电力线路的设计刍议的论文

2024-04-08

电力线路的设计刍议的论文(精选7篇)

篇1:电力线路的设计刍议的论文

电力工程的高压输电线路设计论文

1高压输电线路设计前需要进行的合理

勘测过程输电线路的设计是一项重点工作,设计是否合理,直接关系到电力系统的正常有效运行标准,直接关系到电力传输的功能水平。需要按照实际情况,准确的加强输电线路的设计管理效果,在设计前,进行合理的勘查,了解实际情况,明确地质标准,周围环境,地上及地下的建筑物等,有效的提升电网输配电线路的设计合理性,确保输配电设计的勘查工作正常进行。按照实际的标准设计情况,准确的分析测绘标准,明确线路测量的要点,对各个角度、各个搭架的过程,距离、高度进行详细的测量分析,确定测量的精准度,明确实际测量数据的合理性。按照实际测绘的过程,对测绘人员进行严格的流程标准化分析,确定输电线路的区域划分标准,准确的分析输电线路的设计路径,确定设计的方案优化性,以合理的形式,确定设计勘查的位置,确保输电线路施工工作的正常进行。

2输电线路设计的整体要素分析

2.1高压输电防雷的设计过程

安装有效的避雷针,制定合理的防雷电流引流方式,通过安全的引入方法,确保输电线路不接触到雷击点。按照有效的保护设备或建筑物的方法,对雷电流进行避雷准备。采用避雷线,按照有效的水平悬挂方式进行导线分布,明确实际雷电引流导体、接地装置的组成标准。按照高压输电设备的配套方式,尽可能多的架设有效的输电线路设备,防止周边建筑物遭受到雷电的影响。

2.2建立有效的导线选择设计标准

按照高压输电线路的实际位置,准确的分析输电线路的影响程度,对降雨、冰雹、风暴等问题的影响因素进行判断,明确外界气温对其周围可能产生的影响因素,明确实际工业化学气体排放的.过程,确定输电线路的实际影响标准。通过合理的设计,明确高压输电线路的实际考虑因素,对线路的材质、基础结构选择进行有效的分析。

2.3高压输配电线路的实际路径分配标准

以科学有效的输配电高压线路进行设置,明确有效降低高压输电线路的施工标准和成本,确保输电线路的有效正常运作。通过分析实际输电线路的标准结构,准确的进行前期的勘测分析,确定地质条件,周边环境。拟定有效的路线,分配有效的综合评价标准,确定辅助角和地形施工标准,明确有效的施工方案,尽可能的开工至房屋的项目开发和建设,从而有效的降低工程成本,保证整体路线的经济性、安全性、施工方便性和可靠性。

2.4明确杆塔搭建设计的位置

杆塔搭建设计过程中,需要根据高压输电线路的实际组成结构和部分,确保杆塔施工的工期、线路输送的时间范围,确保实际有效运输的可行性。杆塔基础设计、施工质量的好坏直接关系到整体高压输电线路的建设质量水平。按照有效的杆塔设计标准,明确设计现场标准的考察方式,充分掌握各类历史资料内容,全面的进行地理环境和地质情况的分析,针对实际情况制定有效的措施,减少杆塔施工建设的各类事故的发生和发展,保证杆塔技术设计和施工管理质量水平。

2.5高压输配电设计过程中需要防污损的标准

高压输电线路的防污损设计中,需要根据实际无损的类型,目标电压绝缘情况进行合理的发内心,充分了解高压输电线路的配置方式和标准,逐步降低无损对高压线路的影响情况。按照有效的选择方式,确定高压输电线路的绝缘距离,结构标准等,充分配置高压输电线路的污损情况,确定类型,规律,做好有效的防护措施。对无法实现的无损问题进行处理,采用有效的物理测量方式,提升化学分析效果,保证污损处理效果的合理性。

3输电线路设计相关技术问题的处理对策方案

3.1优化铁塔基础性施工标准过程

高压输电线路的实际设计过程中,需要明确实际铁塔搭建的设计标准。在铁塔建设前,需要做好有效的计算工作,明确实际相关的载荷量,明确实际结构标准。按照有效的设计优化方式,不断提升输电线路对整体水文地质情况的分析过程,充分了解相关基础施工的方案,明确铁塔具体受力情况,确保地基符合实际的载荷能力,有效的设置轴心受压,轴心拉力等问题。

3.2单双回路的有效搭配过程和相关问题

高压输电线路的实际施工过程中,为了有效的提升铺设线路的项目开发,确保项目的出线效果,可以采取双回路的终端塔设计方式,按照有效的区域、地段进行架设,采用有效的方式,确保电力系统持续性的电源供给,明确实际电源故障问题,分析停电的原因。按照有效的后备供电作用,确保用户的供电效果。

3.3杆塔接地电阻的降低处理过程

高压输电线路的杆塔接地电阻问题,需要通过深埋、横向延展的方式,确定电阻的降低标准。如果土体结构的电阻率较低,可以采用竖井、深埋方式接地保护。横向延展接地的施工成本较低,可以有效的抑制接地电阻、冲击接地电阻。运用其方法,可以提神杆塔所具备的有效水平假设条件和方式。

4结语

综上所述,高压输电线路是电力工程中药的组成部分,良好的设计是电力系统安全运行的基础。通过高压输电线路的设计,不断提升输电线路工程的具体实施标准,明确设计的科学勘测过程,确定具体防雷基础方案,明确防污损的情况,重视线路的施工技术研究,确保高压输电设计的科学性和有效性。

参考文献:

[1]李良元.架空高压输电线路工程设计及施工要点分析[J].低碳世界,(29).

[2]周振宇.浅析电力工程高压输电线路设计要点[J].科技与创新,(18).

篇2:电力线路的设计刍议的论文

湖南湘能电力勘测设计关于配电线路路径的选择的若干建议

路径的选择是配电线路设计的第一步,也是配电线路设计的最重要的内容。路径选择是否合理,不仅影响工程整体建设投资,而且会直接影响线路的运行和维护。路径选择应根据规程要求,做到:

(1)能满足计划年限内(一般为5年)各负荷点的用电要求。村内配电线路的路径应与农村发展规划相结合,村外配电线路的路径应注意方便机耕,少占耕地,并要与农业机械化、水利、道路规划相结合。

(2)要求路径短,避免迂回线路,减少交叉和无谓的转角,以减少建设投资和维护运行费用。

(3)尽量靠近道路,便于运输和施工,但不得影响机耕和交通。

(4)配电线路的路径应选择平坦地势,避开易受山洪、雨水冲刷的地带,避开易燃、易爆场所,以满足安全运行条件。

(5)配电线路及配电设备应避开有严重污秽和化学污染的地方。

篇3:刍议电力输电线路防腐措施

输电线路的腐蚀环境主要有大气腐蚀、水腐蚀和土壤腐蚀等。腐蚀破坏使得输电导线的寿命大大缩短,尤其对处于腐蚀环境下的输电线路,往往不能达到其预期设计寿命。在我国输电线路的设计、施工和运行维护中,针对输电线路跨越地区的大气环境和水土环境,对输电导线、架空地线、金具、杆塔、基础和接地网等采取了必要的防护措施。导线、架空地线、金具和杆塔结构的腐蚀一般为大气腐蚀,杆塔基础和接地网的腐蚀多为土壤腐蚀。

2 输电线路的防腐措施

2.1 接地装置的防腐

电力接地装置将电力设备在事故状态下的过高电流导入大地,从而起到保证人身和设备安全的作用。电力接地装置包括接地引下线和接地体,一般采用圆钢、扁钢、角钢等钢质材料。对于暴露在空气中的接地引下线,主要是其金属表面与空气中的水分、盐分发生电化学腐蚀。对于埋设在地下的接地体,则主要的腐蚀为土壤的电化学腐蚀,它受土壤的pH值、杂散电流、化学反应、电阻率和微生物作用的影响极大,氧和水是土壤腐蚀的关键因素。由于土壤介质具有多样性、不均匀性等特点,腐蚀微电池和腐蚀宏电池共同作用。不同土质其腐蚀程度一般不同,排水性、通气性差而保持水分能力大的粘土和淤泥地细粒土壤比排水性和通气性良好的粗粒土壤锈蚀严重。

防腐措施:

1)设计和基建时严格把关,接地装置的埋设地点应尽量避开腐蚀性强、严重污染的场所,且应尽量避开透气性较强的风化石和沙石地带,如确实无法避开则应设法改良接地装置周围的土壤。2)采用耐腐蚀金属材料和金属镀层。接地装置可采用某些合金钢和有色金属,以防止腐蚀,但由于费用增加较大,很少采用此种方法。3)接地装置通常采用在金属表面涂刷导电防腐材料,以防止腐蚀。传统涂刷材料为油漆,近年来陆续有新型导电防腐涂料出现,使接地装置使用寿命大大延长。但涂层存在老化问题,需要定期涂刷,同时还不可避免地存在漏涂、破损等缺陷,会导致局部腐蚀严重,因此施工中必须预先进行除锈处理,从而增加了施工难度。4)对土壤腐蚀性较强或防腐要求严格的场所,阶段装置可采取在其周围施加高效降阻防腐剂的方法进行防护。高效降阻防腐剂具有稳定降阻、良好防腐等优点。5)采取阴极保护法,使金属构件做阴极,通过阴极极化来消除该金属表面的电化学不均匀性,从而达到保护目的。阴极保护是目前防止地下接地装置腐蚀的最有效方法之一,能够积极干预腐蚀反应,从根本上抑制电化学腐蚀的发生,从而彻底保护接地装置。

2.2 基础的腐蚀

输电线路杆塔基础一般有岩石基础、钢结构基础和混凝土基础等,输电铁塔一般采用混凝土基础或钢筋混凝土基础。由于地下水含有各种化学成分,当某种成分过多时,对构成基础的混凝土和钢材都有较强的危害。因此,设计基础时必须考虑地下水、周围环境和土质对基础材料腐蚀的侵蚀性影响,对有腐蚀性地下水的基础必须采取有效的防护措施。具有结晶性侵蚀的地下水,含有过多的硫酸根()与混凝土中的水泥作用,使混凝土遭受侵蚀。

因此,根据侵蚀等级而分别采取大于C50高强等级的普通硅酸盐水泥、普通抗硫酸盐水泥和高抗硫酸盐水泥等措施。具有分解性侵蚀的地下水、水中氢离子(pH值)、重碳酸根离子()及游离碳酸(CO2)等对混凝土具有分解破坏作用。当地下水具有分解性侵蚀时,宜采用不低于C30强度等级的水泥;当pH≤4.0时,宜采取在混凝土表面涂覆沥青或在基础周围填筑粘土保护层等防护措施。

2.3 导线和架空地线的腐蚀

导线和架空地线大量使用钢芯铝绞线或钢绞线,腐蚀破坏是钢芯铝绞线的主要破坏形式之一。

导线的腐蚀是一个严重的问题,最易引起腐蚀的是钢芯。钢芯铝绞钱在大气中受水分、化学气体和盐类物质等作用会发生腐蚀,腐蚀程度与导线的材质成分和制造工艺有密切关系。导线的腐蚀形态有化学腐蚀和电化学腐,并以电化学腐蚀为主,而且主要是外层腐蚀。

当空气湿度较大时,导线表面水分会凝聚成水膜,大气的O2、CO2及其它气体如H2S、NH2、SO2、NO2、Cl2、HCl等和盐类物质溶解于水膜中,形成电解液薄层。电解液薄层与金属氧化膜发生反应而产生孔蚀。在导线内部铝股与镀锌钢芯接触层,由于金属电极电位差异,也会产生接触腐蚀。铝股受腐蚀后表面会产生白色粉末,并布满麻点,铝股与钢芯接触层也会产生白色粉末状物,同时导线明显变脆,抗拉强度明显降低,严重时会造成断股、断线,大大地缩短了导线的使用寿命。

防腐措施:

通常在钢芯线与铝绞之间涂上有机材料制成的防腐蚀油脂,阻挡雨露及腐蚀性气体对钢线的腐蚀,以延长钢线寿命,使之能与铝线寿命相匹配,但防腐蚀油脂增加了导线的重量,长期使用会由于老化而失效。如果用铝包钢线代替镀锌钢线,使导线中的承力与导电部分之间相接触的金属相同,则不会形成原电池。

2.4 杆塔结构的腐蚀

目前我国的电杆塔多为钢筋混凝土电杆和预应力混凝土电杆、钢管杆和铁塔等,近年也出现钢管混凝土电杆,大跨越输电塔则主要采用钢筋混凝土烟囱式塔、角钢塔、钢管塔或钢管混凝土塔等。混凝土杆塔的裂缝问题和钢筋锈蚀问题,大大限制了混凝土杆塔在输电线路中的应用。

防腐措施:

1)出厂安装前对表面进行热镀锌处理。输电线路杆塔采用热镀锌防腐,可使杆塔结构获得较长的室外暴露使用寿命。热镀锌时,锌与钢铁之间发生扩散形成锌铁合金层,锌铁之间为冶金结合,比一般涂料结合更牢固,暴露在大气环境中的锌层数多年不会脱落。

镀锌层有小的裂纹或损坏时,锌将以牺牲阳极的形式继续防止裂纹或损坏处的钢铁生锈,这是镀锌层比其他涂镀层优越的主要特点。由于锌能溶解于酸和强碱,热镀锌层只能适用于一般大气和天然水环境中。镀锌层在接触空气和水时,可产生轻微的电化学腐蚀。在乡村、丛林等空气洁净地区,镀锌层能维持多年,而在工业污染区和沿海地区,镀锌层的耐用年限比较短。

2)现场运行一定年限后表面喷涂漆类防腐涂料,或去除原防腐镀锌而再次进行冷镀锌防腐处理。涂料防腐蚀已有很久的历史,以各种方法将耐腐蚀的材料覆盖在被保护的铁塔底材上使其不与腐蚀介质直接接触而免遭腐蚀的方法,结合金属的电化学腐蚀理论,涂料的防腐蚀作用主要有屏蔽作用、漆膜电阻效应、颜料的缓蚀作用和钝化作用、阴极保护作用。但在实际防腐工程中应根据防腐金属构件的性质和要求选择涂料的种类、品质和合理的材料及配比,以突出金属构件工作的特殊要求,避免涂覆材料本身及老化产物给设备安全运行带来不利的影响,以达到最好的使用及防腐效果。

3 结语

高压输电线路作为电网的重要一环,近年来得到越来越多的重视,其维护工作也在逐步提升和创新。腐蚀防护工作作为维护的一项内容,也受到了更多的关注。防腐应该结合高压输电线路的不同部分特性,采取有针对性的措施,尽量减少腐蚀发生,维持设备健康水平,确保电网的安全可靠运行。

参考文献

篇4:刍议电力线路架设光缆安装与设计

关键词:电力;线路架设;光缆;安装;设计

中图分类号:TM752 文献标识码:A 文章编号:1674-7712 (2014) 18-0000-01

一、概述电力系统光缆的架设

随着我国经济社会的发展,我国越来越重视意识到电网建设和改造中的光线通信设施的重要性。电力系统自身通信需要很好的通信传输介质,而光纤通信具有容量大、抗干扰性能好等优点,能够很好的满足电力系统中通讯及自动化的需要,同时富余的容量可以提供给社会利用,这样不仅能够提高电网的供电可靠性,又可以取得良好的经济效益。因此在电力线路架设光缆的安装设计的过程中首先要考虑到设计的总体情况,从电力输送情况考虑光纤的用途和造价;其次要考虑到光纤质量设计的问题,比如温度,能够承受最大弯曲度,硬度,各种环境下的通信质量等等,这步很关键;接下来就要考虑保护层。保护层不同,厂家生产的规格不同;最后是要进行反复测试,确保设计的合理性。

我国的电力通信网中使用的特种光缆通常是ADSS和OPGW两种型号的光缆。其中OPGW具备架空地线和光缆的性能,其是在原有的地线结构中合理添加光纤单元而形成的专用光缆。

二、电力通信网中的OPGW光缆简介

(一)电力通信网中的OPGW光缆介绍

OPGW(Optical Fiber Composite Overhead Ground Wire)光缆也称作光线复合架空地线,是一种全新的架空地线,其将光纤置于架空高压输电线的地线中,从而构成输电线路上的光纤通信网,这种结构形式兼具地线与通信双重功能,即一是作为输电线路的屏蔽线和防雷地线,对输电线路导线抗雷闪放电提供保护,在输电线路发生短路时,起铠装层和屏蔽作用,使短路电流对电网和通信线、铁路、输送管道的干扰减到最小;二是通过复合在地线中的光纤,作为传送光信号的介质,可传播音频、视频、数据和各种控制信号,进行多路宽带通信。

(二)电力通信网中的OPGW光缆的安装设计

电力通信网中的OPGW光缆的安装设计不仅要考虑导线的应力,弧垂和绝缘间隙之间的相互配合,同时要保证其荷重在现用杆塔和基础所允许的使用范围以内。实际应用中,我们可根据所选用的OPGW光缆的主要技术参数来计算出其特性曲线,并结合工程实际设计接线盒,各类金具,附件的布置图,外形图及安装图。

(三)电力通信网中的OPGW光缆施工架设应注意的问题

OPGW光缆的施工架设与普通钢绞线不同,施工架设时应防止造成永久的损伤以避免影响光纤的性能,而且需要着重考虑OPGW光缆的微弯、扭转、线夹外的局部径向压力以及对光纤的污染,另外,在OPGW运抵现场,架设前,架设完毕进行光纤接续及全线施工结束后,都应在现场及时进行OPGW的光纤衰耗验收测试。

三、电力通信网中的ADSS光缆简介

(一)电力通信网中的ADSS光缆

ADSS(All Dielectric Self-Supporting Optical Fiber Cable)光缆又称为全介质自承式光缆,是一种全部由介质材料组成的本身具备必要的支撑系统,而且能够直接悬挂于电力杆塔上的非金属光缆,其主要应用于架空高压输电系统的通信路线,也可用于雷电多发地带、大跨度等架空敷设环境下的通信線路。电力系统通信网的建设近几年来主要以ADSS光缆为主。它采用特殊的绝缘材料,具有良好的绝缘和耐高温性能,抗拉强度高,可架设在电力线路的原有杆塔上,已成为电力系统组网的首选特种光缆。

(二)电力通信网中的ADSS光缆的特点

应用于电力通信网的ADSS光缆具有以下几个特点:

(1)其是一种全绝缘介质的自承式架空光缆,结构中不含任何金属材料,专门为电力通信网设计。

(2)具有全绝缘结构以及很高的耐压指标,方便在带电运行的架空电力线路上架设施工,而不影响线路运行。

(3)采用抗拉强度高的防纶材料即能承受较强张力,满足架空电力线路的大跨距要求,又可防止鸟啄和人为的枪击。

(4)ADSS光缆的热膨胀系数较小,在温度变化很大时,光缆线路的弧度变化很小,且其重量轻,它的履冰和风荷也较小。

(三)电力通信网中的ADSS光缆线路架设设计

由于ADSS光缆和输电线路都是在同一个杆上架设,这需要依据架设线路的输电线路杆塔明细、杆塔一览表、路由图、当地环境气象资料、特别跨越及线路断面图等相关资料来确定线路各节段的代表跨距、长度、挂点落差、最大覆冰及最大风速等参数。各个规格的ADSS光缆对于一定跨距的线路有一定的弧垂及张力对应关系,一般要根据实际情况进行分析然后决定采用何种规定光缆,不主张套用现成规。

四、结束语

随着我国电力设备及其技术的发展,特别是近些年来智能电网的出现,我国电网对通信信息的需求越来越大,这也使得在电力线路建设光缆越来越普遍,为了保证通信质量和工程的稳定性,电力线路架设光缆的安装设计问题会越来越得到重视。

参考文献:

[1]刘俊,张琳.关于农村电力线路架设的若干思考[J].城市建设理论研究(电子版),2013(15).

[2]安道伟,高启超.浅谈弱电线路与电力线路同杆架设的隐患及对策[J].企业文化(下旬刊),2013(09):192.

篇5:电力系统配电线路设计要点论文

【关键词】配电工程设计论文

1前言

笔者分离本人多年从事配电设计工作的理论经历,就配电线路的设计要点进行了一些有意义的讨论,希望对电网设计工作可以有所自创。

2配电线路的设计流程

与电力系统其他环节不同,配电网络由于处于供电终端,且具有点多、面广的特性,形成配电网的运转质量遭到诸多方面要素的影响,而这就请求在进行配电线路设计时必需对这些要素进行全面思索,要严厉装置规则的设计流程展开设计工作。详细而言,配电线路的设计流程主要包括:首先,在准备进行设计前,要对线路的起始点以及所带供电负荷所需导线截面进行明白;其次,要对配电线路途经的沿线地形、地貌进行细致理解,并将初步设计好的途径计划在地形图上进行标示,以供配电线路技术人员进行现场勘探和选定最终途径;第三,应依据现场勘探的结果,并分离沿线的气候环境以及导线截面状况,对设计类型及杆塔的品种加以肯定;第四,经设计人员及所在地供配电线路技术人员大致商榷,计划初步完成后,需求设计人员将整个设计计划所需的设备、资料等清单列出,并依据当前市面上设备、资料的价钱行情,编制出与工程设计计划相对应的预算;最后,能够将得到的多个设计计划进行技术性和经济性的比对,以综合肯定出最佳的设计计划。

3配电线路的设计要点解析

3.1配电变压器的选择

在配电网络中,配电变压器选择的适宜与否不只关系着配电线路所承当的供配电职责,而且还与整个配电网络的电力损耗有着直接关系,所以必需依据详细线路运转对变压器规格、品种以及容量的需求,综合选取出最恰当的配变。

3.2变压器装置位置的选择

在进行配电线路设计时,配变的装置位置也是其中的一个重要内容,合理的装置位置不只能够有效降低线损,而且还会对线路后期投入运转后的质量有着关键影响。鉴于此,我们在进行配电线路设计时必需对变压器的装置位置进行充沛注重,要确保所选装置位置科学合理。普通而言,配变的装置位置应该遵照以下请求:(1)总的来说,要遵照“小容量、密布点、短半径”的准绳;(2)无论是高压线路还是低压线路,都应尽可能地避开建筑物、构筑物以及游泳池等,保证满足平安间隔;(3)所选变压器的位置不能给高压进线和低压出线带来不便;(4)变压器作为配电线路中的关键设备,在选择肯定其位置时,必需要确保其装置环境的平安,不能装置在存在易燃、易爆等平安隐患的场所,即便不可防止地要装置在这些场所左近,也要留意坚持足够的平安间隔;(5)在肯定变压器位置时,还要充沛思索到后续的配电工程施工以及线路设备的维护工作,不能给这些后续工作带来明显不便。

3.3线路途径选择

关于线路途径的选择而言,应和线路类型的选择分离在一同进行全面思索。关于电缆敷设线路来说,要特别注重所选途径能否存在经过河沟、道路等状况,由于这对线路的建立施工以及后期的平安运转有着直接影响;而关于架空线路来说,其途径选择就相对自在的多,简直能顺应各种条件,但这并不是说架空线路的途径就能够随意肯定,此时就应该重点思索因线路走廊穿越耕地、民居所带来的平安影响以及征地等社会问题。

3.4导线截面积与材质确实定

关于电力线路而言,导线截面积与电能的保送才能以及杆塔的受力才能等要素息息相关,配电线路自然也不例外。理想中,在进行配电线路导线截面积确实定时存在着一种误区,即仅以满足电能的保送为肯定根据,而这显然是不合理的。事实上,科学的截面积肯定办法应该在充沛剖析配电网络及预定电压等级的根底上,参考经济电流密度进行肯定。假如线路的最大保送容量曾经肯定,那么还能够依据不同材质导线的电气性能以及机械性能的比照来肯定导线材质,以年费用最小作为指标,经过对技术性和经济性进行全面剖析后再肯定出最佳计划。导线材质确实定除了要充沛思索经济性以外,还要对其技术性能以及节能性能加以思索。如不同材质的导线在不同的温度以及载流量下会表现不不同的性能,此时应该严厉遵照设计标准,经过对不同材质导线允许的最大载流量以及允许温度值进行验算,并最终在验算结果的根底上肯定出最佳的导线材质。

3.5杆塔的选择

关于配电网络而言,由于其中大量运用架空线路的方式,所以杆塔方式在配网设计中也是一项十分重要的内容。杆塔的选择普通要思索其所接受的拉力、压力、线路的弧垂应力与不同电压等级等要素,要确保所选杆塔的方式可以与上述各个要素相顺应。以10kV配电线路为例,其杆塔方式普通包括直线杆塔、耐张杆塔、转角杆塔以及终端杆塔这四种。直线杆能够说是杆塔中最为简单的一种方式,其特性是只能接受导线的重力,不能接受程度压力,所以普通不能单独运用,而是需求与耐张杆塔一同运用。耐张杆塔的主要作用就是接受导线的程度压力,普通直线段每经过一定的间隔就必需设置耐张杆塔。在实践应用中,导线在经过耐张杆塔时通常需求两个方向分别用两串悬式绝缘子以导线的轴向拉紧到横担上,而这就需求用到跳线,跳线也只接受本身的重力而不接受程度拉力,并且在终端杆以及大转角杆上也经常会用到。总的来说,配电线路中杆塔的选择除了要满足相关技术以及平安请求外,还必需遵照经济、运转维护便当等准绳,既要确保所选杆塔方式具有受力平均合理的特性,还必需确保其可以与环境相顺应,不能给杆塔根底建立施工形成不便,也不能给杆塔占地补偿等工作带来较大的经济压力。

3.6防雷措施

关于当前的配电线路防雷设计而言,引荐运用金属氧化物避雷器(MetalOxideSurgeArrester,MOA)。与传统避雷措施相比,MOA具有构造简单、响应快、性能稳定以及运用寿命长等方面的优点。除装置避雷器外,在线路设计阶段就能够思索经过采取一定的技术措施来增强线路绝缘、降低杆塔接地电阻等,以获取综合全面的防雷效果。

3.7增强新技术在线路设计中的应用

近年来,由于负荷密集水平的增加,原有的10kV配电线路可能曾经逐步无法满足供电开展的需求,此时无妨在设计初始就采用20kV的配电网络。固然20kV的配电网络满足我国的国度规范,但实践应用还比拟少,设计人员应该在设计计划中做到勇于创新,积极采用20kV的配电网络以及其他相关的一些新技术,以提高所设计配电线路的运转程度。

4结语

篇6:电力线路的设计刍议的论文

2.1杆塔基础工程的设计要点

通常情况下,电力工程中的高压输电线路设计一般采用管杆或铁塔结构。然而,为了充分降低投资成本,通常使用铁塔或混合土杆作为电力工程高压输电线路的主要结构。与铁塔工程相比,铁杆结构中的基础部分是确保高压输电线路在实际运行过程中不因受外力作用而发生沉降的核心部位。因此,杆塔基础工程的设计质量会直接影响整个高压输电线路的运行质量。

2.1.1基础开挖和浇注设计

在进行杆塔基础的开挖设计时,必须依据工程所在地的实际地质特征和地形条件选择恰当的开挖方法,从而有效提高岩石结构的整体性;以钢筋混凝土作为杆塔浇注的基础,并以施工现场周围的砂石作为浇注的原材料。

2.1.2基础排水和回填设计

如果基坑中的水未及时排出,则不仅会使杆塔基础的开挖难度进一步提高,还会使壁坑出现严重的坍塌和下滑现象,进而导致电力工程的高压输电线路施工无法在规定工期内完成。因此,在进行杆塔的基础排水设计时,杆塔基础必须低于地下水位。此外,对于杆塔基础浇注工作中的土壤回填和夯实,必须充分考虑回填土的密度,使其满足回填土的夯实密度要求。

2.2导线架设工程设计的要点

在整个电力工程高压输电线路的设计过程中,导线架设设计是核心部分。在导线架设设计前期,设计人员必须对相应的施工设备进行全面、详细的了解,并制订相应的施工进程表格,确保在实际的施工过程中不会出现顺序混乱的现象。

2.2.1导线的放线设计

一般而言,导线的放线设计的主要目的是确保高压输电导线的质量,同时观察金属导钩与裸导线段是否存在分股的现象。因此,工程设计人员必须确保杆塔混凝土的强度达到设定值。

2.2.2导线的连线设计

在电力工程的高压输电线路设计中,架空线的连接设计通常包括架空导线之间的相互连接、架空线与压接式耐张线夹之间的连接等。因此,在设计中,导线耐张线夹与跳线之间必须形成良好的连接,促使其更好地与电阻接触,从而有效避免不合格的导线进入电力工程高压输电线路的实际安装过程中。

3结束语

篇7:电力电缆线路的验收

第一节电力电缆线路的验收

线路工程属于隐蔽工程,因此,对电缆线路工程进行验收必须贯穿于施工全过程。电缆线路验收可分为中间过程验收和竣工验收。电缆线路工程在完成电缆线路的敷设、附件安装、交接试验等工作之后,必须由建设单位组织设计单位、监理单位、施工单位及运行单位等对施工完毕的电缆线路进行竣工验收。

为了确保电缆线路施工质量,杜绝电缆线路带病投入运行,电缆线路运行单位必须认真做好新建电缆线路的验收工作,严格按照验收标准进行中间过程验收和竣工验收。电缆线路只有在竣工验收合格后才能投入运行。

一、电力电缆线路验收制度

对电缆线路工程进行验收,必须按照验收制度进行。1.验收的阶段

电缆线路工程验收,必须按照四个阶段进行组织:中间过程验收、自验收、预验收和竣工验收。

(1)中间过程验收。电缆线路工程施工过程中,需要对电缆敷设、中间接头和终端以及接地系统等隐蔽工程进行中间过程验收。

施工单位的质量管理部门、监理单位和运行单位等参加中间过程验收,严格按照施工工艺和验收标准对施工过程中 的关键工艺逐项进行验收。

施工单位的质量管理部门和运行单位对工程施工过程中的质量情况进行抽检,监理单位对工程施工过程中的质量情况全程检查。

(2)自验收。电缆线路工程完工后,首先由施工单位自行组织对工程整体情况进行自验收。施工单位和监理单位共同参与进行自验收,初步查找工程中的不合理因素,并进行整改。施工单位完成整改后向本单位质量管理部门提交工程预验收申请。

(3)预验收。施工单位的质量管理部门收到本单位施工部门的预验收申请后,组织本部门、施工部门及监理单位对工程整体情况进行预验收。

预验收整改结束后,施工单位填写过程竣工报告,并向工程建设单位提交工程竣工验收申请。

(4)竣工验收。建设单位收到施工单位提交的工程竣工验收申请后组织相关单位对整体工程进行竣工验收。竣工验收由建设单位、监理单位、施工单位、设计单位和运行单位等多方共同参与。

竣工验收时,各参与验收单位提出验收意见。部分需要整改的项目必须限期整改,由监理单位负责组织复验并做好整改记录。

工程竣工验收完成后一个月内,施工单位必须将工程资 料整理齐全,送交监理单位和运行单位进行资料验收和归档。

2.验收的记录

电缆线路工程按照中间过程验收、自验收、预验收和竣工验收四个阶段进行验收,每个阶段验收完成后必须填写阶段验收记录和整改记录,并签字认可、归档保存。

竣工验收完成后,建设单位、监理单位、施工单位、设计单位和运行单位必须在竣工验收鉴定书上签字盖章,工程才算最终完成。

二、电力电缆线路验收项目

电缆线路工程一般可分为以下分部工程:电缆敷设、电缆中间接头、电缆终端、接地系统、防过电压系统、竣工试验等。电缆线路工程验收按照分部工程项目逐一进行。

对各个分部工程项目进行验收,通过具体分项工程验收实现。

1.电缆敷设

此分部工程可分为以下分项工程:沟槽开挖、支架安装、电缆牵引、孔洞封堵、直埋、排管和隧道敷设、电缆固定、防火工程、分支箱安装等。

2.电缆中间接头

此分部工程可分为以下分项工程:直通接头、绝缘接头、交叉互联箱和交叉互连线、接地箱和接地线等。3.电缆终端

此分部工程可分为以下分项工程:户外终端、变压器终端、GIS终端、接地箱、接地保护箱和接地线等。

4.接地系统

此分部工程可分为以下分项工程:接地极、接地扁铁、交叉互联箱和交叉互连线、接地箱、接地保护箱和接地线等。

5.防过电压系统

此分部工程可分为以下分项工程:避雷器、放电计数器、绝缘信号抽取箱、护层保护器、引线等。

6.竣工试验

此分部工程可分为以下分项工程:主绝缘和外护套的绝缘测试(包括耐压试验和电阻测试)、电缆参数测试、交叉互联测试、护层保护器试验、接地电阻测试等。

三、电力电缆线路敷设工程验收

电缆线路敷设方式由直埋敷设、排管敷设、砖槽敷设和隧道敷设等。电缆线路敷设工程属于施工过程中间的隐蔽工程,应该在施工过程中进行验收。

1.验收标准

(1)现行的GB50217-1994《电力工程电缆设计规范》、GB50168-1992《电气装置安装工程电缆线路施工及验收规范》、《电力电缆运行规程》等国家和行业标准,以及各个公司自行规定的技术标准。(2)电力电缆工程的设计说明书和施工图。

(3)电缆工程附属土建设施的质量检验和评定标准。2.验收一般要求

(1)电缆线路敷设应该按照已经批准的设计文件进行施工,不得随意更改路线走向和敷设位置,若根据现场情况确实需要变动,必须征得设计、技术和相关运行管理部门的同意。

(2)电缆敷设前,应先检查电缆通道情况。敷设通道应畅通、无积水,敷设位置的金属部分应无锈蚀。

(3)电缆敷设前应进行外观检查,尤其是电缆的两端封头是否良好。若对两端封头情况存在于疑虑,应进行潮气校验。

(4)电缆的最小弯曲半径应符合设计要求和相关规定。(5)户外终端处电缆应在终端杆塔的底部留有适量余线,变电站内终端处电缆应在变电站夹层内留有适量余线。

(6)除事故修理外,敷设电缆时如环境温度低于规定要求时,应将电缆预先加热。

(7)电缆穿越变、配电站层面,均要用防火堵料封堵。(8)电缆穿入变、配电站及隧道等的所有孔洞口均要封堵密封,并能有效防水。

(9)标志牌的字迹应清晰,不宜脱落,规格形式应统一,并能防腐。标志牌的挂装应牢固。3.电缆直埋敷设要求

(1)直埋电缆敷设后,在覆土前,必须及时通知测绘人员进行电缆及接头位置等的测绘。

(2)自地面到电缆上面外皮的距离,10KV为0.7m;35KV为1m;穿越农地时分别为1m和1.2m。

(3)直埋的电缆周围应选择较好的土层或用黄沙填实,电缆上面应有15cm的土层,保护盖板应盖在电缆中心,不能倾斜,保护盖板覆盖宽度应超过电缆两侧各50mm,保护盖板之间必须前后衔接,不能有间隙。

(4)电缆之间以及与其他地下管线或建筑物之间的距离符合设计要求和相关规定。

4.电缆排管敷设要求

(1)导管的内径一般为电缆外径的1.2~1.5倍,但不得小于150mm。导管应由低耗能、高强度、无害的材料制成。

(2)保护管的选择符合设计要求。应能满足使用条件所需的机械强度和耐久性,电缆保护管上下宜用混凝土层加强保护。

(3)较长电缆排管敷设时,管道中工作井的留设位置应符合设计要求和相关规定。

5.电缆隧道敷设要求

(1)固定电缆的支架其中心距离应符合设计要求和相关规定。(2)变、配电站的电缆夹层及隧道内的电缆两端和拐弯处,直线距离每隔100m处应挂有电缆标志牌,注明线路的名称、相位等。

(3)隧道内并列敷设的电缆,其相互间的净距应符合要求。

(4)相同电源关系的两路电缆不得并列敷设。相同电源关系的两路35KV电缆须分别敷设在隧道两侧。

(5)单芯电缆的固定应符合设计要求。

(6)隧道内敷设电缆,电缆应该按照电压等级从低到高的顺序在支架上由上而下分层布置。

(7)隧道内敷设电缆,不能破坏隧道防水结构及隧道内其他附属设施。

(8)电缆在隧道内敷设完成后,不得额外降低隧道容量,且不得影响运行人员正常通行,必要时可在三通井、四通井等处将电缆固定在隧道内顶板上,或进行有效的悬吊。

四、电力电缆中间接头和终端工程验收 1.验收标准

(1)现行的《电力工程电缆设计规范》、《电气装置安装工程电缆线路施工及验收规范》、《电力电缆运行规程》等国家标准和行业标准,以及各个公司自行规定的技术标准。

(2)工程的设计说明书和施工图。

(3)电缆中间接头和终端的施工工艺说明书和图纸。2.验收一般要求

(1)电缆终端和中间接头的制作,应由经过培训的熟悉工艺的人员进行。

(2)电缆终端及中间接头制作时,应严格遵守制作工艺规程。

(3)安装电缆中间接头或终端头应在气候良好的条件下进行。应尽量避免在雨天、风雪天或湿度较大的环境下安装。空气相对湿度宜为70%及以下;当湿度大时,可提高环境温度或加热电缆。制作塑料绝缘电力电缆终端与中间接头时,应防止尘埃、杂物落入绝缘内。严禁在雾或雨中施工。

(4)电缆线芯连接时,应除去线芯氧化层。压接模具与金具应配合恰当。压缩比应符合要求。压接后应将端子或连接管上的凸痕修理光滑,不得残留毛刺。采用锡焊连接铜芯,应使用中性焊锡膏,不得烧伤绝缘。

(5)电缆终端、中间接头均不应有渗漏现象。(6)电缆终端处应正确悬挂明显的相色标志,中间接头应有线路铭牌和相色牌。

(7)同路电缆线路三相接头之间的距离应满足设计要求。

(8)电缆线路的中间接头要与相邻其他电缆线路的接头位置错开,接头之间错开至少0.5m。

(9)中间接头用托架固定牢固,托架固定满足设计要求。(10)中间接头硬固定满足设计要求,接头两侧和中间增加硬固定。

(11)户外终端电气连接处涂抹导电膏、贴示温蜡片。(12)终端头及终端引出电缆的固定符合设计要求,固定牢固。各处螺丝紧压牢固。

(13)GIS侧终端护层保护器安装符合设计要求,固定牢固。

(14)电缆终端引出线保持固定,在空气中其带电裸露部分之间以及带电部分与接地部分的距离符合相关规定。

五、电缆线路附属设备验收 1.电缆支架

(1)支架应焊接牢固,无显著变形,表面光滑、无毛刺。钢材应平直。支架尺寸大小符合设计要求,下料误差应在5mm范围内,切口应无卷边、毛刺。

(2)支架安装垂直误差不应大于5mm,水平误差不应大于100mm。

(3)金属电缆支架防腐工艺符合设计要求。防腐涂层的各项指标符合相关要求,保证运行8年内不出现严重腐蚀。

(4)电缆支架应能满足所需的承载能力,支架横撑在能承载1500N平均恒定荷载的同时,在可能短暂上人时,应能承载980N的集中附加荷载。

(5)在有坡度的隧道或建筑物内安装的电缆支架,应与 隧道或建筑物底板垂直。

(6)电缆支架全线均应有良好的接地。接地电阻符合设计要求。

2.防火设施

(1)电缆防火措施符合设计要求。

(2)在电缆穿过竖井、墙壁、楼板或进入电气盘、柜的孔洞处,用防火堵料密实封堵。

(3)防火隔板、防火隔断以及防火槽盒等的安装符合设计要求。安装牢固,密封完好。

(4)对重要回路的电缆,可单独敷设于专门的沟道中或耐火封闭槽盒内,或对其施加防火涂料、防火包带。

(5)防火涂料涂刷位置、厚度和长度符合设计要求,涂刷均匀。防火包带应半搭盖缠绕,且应平整、无明显突起。在电力电缆中间接头两侧及相邻电缆2~3m长的区段施加防火涂料或防火包带。

3.接地系统

(1)电缆线路接地方式符合设计要求。

(2)护层保护器的型号符合设计要求,安装牢固、引线合理。

(3)交叉互联箱、接地箱和接地保护箱。

1)交叉互联箱、接地箱和接地保护箱型号选择正确,符合设计要求。2)电缆线路的交叉互联箱和接地箱箱体本体及其进线孔不得选用铁磁材料,箱体和进线孔密封良好,满足长期浸泡要求。

3)箱体固定位置符合设计要求,固定牢固可靠,隧道内安装时不影响隧道容量和人员正常通行。

4)全线交叉互联连接方式正确。

5)箱体内金属连扳相互连接处压接紧密。(4)交叉互联线和接地线。

1)交叉互连线和接地线型号选择正确,符合设计要求。2)交叉互连线和接地线应尽可能短,宜在5m内。3)交叉互连线和接地线满足最小弯曲半径要求。4)交叉互连线和接地线排列有序、固定牢固。5)交叉互连线和接地线不允许被支架或其他构件挤压。6)地线不得连接在可拆卸的接地体上,且接地电阻符合相关规程要求。

(5)回流线。

1)回流线型号选择正确,符合设计要求。2)回流线敷设位置和固定方式符合设计要求。4.防过电压系统

(1)避雷器外观无异常,干净、无污秽。

(2)避雷器、计数器和信号抽取箱安装位置符合设计要求。计数器安装角度合适。(3)避雷器、计数器和信号抽取箱各处连接线压接牢固。

(4)计数器、信号抽取箱的引线安装固定符合设计要求。

5.光纤测温系统

(1)测温光纤敷设安装符合设计要求。测温光纤与电缆外护套接触紧密,接头处圆周缠绕;每隔500m预留50m光纤环,光纤环放置在高压电缆上,不得挂在支架上;测温光纤固定间隔不大于0.5m。

(2)每隔500m在测温光纤上装设标签,标注起点、终点、距离。

(3)测温光纤全线贯通,单点损耗小于0.02dB。(4)系统温度精度符合设计要求。

(5)系统温度报警功能符合设计要求和相关技术协议。

六、电缆线路竣工资料验收 1.竣工资料内容

为便于将来对电缆线路的运行、维护和检修,在电缆线路竣工验收时,施工单位应该向运行单位提供工程竣工资料,具体包括以下施工文件、技术文件和资料。

(1)直埋电缆线路路径的协议文件。

(2)设计资料图纸、电缆清册、变更设计的证明文件和竣工图。(3)电缆施工组织设计、作业指导书等施工指导性文件。(4)电缆施工批准文件、施工合同、设计书、设计变更、工程协议文件、工程预算等工程施工依据性文件。

(5)竣工后的电缆敷设竣工图,比例宜为1:500.地下管线密集的地段不应小于1:100;在管线稀少、地形简单的地段可为1:1000;平行敷设的电缆线路,宜合用一张图纸。图上必须标明各线路的相对位置,并有标明地下管线的剖面图。

(6)制造厂提供的产品说明书、试验记录、合格证件及安装图纸等技术文件和保证资料,特殊电缆还应附必要的技术文件。

(7)隐蔽工程的技术记录。电缆敷设报表、接头报表、护层绝缘测试表、充油电缆油样试验报告等施工过程性文件。

(8)电缆线路的原始记录。包括电缆的型号、规格及其实际敷设总长度及分段长度,电缆终端和接头的型式及安装日期;以及电缆终端和接头中填充的绝缘材料名称、型号及安装日期等。

(9)试验记录。包括电缆线路绝缘电阻、主绝缘交流耐压、外护套直流耐压、电缆参数测量、充油电缆油样试验、护层保护器阀片性能等电气试验记录。

(10)电缆工程总结说明书、竣工试验证明书。2.竣工资料要求

(1)竣工资料要求整理有序,装订成册。

(2)竣工资料需经过监理单位和运行单位审核后,由运行单位归档保存。

(3)竣工资料移交时间应符合相关规定。

七、电缆线路试运行过程中的验收检查

新建电缆线路必须经竣工验收合格后才能投入运行。电缆线路投入运行后一年内,为电缆线路试运行阶段。试运行过程中,对线路进行的测温、侧负荷、测接地电流工作、渗漏油检查等是竣工验收工作的必要补充。

电缆线路在试运行阶段内发现的由施工质量引发的缺陷、故障等问题,由原施工单位负责处理。

1.测温检查

新建电缆线路电气连接部分接触不良时,局部会发热。同时,电缆线路局部存在缺陷时,会有局部放电产生,由此引起电缆局部温度升高。

电缆线路投运后,通过检测各部位的温度情况,进一步判断电缆工程施工质量。

2.单芯电缆金属护套接地电流测量

通过测量单芯电缆金属护套接地电流,判断电缆护套绝缘是否存在损伤、电缆接地系统连接是否正确。

3.漏油检查 电缆线路投运后,需要检查电缆终端、中间接头等的渗漏油情况,对于存在油迹的现象,需要进一步判明属于施工残油还是渗漏油。

第二节 电力电缆线路的运行维护

电缆线路投入运行后,为了确保电缆线路的安全运行、预防电缆线路事故的发生、充分发挥电缆线路的运行能力,运行单位指派专职运行人员对电缆线路进行日常运行维护工作。

电缆运行单位的任务是保证电缆线路的供电可靠性,提高电缆线路的可用率,最大限度的降低电缆线路的事故率,最终确保电缆线路安全无事故运行。

一、电力电缆线路运行维护主要内容 1.反外力工作

电力电缆线路的外力破坏事故,在电缆线路事故中占有很大比例。为了有效的保护电缆线路的安全运行,电缆运行单位应该配备足够的专责运行人员对电缆线路进行巡查,长期深入的开展电缆线路反外力工作。

(1)电缆线路运行单位通过各种新闻媒体渠道,对电缆线路反外力工作的重要性进行宣传。

(2)建立正确可靠的电缆线路资料管理系统,完善线路标识。电缆运行单位应该具有准确可靠的电缆线路资料、管线测量成果,直埋线路有齐全、醒目的电缆路径设置警示 标志。

(3)严格电缆线路专责人的定期巡视和特巡制度。电缆线路专责人切实按照巡视周期的要求进行线路巡视,巡视中发现的问题按照缺陷管理程序进行处理。对于比较容易受到外力破坏的电缆线路,施工频繁的现场,或者有特殊巡视要求的电缆线路,巡视检查的周期应适当缩短。

(4)加强施工现场的施工配合和管理力度。在电缆线路或隧道附近施工,必须事先与电缆线路运行单位进行联系,现场查活交底后,办理施工安全保护协议和电缆技术保护协议。施工挖掘时,专责人必须到现场进行监护,对电缆线路被挖出暴露的情况需进一步采取电缆线路保护措施。施工现场的电缆线路位置附近需装设明显的警示标志,并注明联系方式。

2.正常巡视及负荷监视、温度监视、压力监视和腐蚀监视

运行人员对隧道内敷设的电缆线路全线进行正常巡视,及早发现电缆线路被硬物挤压等现象。对电缆线路终端进行巡视,及早发现电缆线路终端出现污闪、异物闪络或者渗漏油等现象。

(1)正常巡视。

1)对敷设于地下的每一条电缆线路,应查看路面是否正常,有无开挖痕迹、堆物或线路标桩是否完整无缺等。2)对于电缆终端,应检查终端有无放电现象;电缆铭牌是否完好;油纸终端套管是否完整,有无渗漏油;交联电缆终端热缩、冷缩或预制件有无开裂、积灰;终端引出线接点有无发热或放电现象,接地线有无脱焊,电缆铅包有无龟裂渗油,户外靠近地面一段的电缆保护管是否被车碰撞等。

3)多路并联电缆要检查电流分配和电缆外皮的温度情况,示温蜡片是否脱落,防止因接点不良而引起电缆过负荷或烧坏接点。

4)安装有保护器的单芯电缆,在通过短路电流后,或定期检查阀片有无击穿或烧熔现象。

5)充油电缆线路无论是否投运,都要检查其油压是否正常,油压系统的压力箱油管、阀门、压力表是否有渗漏油现象;信号系统的信号屏电源是否完好,动作是否正常,喇叭有无声响;检查塞止接头支撑绝缘子或与构件绝缘部分的零件,有无放电现象。

6)有硅油膨胀瓶的交联电缆终端应检查硅油膨胀瓶的油位是否在规定的1/3~2/3之间,对于GIS终端应特别注意检查筒内有无放电声响。

7)单芯电缆应监测其金属护层接地线电流,有较大突变时应停电进行外护套接地电流试验,查找外护套破损点。

8)对110KV及以上重要电缆线路的户外引出线连接点,需加强监视,一般可用红外线测温仪或测温笔测量温度。在 检修时应检查各接触面的表面情况。

9)电力井、隧道、电缆夹层内的油纸电缆铅包与支架或金属构件处有无磨损或放电迹象,衬垫是否失落,电缆及接头位置是否固定正常,电缆及接头上的防火涂料或防火带是否完好。

10)电力井、排管、隧道、电缆沟、电缆桥、电缆夹层等附属设备应检查金属构件如支架、接地扁铁是否锈烂;对于备用排管应用专用工具进行疏通,检查其有无断裂现象。

11)隧道、电缆夹层应检查孔洞是否封堵完好,通风、排水及照明设施是否完整,防火装置有无失灵。

12)检查小室、终端站门锁是否开闭正常、门缝是否严密,如进出口、通风口防小动物进入的设备是否齐全,出入通道是否通畅。

13)检查隧道、人井内电缆有无渗水、积水,有积水时要排除,并将渗漏处修复。

14)检查隧道、人井内电缆及接头情况,应特别注意电缆和接头有无漏油,接地是否良好,必要时测量接地电阻和电缆的电位,防止电缆腐蚀。

15)检查隧道、人井电缆支架上有无撞伤或蛇形擦伤,支架有否脱落现象。

16)检查入井盖和井内通风情况,井体有无沉降及有无裂缝。17)检查隧道电缆的位置是否正常,接头有无漏油、变形,温度是否正常,防火设备是否完善有效,以及检查隧道的照明是否完善。

电力电缆线路巡视检查后,巡线人员应将巡查结果记入巡线记录簿内。对于必须立即处理的重要缺陷,除做好记录外,还必须立即向主管负责人提出报告。对巡视中发现的零星缺陷和普遍性缺陷,交由主管部门编制月季度小修计划和大修计划。运行部门应根据巡查结果,采取措施进行处理。

(2)负荷监视。对电缆负荷的监视,可以掌握电缆线路负荷变化情况,控制电缆线路原则上不过负荷,分析电缆线路运行状况。电缆线路负荷的测量可用钳形电流表测定。

(3)温度监视。仅仅监视或控制电缆的负荷并不能保证电缆的正常运行。电缆线路运行时将受到环境条件和散热条件的影响,而且在电缆线路故障前期局部会伴随有温度升高现象,因此有必要对电缆线路进行温度监测。

利用各种仪器测量电缆线路外皮、电缆中间接头以及其他部位的温度,目的是防止电缆绝缘超过允许最高温度而缩短电缆寿命、提前预防电缆事故的发生。

(4)腐蚀监视。电缆腐蚀一般指电缆金属护套部分的腐蚀。金属护套被腐蚀结果是部分将变成粉状而脱落,金属护套逐渐变薄至穿透,失去密封作用而导致绝缘受潮,经一 定的时间绝缘性能逐步下降,而形成电缆线路的故障。一般情况下,由于电缆被腐蚀的过程发展很慢,不可能及时被发现,当一旦发现时,腐蚀已经是极其严重的程度了,必须作更换处理。

3.防火管理

一般情况下电缆线路布置密集,电缆线路一旦发生火灾,消防器材难以投入,容易造成火灾扩大,因此电缆火灾事故往往损失重大。

电缆火灾事故发生的原因主要有两方面:一是电缆本身故障引起的火灾,二是外界火源引起的电缆火灾。因此,防止电缆火灾首先要防止电缆本身和外界因素引起的电缆着火;其次要防止着火后蔓延扩大;第三要采取有效的灭火措施。

主要有以下措施:

(1)选用防火电缆,主要有阻燃电力电缆或者耐火电力电缆。

(2)电缆和接头表面阻燃处理。

1)涂刷防火涂料。电缆用的防火涂料大致可分为发泡型和非发泡型两种。

2)绕包防火包带。防火包带一般是以耐燃性能优异的橡塑性材料为主体,再涂覆难燃性胶黏剂或添加无机填充剂而制成。一般用在使用防火涂料处理有困难的电缆线路上。防火包带的操作工艺,通常在电缆上半叠绕包两层即可。

(3)防火分隔和封堵。防火分隔是限制火灾范围的重要措施,包括防火墙、防火门、防火隔板和防火槽盒等。电缆线路在穿越楼板、墙壁时要用防火材料对孔洞进行封堵。

(4)火灾探测报警和固定灭火装置。在变电站进出线电缆比较集中的夹层内、重要隧道内安装火灾探测报警装置,及早探测火情、显示火警部位和正确发出火警,目前国内有些地方已经成功的安装了分布式光纤温度检测系统。

固定灭火装置有湿式自动喷水灭火系统、水喷雾灭火系统和气体灭火系统。一般在电缆隧道内采取在电缆接头处加装灭火装置的方式,如灭火弹等。电缆线路事故多发生在电缆接头处,电缆接头处加装灭火装置后,一旦电缆线路接头处发生故障,灭火装置能有效的控制电缆线路火灾。

4.绝缘监督

电缆线路运行单位应该做好电缆线路绝缘监督工作,努力确保电缆线路安全健康运行。绝缘监督工作应该建立自上而下的绝缘监督组织体制,形成绝缘监督网络。

(1)电缆线路预防性试验计划的编制和实施。根据电力电缆运行规程的要求,结合电缆线路的实际运行情况,编制并实施电缆线路预防性试验计划,及时发现和消除电缆线路缺陷,从源头上杜绝电缆线路事故的发生。

(2)对带病运行电缆线路的监督,针对部分带病运行 的电缆线路,必须加强巡查力度,缩短监督试验周期,严密注视缺陷的发展变化趋势。如果在半年时间内缺陷没有发生变化,则可以认为此缺陷属于固定性缺陷,可以将此缺陷记入线路历史专档备考,而在运行过程中可以按照正常的情况管理。

(3)电缆线路设备等级划分。电缆线路的故障多数是因为绝缘被击穿而引起的,因此加强电缆绝缘监视对提高线路可靠运行具有十分重要的意义。对电缆线路进行设备等级划分,有利于及时消缺升级,同时也有利于加强对设备的维修和改进。

电缆线路运行单位根据电缆线路预防性试验结果的综合分析情况,结合电缆线路实际运行和检修中发现的问题,并充分考虑电缆线路绝缘水平、技术管理情况及安全管理情况等问题,对35KV及以上电缆线路每年进行一次设备等级划分。

电缆线路设备等级划分为三级。

1)一级设备。电缆线路绝缘测试时试验项目齐全,结果合格,且在运行、检修过程中未发现任何缺陷。此类设备电缆线路在实际运行过程中,技术状况良好,能保证在满负荷下安全供电的电缆设备。

2)二级设备。电缆线路绝缘测试时泄露试验次要项目或次要项目数据不合格,发现绝缘有缺陷,但暂不影响安全 运行或影响较小(如泄露不对称系数大于标准值)。

3)三级设备。电缆线路绝缘测试时泄露试验主要项目或主要项目数据不合格,发现绝缘油重大缺陷,威胁安全运行的(如耐压试验时闪络;泄露电流极大且有升高现象,但未超过试验电压)。

5.缺陷管理

电缆线路缺陷管理应该制定相应的管理制度,实行分级、分层管理原则,实现电缆线路缺陷的发现、上报、分析、处理、消缺的闭环管理。

(1)缺陷分类。

1)危急缺陷。设备或建筑物发生了直接威胁安全运行并需立即处理的缺陷。否则,随时可能造成人身伤亡。设备损坏、大面积停电、火灾等事故。

2)严重缺陷。对人身或设备有严重威胁,暂时尚能坚持运行但需尽快处理的缺陷。

3)一般缺陷。上述危急、严重缺陷以外的设备缺陷。指性质一般,情况较轻,对安全运行影响不大,可列入检修计划处理的缺陷。

(2)设备缺陷处理时限规定。

1)危急缺陷。应于当日及时组织检修处理。2)严重缺陷。应根据缺陷发展情况尽快处理,一般不超过1个月。3)一般缺陷。应列入检修计划处理,一般不超过三个月。

(3)设备缺陷的报告及检查。电缆运行单位电缆设备发生危急、严重缺陷,应及时上报相关技术管理部门。

电缆运行单位发现设备缺陷后,应加强监视或采取必要措施,防止进一步恶化。监视中如有发展应及时报告。

技术管理部门对各运行单位缺陷管理工作情况进行检查,包括缺陷的记录、消缺时限、消缺率、消缺质量、信息传递、预防措施制定及落实等内容。

二、电力电缆线路巡视周期

为了确保电缆线路安全运行,专责电缆线路运行人员应该严格按照设备巡视周期的要求,对电缆线路进行巡视检查。

1.地面巡视

(1)对于电缆线路通道(包括直埋、工井、排管、隧道、电缆沟、电缆桥)上的路面,应根据电缆护线巡视制度定期进行巡视和检查。

(2)对于发电厂、变电站内的电缆线路通道上的路面,视情况定期进行巡查,一般应每三个月至少一次。

(3)对于已暴露的电缆或电缆线路通道附近有施工的路面,应按照电缆线路沿线及保护区内施工的监护制度。酌情缩短巡查周期。2.电缆线路及其附属设备的可见部分 应按照如下要求定期进行巡查:

(1)10KV及以下电缆户内、外终端一般2~4年一次;35KV一般每年一次;110KV及以上一般每季度一次。对于供电可靠性要求较高的重要用户及其上级电源电缆,应按特殊情况要求,酌情缩短巡查周期。

(2)对于泵站的电缆线路,应根据汛期特点,在每年汛前进行巡查。

(3)对于污秽地区的主设备户外电缆终端,应根据污秽地区的污秽程度予以决定。

(4)对于装有油位指示的电缆终端,每年冬、夏检查一次油压高度。对于有供油油压的电缆线路应内同每月对其供电油压进行巡查。

(5),每年冬、夏电网负荷高峰期间,按要求做好电缆负荷及终端接点温度的监测工作。

(6)运行电缆周围土壤温度应按指定地点定期进行测量。冬、夏电网负荷高峰期间适当加大测量频度,并及时通知有关调度。

(7)电缆隧道、充油电缆塞止井应每月巡查一次。(8)电缆桥、电缆层、分支箱、换位箱、接地箱应每年巡查一次。当系统保护动作造成护层交叉换位的电缆线路跳闸后,应同时对线路上的护层换位箱、接地箱进行巡查。(9)电缆工井、排管、电缆沟及其支架应每两年巡查一次。

第三节 电力电缆线路状态检修

出于对电力电缆供电可靠性的要求,一直以来采用定期进行主绝缘和交叉互联系统的预防性试验以及测温测负荷的方法对电缆的运行状况进行检查。通过将上述检查结果与规程中的标准值进行比较,若是超标则制定维修计划,安排对设备进行停电检修,这种从预防性试验到检修的维护方式称为计划检修。

计划检修在防止设备事故的发生,保证供电安全可靠性方面起到很好的作用。但从经济角度和技术角度来说,计划检修都有一定的局限性。例如定期试验和检修造成了很大的直接和间接经济浪费,据统计在定期检查和维修中,仅有60%的花费是该花的,此外,在不同于设备运行条件的低压下检查,许多绝缘缺陷和潜在的故障无法及时发现。

鉴于此,目前提出了状态检修的概念,即通过对运行中电缆的负荷和绝缘状况进行连续的在线监测,随时获得能反映绝缘状况变化的信息,从而有的放矢地进行维修。

状态检修具有以下优点:

(1)减少不必要的计划停电时间,提高设备利用率。(2)降低备品备件库存,减少设备维护费用。(3)使得检修工作更具有针对性,提高设备检修水平,也在一定程度上减少了检修人员的工作负担。

一、电力电缆线路常见缺陷

对已投入运行或备用的各等级电缆线路及附属设备有威胁安全的异常现象(又称缺陷),必须进行处理。电缆设备缺陷涉及范围如下:

(1)电缆本体、接头和户内、外终端,包括接地线和支架。

(2)电缆支架、保护管、分支箱、交叉互联箱、接地箱、带电显示器、避雷器、隔离开关、信号端子箱和供油系统的压力箱及所有表计。

(3)电缆桥、电缆排管、电缆沟、电缆夹层、电缆工井、竖井、预埋导管。

(4)电缆隧道及排水系统、照明和电源系统、通风系统、防火系统的各种装置设备。

(5)超高压充油电缆信号屏及信号报警系统设备。1.电力电缆线路缺陷分类

电缆线路缺陷按对电网安全运行的影响程度,分为紧急缺陷、严重缺陷和一般缺陷三类。

(1)危急缺陷。严重威胁设备的安全运行,不及时处理,随时有可能导致事故的发生,必须尽快消除或采取必要的安全技术措施进行处理的缺陷,如充油电缆失压、附件绝缘开裂等。(2)严重缺陷。设备处于异常状态,可能发展为事故,但设备仍可在一定时间内继续运行,应加强监视并在短期内消除的缺陷,如接点发热、附件漏油、接地电流过大等。

(3)一般缺陷。设备本身及周围环境出现不正常情况,或设备本体不完整,出现不太严重的缺陷,一般不威胁设备的安全运行,可列入检修计划消除的缺陷,如附件渗油、电缆外护套局部破损等。

2.实际运行中的缺陷统计

在现实工作中,由于电缆自身结构、附件设计方法、安装工艺、敷设环境、网络构造以及负荷水平的差异,电缆缺陷呈多样化分布,按照缺陷出现位置的不同,大致可将日常运行遇到的缺陷分为如下4个类别。

(1)电缆本体常见缺陷。电缆线路本体常见缺陷主要有PVC护套破损、金属护套破损、金属护套电化学腐蚀、主绝缘破损、充油电缆本体渗漏油、电缆本体局部过热。

(2)接头和终端常见缺陷。接头和终端常见缺陷有油纸绝缘电缆尼龙斗干枯、油式终端渗漏油、中间接头铅包开裂、接头环氧套管开裂、空气终端严重积污、空气终端瓷套开裂、空气终端瓷套掉瓷、电缆接头局部过热。

(3)电缆线路附属设备缺陷。电缆线路附属设备缺陷主要包括线路接地电阻偏高、接地电流过大、35KV及以上高压单芯电缆线路交叉互联系统断线、互联箱或接地箱接触电 阻偏高、护层保护器故障、交叉互联线电流过高、充油电缆油压报警系统故障、充油电缆压力箱渗漏油、固定拖箍及卡具丢失等。

(4)电缆敷设路径上存在的缺陷。电缆的敷设方式主要包括直埋、沟槽、管井以及隧道等。电缆路径设施的缺陷往往是电缆线路缺陷的直接原因。在日常运行中,路径上存在的缺陷主要有在电缆路径附近进行大型机械施工、路径上方堆积建筑垃圾等杂物、与其他管道进行不符合规程要求的垂直交叉、路径内接地系统的接地电阻过大、隧道顶板和侧墙出现裂纹、隧道侧墙或底板有渗漏水、支架有毛刺、易腐蚀、承载力不足、隧道内温度过高、通风和排水系统出现故障、同一路径上不同等级电缆的相互占压等。

3.电缆缺陷的处理原则

(1)对于危急缺陷,运行部门应立刻上报技术管理部门,组织有关部门及时处理,运行人员可在事后补报缺陷卡片。危急缺陷应于当日及时组织检修处理。

(2)对于严重缺陷,按照缺陷处理流程逐级运转,由处缺部门及时安排处理,一般不超过1个月。

(3)对于一般缺陷,应列入检修计划,一般不超过3个月。

(4)凡遇重大电气设备绝缘缺陷或事故,还应及时上报上级有关部门。(5)对于已检修完或事故处理中的电缆设备不应留有缺陷。因一些特殊原因有个别一般缺陷尚未处理的,必须填好设备缺陷单,做好记录,在规定周期内处理。

(6)电缆设备带缺陷运行期间,运行部门应加强监视。对带有重要缺陷运行的电缆设备,应得到部门技术主管的批准。

(7)电缆设备缺陷应填写缺陷卡片,缺陷卡片由各部门领导或技术负责人进行审核。

4.缺陷处理的职责分工和流程

设备缺陷管理实行分级、分层管理的原则,各部门应明确各级设备缺陷管理专责人。生产技术管理部门作为设备缺陷的归口管理部门,负责组织、协调、指导各部门设备缺陷的分析处理、技术攻关、制定反措等工作。负责组织设备缺陷的统计汇总、分析处理、措施制定、检查验收、消缺指标等工作,负责将缺陷情况上报上级管理部门。运行部门负责设备的巡视检查,上报设备缺陷,处理职责分工内的设备缺陷,对本部门的设备缺陷及处理情况进行汇总。检修部门则负责处理职责分工内的设备缺陷,负责备品备件的储备工作,并对本部门的设备缺陷处理情况进行汇总。安监部门、工程管理部门以及材料部门负责做好设备缺陷处理涉及的安全、工程、备品备件等工作。具体流程如图6-1所示。

图6-1 缺陷处理流程示意图

二、电力电缆线路在线监测

正如上文所述,基于经济效益和技术可靠性考虑有必要进行状态检修的尝试,其组成和相互关系如图6-2所示,可见在线监测是状态检修的基础和根据。从可靠性、适用性和实用性方面考虑,在线监测系统需要满足如下要求:

(1)在线监测系统的应用不应改变电缆线路的正常运行。

(2)实时监测,自动进行数据存储和处理,并具有报警功能。

(3)具有较好的抗干扰能力和适当的灵敏度。(4)具有故障诊断功能,包括故障定位、故障性质和故障程度的判断等。

当前,我国主要开开展了以下几种切实可行的在线监测试验项目。

1.充油电缆线路绝缘油状态的监测

我国当前的110KV及以上等级的充油电缆基本都安装

了油压报警系统来实现对充油电缆油压的在线实时监控,一旦油压异常,系统将产生声光报警模拟信号,通过变电站RTU(远程终端控制系统)传至集控站,从而引导检修人员通过注油或放油等方式,将油压控制在正常范围内。该系统也是当前应用最为广泛和成熟的在线监测系统。

图6-2高压、超高压电缆状态监测集控系统拓扑图 2.10KV及以上交联电缆运行温度监测

随着交联电缆线路负荷率的不断提高,电缆线路温度过高的问题日益突出。自2000年以来,国内逐步开始采用红外测温仪和红外热像仪对电缆及其附件的运行温度进行点对点的监测。由于红外测温仪测量距离有限、测量范围小、误差大以及受被测点表面反射率的影响大,使其测量数据不

可靠而逐步被红外热像仪取代。近年来,通过这种方式发现多起运行缺陷,如图6-3所示为红外热像仪发现的某线路B相发热情况。

图6-3某线路B相发热

3.110KV及以上单芯交联电缆交叉互联系统接地电流的监测

(1)110KV及以上XLPE电缆金属护套接地是保证电缆安全运行的重要措施。为抑制金属护套内产生较大电流,110KV及以上XLPE电缆通常采用单端接地或者交叉互联两端接地的方式,此时,电缆的接地线电流为零或者很小。如果电缆外护套绝缘有破损,造成金属护套多点接地,则会在金属护套、接地线、接地系统间形成回路,产生较大的接地线电流(其值能达到电缆线芯电流的50%~95%)。由于此接地线电流较大,因此可用电流互感器直接对其进行采样,经过外围电路放大、A/D转换和微机处理,即可实现电缆外护套状况的在线监测。系统构造方式如图6-

4、图6-5所示。

图6-4某线路的接地电流监测系统结构图

图6-5某线路的接地电流监测系统

(a)接地电流监测主机及信号发送装置;(b)电流互感器

(2)如果电缆采用单端接地方式,则可采用接地线电流法监测电缆主绝缘状况,这种方法也称为工频泄露电流法。正常情况下,单端接地时,接地线电流包括容性电流和主要为流经电缆主绝缘的容性电流。当电缆绝缘逐渐恶化时,容性电流将会增大,所测的接地线电流均值将随之“上

浮”。由于接地线电流数值可达安倍级,比较容易测量。因此,可以通过对接地线容性电流的测量,从概率统计的角度进行历史数据的趋势分析,由此对电缆主绝缘状况进行在线监测。接地线电流法监测电缆主绝缘状况时,如果发现接地线容性电流均值显著增长,在排除其他运行故障的可能性后,可以认为是电缆主绝缘的恶化所致。

4.电缆附件的局部放电监测

局部放电是造成电缆绝缘被破坏的主要原因之一,国内外学者一致推荐局部放电试验作为XLPE电缆绝缘状况评价的最佳方法。考虑到电缆故障绝大部分发生在电缆附件上,而且从电缆附件处进行局部放电测量容易实现、灵敏度高,因此,一般电缆局部放电在线检测主要针对电缆附件。目前,电缆局部放电在线检测方法主要有差分法(见图6-

6、图6-7)、方向耦合法、电磁耦合法、电容分压法、REDI局部放电测量法、超高频电容法、超高频电感法等。虽然对局部放电的在线检测方法很多,理论上也是可行的,但实际应用中,由于局放信号微弱、波形复杂、外界背景干扰噪声大等原因,实现局部放电的在线检测难度很大。

图6-6 差分法局部放电测试等效电路

1-导体;2-屏蔽层;3-绝缘法兰;4-测试仪;5-数据传输线(只测试主机);6-导体-屏蔽电容;7-局部放电;8-电极-屏蔽电容.图6-7差分法电极安装示意图 1、2-测量用电极;

3、4-校正用电极;5-绝缘筒;6-绝缘接头;7-电缆

5.高压电缆线路运行温度的在线实时监测

任何电缆事故的发生、发展、都有一个时间过程,而且都伴随有局部温度升高,温度已成为判断电缆运行是否正常的非常关键的要素之一,许多物理特性的变化也都直接反映在温度的升降上,因此对温度监测的意义越来越大。电缆

温度在线监测按照测温点的分布情况,可分为两大类:分布式在线温度监测和点散式在线温度监测,前者对电缆线路全线进行温度监测,后者只对电缆终端、中间接头等故障多发部位进行温度监测。

分布式光纤测温技术融合了当前世界上最先进的光纤和激光技术,用光纤作为传感探测器进行温度监测,在日本、欧美等发达国家电力电缆网中已经有多年的成熟运行经验,通过实时监控电缆线路的运行温度,为发现电缆线路局部放电、绝缘老化等早期症状提供一个依据,是实现电缆网状态检修的必要手段。其原理是利用光在光纤中传输时,在每一点上激光都会与光纤分子相互作用而产生后向的散射,既有瑞利(Rayleigh)散射、布里渊(Brilouin)散射,也有拉曼(Raman)散射。拉曼散射是处于微观热振荡状态下的固态SiO2晶格与入射光相互作用,产生与温度有关的比原光波波长较长的斯托克斯光和波长较短的反斯托克斯光,这两种光的一部分沿光纤被反射回来,通过检测拉曼散射斯托克斯光和反斯托克斯光的比值,确定光纤沿线的温度,系统原理及结构如图6-

8、图6-9所示。该系统在北京地区已经得到广泛应用。

图6-8分布式光纤测温系统原理图 6.电缆水分在线监测

对于XLPE电缆,水分的危害极大,因此,在电缆的设计、制造过程中采取了多种技术措施抑制水分的入侵。但是,长期运行过程中,水分的入侵不可避免,特别是对于电缆附近水源较大或者电缆长期浸泡在水中的地区更是如此。电缆水分在线监测系统是在电缆结构内(一般在金属护套与外屏蔽层之间)内置一个分布式的水传感器,通过测量水传感器的直流电阻,来判断水分的入侵情况。系统中,水传感器的布置、电气特性至关重要,一方面,它要有与电缆金属护套一样的交叉互联方式、另外,它还要能承受各种冲击电压和冲击电流的影响。电缆水分在线监测法适合应用在电缆长期浸泡在水中的情况。

图6-9分布式光纤测温系统结构图

7.在线检测tanδ法

研究表明,介质损耗tanδ的大小随着水树老化程度的增大而增加。测量线路电压与流经绝缘体的电流(由电缆接地线中测出)的相位差,求出tanδ的大小,从而判定电缆主绝缘的好坏。

典型的介质损耗tanδ在线检测法是检测两个正弦波过零点的时间差,由频率和时间差来计算相位差的方法。国内研究所研究了介质损耗测量的过零点电压比较法,较好地解决了介质损耗的在线测量问题。过零点电压比较法无需以过零点为测量相位差的标准,而以过零点附近两个正弦波的平均电压差来评价两个正弦波的相位差,因此抗干扰能力强,比较适合现场及在线检测。

由于tanδ反映的是被测对象的普遍性缺陷,个别集中缺陷不会引起tanδ值的显著变化。因此tanδ法对电缆全

线整体老化监测有效,对局部老化则很难监测。此外,对于110KV及以上XLPE电缆,由于其绝缘电阻和等值电容很大,因此tanδ值很小,容易受到干扰而无法准确测出。

三、电力电缆线路检修

1、电缆线路的检修类型

为了减少设备事故数量,提高供电质量和电网可靠性,必须做好电缆设备绝缘监督与检修工作。正如前文所述,电力电缆线路的检修主要经历了以下三种模式。

(1)矫正性检修。当电缆及附件发生故障或严重缺陷不能正常运行时,必须进行的检修称为矫正性检修(故障检修),这类检修具有不可预见性,对电网供电可靠性有不良影响。

(2)定期检修。根据电缆线路综合运行情况实行“到期必修,修必修好”的原则,对电缆或附件进行定期检查、试验及维修称为定期检修(预防性检修)。主要是采用定期进行绝缘预防性试验,根据《电力设备预防性试验规程》,对电缆线路及其附属设施所规定的项目和试验周期,定期在停电状态下进行绝缘性能等的检查性试验,并将预试结果与规程标准进行对比,若有超标,则应制定维修计划,安排对设备进行停电检修。定期检修较少考虑电缆及附件的实际运行状况,具有一定的盲目性。

(3)状态检修。根据电缆和附件“在线监测”的状态

测试记、运行历史记录、统计资料信息和预防性试验检查报告,有针对性的进行检修,这种检修管理模式称为状态检修。

2.电力电缆线路检修的一般规定

(1)电缆线路发生故障后,必须先使电缆线路与电力系统隔离,并做好必要的安全措施,才能进行事故处理。

(2)测量电缆主绝缘电阻,鉴定故障性质,必要时可施加直流耐压进行鉴定。

(3)根据故障性质确定测寻故障点的方法,找出故障点精确位置。

(4)对电缆故障点进行放电鉴别,确认事故电缆。(5)对故障部位按照工艺进行修复。(6)对修复后电缆线路做修后试验。(7)试验合格后,电缆重新投入运行。3.电缆线路上常见的检修项目

针对实际运行中电缆线路不同位置上出现的四种缺陷,检修工作也相应的分为四种类型。

(1)对电缆本体的检修。主要有修复电缆外护套、金属护套,为充油电缆顶油,电缆切改以及为外力损伤的电缆做直通头(俗称假接头)等。

(2)针对电缆中间接头和终端的检修。主要有清扫终端瓷套管和喷涂RTV,更换裂纹严重的终端瓷套,更换运行温度过高终端,更换充油电缆终端的漏油油嘴,更换终端内

油样试验不合格的绝缘油和硅油,重做带砂眼漏油的终端搪铅,修复扭力出现异常的弓子线,修复漏气的GIS终端,修复油面下降过快的户内终端,重做温度过高或漏油严重的中间接头,补充中间接头和终端附近丢失的线路铭牌,重新包绕老化的失色相色带等。

(3)对电缆线路附属设备的检修。主要包括补充丢失或损坏的交叉互联线和接地线,更换损坏或进水浸泡的互联箱,更换试验不合格的护层保护器,更换泄露电流过大的避雷器,更换损坏的计数器和油压表,定期大修隔离开关,补充电缆抱箍及丢失的卡具等。

(4)针对电缆敷设路径的检修。主要有清理隧道垃圾,排除电缆沟沟内积水,给渗漏水严重的沟段做玻璃钢防水,给结构老化的沟道新做支撑,给温度过高、通风不畅的沟段增加风亭,更换锈蚀严重以及尺寸过小的支架,维修沟道接地系统,为有硌伤危险的电缆在支架上增加垫片,更换承载力不够的引上支架,对相互占压的电缆进行悬吊理顺等。

4.电力电缆检修工作的安全要求(1)电力电缆检修工作的基本要求。

1)工作前应详细核对电缆名称、标志牌是否与工作票所写的相符,安全措施正确可靠后,方可开始工作。

2)电缆分支室内的停电工作,工作前还应核对线路名称、隔离开关号。

3)电缆分支室停电后,应先验电、挂地线,而后才能拉合隔离开关,不许带电拉合隔离开关。

4)10KV电缆室外终端头的停电工作,应先核对线路名称、调度号及站内断路器是否拉开,不许在站内断路器未拉开的情况下拉合杆上隔离开关。

5)进入SF6电气设备室或与其相连的电缆夹层、沟道,应先检测含氧量、SF6气体含量是否合格。电缆隧道内长距离巡视时,工作人员应携带便携式有害气体测试仪及自救呼吸器。

6)电缆施工完成后应将穿越过的孔洞进行封堵,已达到防水、防火、防小动物的要求。

(2)带电作业的安全要求。

1)35kv及以上电缆(含中间接头)不许带电移动。2)移动运行中的10kv电缆(含中间接头),应先征得运行单位的同意,并对其敷设年份、绝缘材料、运行情况等进行详细了解。视绝缘情况,采取必要的措施,如老化严重,应停电进行。平移距离不得超过2m。

3)移动运行中的单芯电缆保护层一端接地的电缆应防止感应电压。

4)移动运行中的电缆,工作人员应戴绝缘手套。5.电缆线路检修工作的技术考核指标

(1)电缆故障修复率。各电压等级电缆线路应按月统

计故障修复率,计算公式为

电缆故障修复率=当月电缆故障修复次数/当月电缆故障发生次数×100%(2)电缆故障及时修复率。各电压等级电缆线路应按月统计故障及时修复率,计算公式为

电缆故障及时修复率=当月故障及时修复次数/当月故障发生次数×100% 在接到电缆故障抢修命令后须迅速组织实施,在规定时间内完成相应故障的修复。

(3)一类缺陷的处理率和修复率。这里的一类缺陷包括严重缺陷和危急缺陷,各电压等级电缆线路应按季度统计一类缺陷的处理率和修复率,计算公式为

一类缺陷的处理率=当季度一类缺陷开始处理的数量/当季度一类缺陷发现数量×100% 一类缺陷的修复率=当季度一类缺陷的数量/当季度一类缺陷发现数量×100%

四、测温和测负荷 1.电缆线路温度测量

(1)电缆线路温度测量的意义。当电缆或附件中发生异常时,均伴随有局部放电发生,局部放电会使电缆或附件局部温度升高。任何电缆事故发生、发展,都有一个时间的过程,都必然经过一个温度缓慢上升或异常上升——温度急

剧上升——绝缘击穿,最终造成电气短路的系列过程。因此对电缆线路及其附件的温度进行测量是检测电缆运行情况的有效手段。

通过分析判断温度测量数据,查出可能潜伏的线路过负荷、接触不良、异常放电、线路交叉互联系统隐患、电缆外护套绝缘损伤及其他造成温度上升的各种隐患,以便及早发现电缆线路或附件的异常情况,及时采取防范措施,防止接头爆炸及其他安全事故的发生,达到防范于未然的目的。

电缆的载流量与温度有关,通过对电缆线路及其环境温度进行实时监测,可以为确定电缆的最佳载流量提供依据。

(2)电缆线路温度测量的方法。

1)热电偶测温。散热条件比较差的地方,比如直埋敷设的电缆线路,在电缆线路外层装设热电偶或者压力式温度表测量电缆的表面温度。

2)示温蜡片测温。示温蜡片分为60、70、80℃三种,分别以不同颜色表示,常用的有黄、绿、红三色。

由于粘贴示温蜡片测量温度只能粗略检查粘贴处的温度范围,而且反应时间慢、粘贴不方便,目前已经较少使用。

3)红外线测温仪测温。多年来,电缆及附件的测温,往往只是对某些特定的测温点进行温度监测,没有对整个电缆及附件进行测试。这也是受到测量仪器的限制。

红外测温仪测温时,主要对电缆线路终端接线鼻子、应

力控制部位及接地部位等事故高发部位和可疑缺陷部位进行测温。

4)红外热像仪测温。红外热像仪测温最初在电力系统内应用时,主要是对变电站一次设备进行测温。用于电缆及附件温度监测只有几年时间。

红外热像仪测温能对整个电缆及附件进行测试,而且测量操作简便,测量到的温度情况直观可见,方便现场应用。

示温蜡片测温、红外测温仪测温和红外热像仪测温,都只能按照巡视人员的巡视周期,按时到现场进行观察和温度测量,在两个巡视周期之间的绝大部分时间内,电缆及附件的温度情况都无法掌握。

5)在线测温。电缆温度在线监测一方面能实现在线监测电缆及附件温度情况,及时有效的发现电缆及附件早期故障,另一方面还能根据电缆的温度实时确定其最佳载流量。近年来,国内外许多公司、研究机构对电缆在线测温系统进行了研究,国内电力公司已开展了部分试点。

在线测温按照测温点的分布情况,可分为两大类:分布式在线温度监测系统和点散式在线温度监测系统。

分布式在线温度监测系统对电缆线路全线进行实时温度监测,全线布置光纤,以光纤作为温度采集和数据传输的通道。

点散式在线温度监测系统只对电缆终端、中间接头等薄

弱部位进行实时温度监测,主要采用热电偶、气体、红外线或者光纤光栅进行温度采集,采用CAN总线或者光纤进行数据传输。

(3)电缆线路温度测量数据的分析判断。对电缆线路温度测量数据进行分析,要结合周围环境、负荷量等因素进行具体分析比较。

1)温度测量数据要与当时的环境温度进行比较,不应有较大差异。

2)对同一相电缆相邻部位之间的温度数据进行比较,不应有较大差异。

3)对同一路电缆三相之间相同部位的温度数据进行比较,不应有较大差异。

4)结合负荷变化情况,与上次温度测量数据和历年同期数据进行比较,温度变化量和变化率不应有明显改变。

2.电缆线路负荷测量

(1)电缆线路负荷测量的意义。《电力电缆运行规程》规定,电缆线路应该在其额定允许载流量范围内运行,原则上不允许过负荷,即使在事故处理时出现的过负荷,也应该迅速恢复正常。

电缆线路过负荷运行将会缩短电缆的使用寿命,造成电缆运行故障。电缆线路过负荷运行时,将会造成电缆线芯温度过高,加速电缆绝缘的老化,使电缆金属护套发生膨胀、47 变形、龟裂、接点发热损坏等现象。

同时,多根电缆线路并列运行时,需要定期测量电缆线路的负荷情况,以便正确了解电缆线路负荷分配情况,掌握电缆线路运行状况。多根电缆线路并列运行时,由于电缆终端连接部分接触点的接触电阻存在差异,将造成并列运行的电缆线路负荷分配不均匀。这种负荷分配不均现象将会在并列运行的电缆线路中形成恶性循环,最终危及电缆线路的安全运行。

(2)电缆线路负荷测量的方法。

1)实时监测。发电厂、变电站在每条线路上装有配电盘式的电流表,电镀部门通过监视电流表的电流值,实时监测每条线路的负荷情况,以便实时调整电网运行方式和线路负荷量。

2)现场测量。电缆线路运行人员按照巡视周期的要求,定期到现场采用钳型电流表进行负荷测量。有保电特巡任务时,也需要现场测量负荷情况。

(3)电缆线路负荷测量数据的分析判断。对电缆线路负荷测量数据进行分析,要结合具体因素进行具体分析比较。

1)要与电缆线路额定允许载流量进行比较。电缆线路负荷原则上应不大于其额定允许载流量。对于35kv及以下系统,电缆线路发生故障时,可以短时间过负荷。

2)比较同路电缆线路三相负荷间的不平衡性,以及多根并列运行的电缆线路之间负荷的不平衡性。

3)与往年同期最高负荷情况进行比较。3.电缆线路接地系统电流测量

(1)电缆线路接地系统电流测量的意义。电缆线路接地系统电流大小能客观反映电缆线路外护套健康状况,影响电缆线路载流量。因此,对电缆线路接地系统电流大小进行测量与分析具有十分重要的意义。

电缆线路接地系统电流出现异常,很大程度上可能是电缆外护套破损、出现了多点接地现象。外护套破损、金属护套腐蚀、既增加了主绝缘水树老化的几率,由易于诱发局部放电和电树枝,对电缆的安全运行造成威胁。

电缆线路接地系统电流出现异常,将直接影响到电缆线路的载流量。电缆线路接地系统电流异常对载流量的影响可达30%~40%。

电缆线路接地系统电流出现异常,将造成损耗发热,导致绝缘局部发热,加速绝缘老化,降低电缆使用寿命。

(2)电缆线路接地系统电流测量的方法。

1)实时监测。可用电流互感器直接对电缆线路接地系统电流进行采样,经过外围电路放大、A/D转换和微机处理,即可实现电缆外护套状况的在线监测。

2)现场测量。电缆线路运行人员按照巡视周期的要求,49 定期到现场采用钳型电流表测量电缆线路接地系统电流。有保电特巡任务时,也需要现场测量负荷情况。

(3)电缆线路接地系统电流测量数据的分析判断。对电缆线路接地系统电流测量数据进行分析,要结合电缆线路接地系统方式和具体情况、负荷、温度、现场情况等具体因素进行具体分析比较。

1)测量电缆线路接地系统电流的三相和总的接地电流,与负荷值进行比较,计算电缆线路接地系统电流占负荷值的比值。

2)测量电缆线路接地系统电流的三相和总的接地电流,与投运初期值、历史同期值和前次记录情况进行比较。

测量电缆线路接地系统电流的三相和总的接地电流,比较三相之间的不平衡性。

第四节 电力电缆故障及处理

一、常见的电力电缆故障 1.电缆故障产生的主要原因

(1)绝缘老化。电缆在长期运行过程中,在电场的作用之下,绝缘层要受到伴随电作用而来的热、化学和机械作用,从而引起绝缘介质发生物理及化学变化,久而久之,介质的绝缘性能和水平自然就会下降。

上一篇:广美毕业展下一篇:高考英语必备词组汇总