)dxFQ0

∴ M图下降。再∵dM(x)dx22q0

∴ M图为一凹向下的曲线(∩)③若q(x)0(即分布荷载向上)∵dFQ(x)dxQ=q0 ∴F图为一上升的斜直线(/)又∵dM(x)dxFQ0

∴ M图上增。再∵dM(x)dx22q0

∴ M图为一凹向上的曲线(∪)④若dM(x)dxFQ(x)0(即悬臂梁、外伸梁在自由端作用集中力偶

M,而梁上又无q、FP作用)则 M图的斜率为零,M图为一水平直线。若dM(x)dxFQ0,M图在该处的斜率为零时,则在此截面上M 为一极值。⑤若dM(x)dxFQFQ 或

dM(x)dxQFQFQ

(即分段列内力方程的分段点,F变号)

则M在该处必有极值。当F当F ⑶q(x)、F∵dM(x)dxQQFQFQ时,M有极大值; 时,M有极小值。

Q(x)、M(x)之间的积分关系

q(x)

∴FQ(x)q(x)dx

若梁上任有两点:a和b,则

FQFQFQbaq(x)dxab

几何意义;任何两截面(b,a)上的剪力之差,等于此两截面间梁段上的荷载图的面积;

又∵dM(x)dxq(x)

∴M(x)FQ(x)dxba

MMbMaFQ(x)dx几何意义;任何两截面上的弯矩之差,等于此两截面间的剪力图的面积。⑷q(x)、F Q(x)、M(x)之间的微分关系和积分关系的应用 作内力图既快又正确的三句话:

抓住“关系”; 注意突变; 定点控制。

利用q(x)、FQ(x)、M(x)间的微分关系和积分关系作FQ、M图

例题6-8

图6-28 例题6-9

例题6-10

图6-29

图6-30 例题6-11

图6-31

5、用叠加法绘制梁的剪力图和弯矩图 ⑴叠加法的基本思想

当梁在外力作用下的变形微小时,梁上若干外力对某一截面引起的内力等于各个力单独作用下对该截面引起的内力的代数和。

⑵叠加法①同号图形的叠加

图6-32 ②异号图形的叠加

图6-33 叠加法的三句话: ①截面相对应,同号只管加。

②异号重叠处,不用去管它;抓住控制面,一一相减加。

③图形必须归整,反弯点要对准;控制截面须对应,正负一定要分清。

篇2:第六章弯曲内力(讲稿)材料力学教案(顾志荣)

一、教学目标和教学内容

1、教学目标

通过本章学习,唤起学生对动荷载问题的注意。

让学生知道动荷载问题的两个方面,目前应当掌握在较简单的工程问题中,动荷载引起杆件的应力、应变和位移的计算。对于材料在动荷载下的力学行为,以后根据工作的需要再进一步补充学习。

让学生掌握动荷载问题的基本知识,如杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,简单的自由落体冲击和水平冲击,以及循环应力问题的有关概念。

能够深刻认识动荷系数概念,并能够熟练地进行杆件作等加速运动时的应力计算,作等速旋转圆盘的应力分析,完成简单的自由落体冲击和水平冲击的计算。

2、教学内容

介绍杆件作等加速运动拉伸、压缩及弯曲时的应力计算。介绍等角速度旋转的动荷应力计算。

讲解简单冲击时,能量守恒的基本方程,分别导出自由落体冲击和水平冲击时的动荷系数公式,及杆件经受冲击时的应力计算公式。

二、重点难点

重点:建立三类动荷载概念。

掌握杆件作等加速运动时的应力计算。作等速旋转圆盘的应力分析。

简单的自由落体冲击和水平冲击问题的计算 难点:对动静法和动荷系数的理解。

对于动荷载问题与静荷载问题的联系与区别。在简单冲击问题中,被冲击杆件冲击点的相应静荷位移的理解和计算,特别是水平冲击时的静荷位移的理解和计算。

三、教学方式

采用启发式教学,通过提问,引导学生思考,让学生回答问题。

四、建议学时 3学时

五、实施学时

六、讲课提纲

(一)概念(动荷载的概念)

1、静荷载:

作用在构件上的荷载由零开始,逐渐(平缓、慢慢)地增长到最终值,以致在加载过程中,构件各点的加速度很小,可以不计;荷载加到最终值保持不变或变动的不显著的荷载,称之为静荷载。

2、动荷载:

如果构件本身处于加速度运动状态(高层、超高层建筑施工时起吊重物;这些建筑物中运行的电梯—惯性力问题);或者静止的构件承受处于运动状态的物体作用(落锤打桩,锤头猛烈冲击砼桩顶—冲击问题);地震波引起建筑物晃动(构件在振动状态下工作—振动问题);机械零件在周期性变化的荷载下工作(交变应力疲劳问题),则构件受到荷载就是动荷载。

3、动荷载与静荷载的区别

静荷载:构件在静止状态下承受静荷载作用。由零开始,逐渐缓慢加载,加到终值后变化不大、加速度很小,可以略去不计。动荷载:在动荷载作用下,构件内部各质点均有速度改变,即发生了加速度,且这样的加速度不可忽略。

区别:加速度可忽略与不可忽略。

4、虎克定律的适用问题

实验结果表明,只要应力不超过比例极限,虎克定律仍适用于动荷载的应力、应变的计算,弹性模量与静荷载的数值相同。

5、本章讨论的问题

⑴惯性力问题:构件在加速度运动时的应力计算;构件在匀速转动时应力计算(构件上各点有向心加速度)。

⑵冲击问题:垂直冲击;水平冲击。(二)惯性力问题

1、惯性力的大小与方向

对于加速度为a的质点,惯性力等于质点的质量m与其加速度a的乘积,即惯性力大小。

FIma ─────────────(a)若构件的重量为G,重力加速度为g,则质点的质量

mG ─────────────(b)g 则质点的惯性力

FIGa

─────────────(c)g惯性力的方向与加速度a的方向相反。

2、动静法——达朗贝尔原理。

达朗贝尔原理指出,对作加速度的质点系,若假想地在每一质点上加上惯性力,则质点系上的原力系与惯性力系组成平衡力系。这样,就可把动力学问题在形式上作为静力学问题来处理。这就是动静法。

3、构件在加速度直线运动时的应力和变形计算。⑴动荷载系数Kd

例如有一绳索提升重量为G的重物(如下图)。

图13-1 则Fy0

FNdGGga0 FGaNdGgaG(1g)所以,绳索中出现的动应力为

FNddAGA(1ag)ast(1g)────────────⑴式中的GstA是静力平衡时绳索中的静应力。若令⑴式括号内1ag为Kd,那么⑴式即为

dkdst────────────────────⑵

式中的kd称为动荷系数

⑵式表明:绳索中的动应力d=静应力st乘以动荷载系数kd。同理:绳索中的静伸长lst乘以动荷载系数kd=绳索的动伸长ld,即

ldKdlst────────────────────⑶

同理:

dKdst─────────────────────⑷

⑵匀加速直线运动构件的应力计算

一直杆AB以匀加速a向上提升(见下图);设杆长为l,横截面积为A,材料的容重为r,求杆内的动应力d?

图13-2 解:①用截面法截出杆的下段 ②设截面上的轴向力为FNd ③该段在FrAxNd、自重rAx和惯性力ga作用下形成平衡力系(图b)由静力平衡条件得:

FrAxNdrAxgarAx(1ag)

若用FNddA代表横截面上的正应力,则 adrx(1g)──────────────────(A)∵静应力astrAx/Arx ∴dst(1g)Kdst

由(A)式可知,杆内的正应力沿杆长按直线规律变化,见图c

4、构件在匀速转动时的应力计算

当构件作定点匀速转动时,构件上各点有向心加速度

anR2

式中的R为质点到转轴的距离(圆环的平均半径)图13-3 离心惯性力沿圆环中心线均匀分布,其集度为

qdArArArD2anR2 ggg2则环向应力

ArD2DqoDrD2g22─────────────⑴

2A2A4g∵线速度VD 2∴环向应力计算式也可写成: r2───────────⑵ grD22其强度条件:[]────────────────⑶

4gr2[]─────────────────⑷ g由⑶式可求转速,∵2n,则⑶式可写成

n1[]g───────────────⑸ 2Dr由⑷式可求容许线速度

[][]g──────────────────⑹ r

例题13-1 在AB轴的B端有一个质量很大的飞轮(如下图)。与飞轮相比,轴的质量可忽略不计。轴的另一端A装有刹车离合器。飞轮的转速为n100r/min,转动惯量为Ix0.5KNMS2。轴的直径d100mm,刹车时使轴在10秒内均匀减速停止。求轴内最大动应力。

图13-4 解:⑴飞轮与轴的转动角速度为o2n10010rad/s 60303⑵当飞轮与轴同时做均匀减速转动时,其角加速度为

1ot0103rad/s2(其中负号表示与的方向相反,如上图)o103⑶按动静法,在飞机上加上方向与相反的惯性力偶矩Md,且

0.5MdIx0.5()KNm

33⑷设作用于轴上的摩擦力矩为Mt,由平衡方程Mx0,设:

MtMd0.5KNm 3⑸AB轴由于摩擦力矩Mt和惯性力偶矩Md引起扭转变形,横截面上的扭矩为MT,则

MTMd0.5KMm 3⑹横截面上的最大扭转剪应力为

maxMr2.67106Pa2.67MPa Wp(100103)2160.51033

40/s,例题13-2 图示结构中的轴AB及杆CD,其直径均为d=80mm,材料的[]70MPa,钢的容重76.4KN/m3,试校核AB、CD轴的强度。

解法之一: 解:

1、校核AB轴的强度(AB轴的弯曲是由于CD杆惯性力引起的,因为CD杆的向心加速度引起了惯性力)

图13-5 ⑴CD杆的质量:mGArlgCDg ⑵CD杆的加速度:a2RCD ⑶CD杆引起的惯性力FI;

0.0821030.6FIma476.49.84020.6211.28KN ⑷AB轴的MFIl11.281031dmax4.243.38kNM ⑸AB轴的Mdmax3.38dW10367.3MPa[] 0.083322、校核CD杆的强度(FNdFI受拉,危险截面在C)

FNdFI11.28103d2.25MPa[] 30.08AA4解法之二: 图13-6 解:沿CD杆轴线单位长度上的惯性力(如图b所示)为

(0.08276.4103)lCDqd(x)4402x614103xN/m

lCD当x0时,qd0

当x0.04m时(c截面处),qd24.6103N/m 当x0.6m时,qd368.5103N/m CD杆危险面C上轴力和正应力分别为

1FNdmax[(24.6103368.5103)(0.60.04)][0.082(0.60.04)76.4103] 24110.10.2110.3KNdmaxFNmax110.310321.9MPa

A0.0824(三)冲击荷载

落锤打桩、汽锤锻打钢坯、冲床冲压零件,转动的飞轮突然制动、车辆紧急刹车都属于冲击荷载问题。

1、垂直冲击(冲击物为自由落体)

图13-6 设有一重物Q从高处为H处自由落下(如图),冲击到被冲击物体的顶面上,则其动荷载系数Kd11式中的stl2Hst

FNlQl ─────构件在静荷载作用时的静位移。EAEA⑴若H=0时(即突加荷载——荷载由零突然加到Q值),则Kd2 dKdst2st dKdst2st

即突加荷载作用下,构件的应力与变形比静荷载(由0逐渐Q值)时要大一倍。

⑵若2Hst10时,则

Kd12Hst

⑶若2Hst100时 2HKdst

2H⑷若已知在冲击开始时冲击物自己落体的速度V,则Kd1st中的高度可用V2H2g来代替,即K1V2d1g

st2、水平冲击

水平冲击时(图a、b所示)的动荷系数

KVdg─────────────────⑺ st

图13-7

3、冲击荷载作用下的动位移、动应变、动应力

dKdst dKdst dKdst

4、受冲击时构件的强度条件:

dKdst[]

例题13-3 试校核图示梁在承受水平冲击荷载作用时的强度。已知,冲击物的重量Q=500KN,冲击荷载Q与弹簧接触时的水平速度V0.35m/s;弹簧的刚度k100106N/m,冲击荷载及弹簧作用在梁的中点处,梁的抗弯截面系数W10103m3,截面对中性轴的惯性矩 I5103m4,钢的E200GPa,[]160MPa。

图13-7 解:

1、当Q500N以静载方式从水平方向作用在弹簧、梁的跨中时,跨中截面的水平位移为

Ql3Qst

48EIK 500103835001030.005330.0050.01m 4820010951031001062、动荷载系数Kd

KdV0.350.351.12

0.313gst9.80.013、最大弯矩(Mmax)d

5001038(Mmax)dkd(Mmax)st1.121120103Nm

44、强度校核

(Mmax)d1120103(max)d112MPa[] 3W10105、结论:强度够

例题13-4 图a所示结构,梁长l2m,其宽度b75mm。高h25mm;材料的E200GPa;弹簧的刚度K10kN/m。今有重量Q250N的重物从高度H50mm处自由下落,试求被冲击时梁内的最大正应力。若将弹簧置于梁的上边(图b),则受冲击时梁内的最大正应力又为何值?

图13-8 解:第一种情况(图a)

由弹簧支承B处的变形协调方程:

(QF3B)l48EIFBK 解出FQB25019.6148EI482001091N 752531012kl31121010323B截面的静位移F19.6stBK101031.96103m 动荷载系数Kd112H2510311st1.961038.21 梁内的最大正应力为

1(QF)l1B(25019.6)2dKdstKd4W8.2141121MPa

75251096第二种情况(图b)

重物Q以静载方式作用于弹簧顶部时的静位移为

Ql3Q25023250st48EIK27.131013m4820010917525310121010312动荷载系数KH11250103d112st27.131033.16

梁内的最大正应力为

1Ql1dKdstKd4W3.1614250250.6MPa

本文来自 360文秘网(www.360wenmi.com),转载请保留网址和出处

【第六章弯曲内力(讲稿)材料力学教案(顾志荣)】相关文章:

材料力学内力图创新教法研究09-11

关于工程力学中的重要概念——内力的探讨09-11

内力测试05-22

内力的造句04-14

抛物线拱内力精确计算实用公式09-12

弯曲工艺05-13

弯曲疲劳05-29

弯曲强度06-03

弯曲回弹06-09

弯曲怎么造句04-13

上一篇:农产品品牌化经营战略研究论文下一篇:粮食安全食品安全对策