光传送网保护与恢复的若干技术分析

2024-04-24

光传送网保护与恢复的若干技术分析(精选3篇)

篇1:光传送网保护与恢复的若干技术分析

网络生存性是指网络在经受各种故障时仍能维持可接受的业务质量等级的能力,是现代网络规划设计和运行的关键因素,也是网络完整性的重要组成部分,光网络的生存性基于共享资源和动态恢复资源。在光网络的各种生存性技术中,光层的生存性技术具有响应快速、灵活的特点,能够有效提高网络的服务质量(QoS),减少业务的丢失,因此,对光层的生存性研究具有十分重要的意义。光层的生存性包括保护和恢复两种技术。

保护是指为光网络的承载业务提供预留的保护资源。当网络发生故障时,受影响业务被安排到预先分配好的保护路由进行传送,以此来恢复受影响的业务。保护往往处于本地网元或远端网元的控制下,无须外部网管系统的介入,因而保护倒换时间很短。但由于备用资源无法在网络范围内共享,导致网络资源利用率低,这是保护机制的缺点。

恢复是指为光网络的承载业务动态寻找网络中剩余资源(包括预留的专用空闲备用容量,网络专用的、甚仍至低优先级业务可释放的额外容量),并通过利用这些剩余资源,在网络中寻找失效路由的替代路由,以便快速而准确地消除由于故障所带来的阻塞。恢复技术能动态搜索网络中的所有空闲容量,可大大节省备用资源,因而大大提高了网络资源的利用率。但由于恢复通常需要外部网管系统介入,时间较慢,恢复响应不确定,业务恢复时间相对较长,这是恢复机制的不足之处。恢复通常主要用于网状网,以便能最佳地利用网络容量资源。

保护和恢复都可采取重选路由机制,但两者又各有其优缺点。保护技术的保护倒换时间短,但网络资源利用率低;恢复技术大大提高了网络资源的利用率,但业务恢复时间相对较长。在实际应用中,若采用保护与恢复相结合(PRC)的技术策略,将最能满足运营商所希望的业务保护水平需求。鉴于环网和网状网是光传送骨干网的两种主要网络结构,本文将就这两种网络结构中保护与恢复的某些重要技术问题进行分析。

环形网的保护

在环形光网络中,主要采用保护方式来恢复受故障影响的业务。目前,环形网的保护主要有邻近节点环回和源节点重路由两种解决方案。以下分别对环形网的这两种保护方案进行分析。

1.1 邻近节点环回方式

邻近节点环回是现有环形网中的常规保护方式。根据该解决方案,当信息从源节点向目的节点传输过程中,若其间某段线路发生故障,系统将在邻近故障的节点进行保护倒换,将受影响的业务倒换到保护通道上进行传输,即受影响的业务在邻近节点处以邻近节点环回方式避开线路故障,并通过保护通道顺利到达目的节点。

如由西安?兰州?银川?呼和浩特?北京石家庄郑州7个主要节点构成的环形网。当信息从西安途径兰州传送到石家庄时,若北京石家庄之间的光纤发生断裂,与事故发生地邻近的北京节点将采取保护倒换措施将业务倒换到保护通道,即业务将在北京节点环回,并沿保护通道到达石家庄。

以邻近节点环回方式为业务提供保护的同时也引发了另一个问题,即信息的传输距离比正常情况下大得多,这样,信息的传输时延将大大增加。

正常路径下,西安石家庄(经兰州)的路径传输时延为t1=17.25 ms;当北京?石家庄光纤发生故障时,通常邻近节点环回路由的传输时延为t2=36.35 ms。

显然,采用邻近节点环回方式保护倒换后,信息从源节点到目的节点的传送时延大幅增加。这里的计算还没有包括节点设备引起的传送时延。通常,信息从源节点到达目的节点中途要经过许多节点设备,若将这些节点设备引起的传送时延计算在内,采用邻近节点环回方式引起的传送时延增加问题将更加突出,由此必然严重影响网络系统的性能。

1.2 源节点重路由方式

在环形网中采用常规邻近节点环同保护方式虽然可为业务提供有效保护,但同时却使信息的传输距离比正常情况下大幅增加。传输距离的增加导致了信息传输时延的相应增加,进而严重影响网络系统的性能。为解决上述问题,业界提出了源节点重路由方式,如上海贝尔阿尔卡特的源节点重路由解决方案很好地解决了邻近节点环回方式所带来的传输延时增加问题。

当信息从西安途径兰州传送到石家庄时,若北京?石家庄之间的光纤发生断裂,这时,源节点重路由解决方案将在源节点(西安节点)处进行重新路由,把需要传送的信息直接倒换到保护通道上。,信息直接途径郑州传送到目的节点(石家庄节点),无须再经过兰州、北京来迂回完成传输。比较邻近节点环回方式,源节点重路由解决方案大大减少了信息的传输距离,它的信息传输时延小得多。采用源节点重路由保护倒换后信息的传输时延为t3=35.85 ms,与采用邻近节点环回方式保护倒换后的传输时延相比,其优势显而易见。此外,若进一步考虑传输途中所通过的中间各节点引入的时延,源节点重路由方式的优势将更为明显。

环形网结构具有较好的生存性,网络恢复时间短(可小于50 ms)。但是,若在大型长途骨干网中采用环形网结构,则由于在许多情况下信息传送要通过迂回路由实现,往往传输路径过长,传输经过的节点数过多。这些都将导致整个信息的端到端传送时延过大,尤其是当环形网光纤线路发生故障、网络系统采用邻近节点环回方式保护倒换后,时延问题尤为突出,

过大的传送时延不但对话音等实时性业务产生严重影响,而且对网络的IP化也十分不利,不仅会引起IP系统(TCP/IP系统)的吞吐量迅速下降、导致网络利用率的迅速降低,而且还将使数据分组的丢失概率上升,最终导致整个网络系统性能的严重恶化。

此外,环形网的缺点还体现在网络规划较困难。在进行网络规划时,很难预计将来的发展,因此,在开始时需要规划较大的容量。这种结构所需空闲容量即使在业务量比较平衡时也高达100%,有些甚至要求高达150%。实践证明:环形网在短距离、拓扑结构简单时具有较大的优势;而在大规模长途骨干网中,网状网的应用优势则更为突出。

网状网的保护与恢复

网状网的多路由形式使得它的可靠性大大优于其他网络拓扑结构。利用网状网的多路由形式、应用交叉连接设备、采用最短路径优先选路功能,可保证即使在网络出现故障情况下,仍使网络具有最优的传输路径。

网状网中,网络的保护和恢复都可使用重选路由机制。对于保护而言,通道保护技术可为每一路工作通道预留一条专用的端到端保护通道,也可使用1+1或1:1的保护倒换。链路保护(或称光复用段保护)可采用另一条专用的平行光纤,也可采用被路由到在网络中与该链路不相交的其他光纤,还可以采用共享方式,如采用M:1结构。保护技术具有保护倒换时间短的优势,但因需要为光网络的承载业务提供预留的保护资源而存在网络资源利用率低的缺陷。

网状网中采用恢复策略具有很高的生存性,恢复技术能动态搜索网络中的所有空闲容量为受影响的业务寻找新的路由,从而能最佳地利用网络容量资源。在同样的网络生存性条件下,所需要的附加空闲容量可远小于环形网,通常为30%-60%,因此,恢复比保护在容量使用效率方面具有优势。一般来说,网络拓扑较复杂时,如在高度互联的长途网中,采用网状网恢复比环形网更为经济灵活,也便于规划和设计。由于网状网提供的是网络范围内的恢复,因而对付严重的网络故障的能力较强,对网络拓扑的限制也最小,但是,网状网恢复也存在业务恢复时间长的缺点。值得注意的是,在网状网中,对于全网优化的恢复方案,由于网络保护倒换时要进行全网的资源优化分析,因而网络保护倒换的时间较长,而对于局部优化的恢复方案,则可大大减少资源优化分析的时间,快速地进行网络保护倒换和业务的恢复。

基于保护和恢复的各自优缺点存在互补性,在实际应用中,业界提出了采用PRC的技术策略,如上海贝尔阿尔卡特率先提出、引领业界最高水平的PRC解决方案。上海贝尔阿尔卡特的PRC解决方案将保护与恢复有机结合,在充分发挥保护与恢复各自优势的同时,又克服了它们各自存在的缺陷,能最大限度地满足运营商的实际应用需要。

在光网状网中,每个节点存在多个路由,一旦某节点发生故障或光缆中断,业务可以很容易地被转换到另一条通路上。采用上海贝尔阿尔卡特的PRC解决方案,网状网可实现网络的自动故障诊断、业务的自动恢复和路由的优化;并且保护倒换时间可小于50 ms,满足电信级要求。如此,使得网状网的生存能力最能支持运营商所希望的业务保护水平。换句话说,使用PRC解决方案,运营商可充分利用网状网的优异生存能力和可靠性,根据SLA协议,灵活地管理各种级别的业务,为各种级别的业务提供不同的保护和业务恢复时间。

正常情况下,业务通过源节点与目的节点之间的一条主用路由传输。为了保证高优先级业务传输的安全,网络系统采用最短路径优先原则,计算出一条预置的保护路由,当主用路由出现故障时,网管系统将自动把该业务倒换到预置的保护路由上。由于保护倒换时间满足电信级要求(小于50 ms),所以,客户端不会受到影响。

若保护路由再次出现故障,网管还可根据网络资源找出第三条可用路由,并将业务倒换到该路由上。同样,由于保护倒换时间小于50 ms,客户端也不会受到影响。

在实际情况中,当使用PRC方式保护时,若第三条保护路由也出现问题,网管系统还可以进一步动态地寻找更新的可用路由。

网状网和环形网相结合的保护与恢复

目前,国内各大运营商骨干光传送网主要采用“多个环网互联+部分支线”的网络结构,提供的业务恢复类型仅为环/线保护和不保护两种。根据环网和网状网的优缺点,结合国内各大运营商骨干传送网的实际,若在我国大规模长途骨干网中引入网状拓扑,将我国大规模长途骨干网建成网状网和环网相结合的网络拓扑结构,则可为业务提供环网保护、1+1/1:N线性保护以及网状网PRC等多种组合的保护与恢复方式。换言之,采用网状网和环网相结合的网络拓扑结构,利用SLA功能,运营商可为不同类型的客户灵活地提供具有一定差异性的各种等级类型业务。

结束语

环网主要

篇2:光传送网保护与恢复的若干技术分析

光传送网 (OTN) 是一种以DWDM与光通道技术为核心的新型传送网结构, 它由光分插复用、光交叉连接、光放大等网元设备组成, 具有超大容量、承载信号透明及在光层面上实现保护和路由的功能。

光传送网 (OTN) 的结构由上至下依次可以分为三层:光信道层 (OCH) , 光复用段层 (OMS) , 光传输段层 (OTS) 。

光通道层负责为来自电复用层的各种类型的客户信息选择路由, 分配波长, 为灵活的网络选择安排光信道连接, 处理光信道开销, 提供光信道层的检测、管理功能, 它还支持端到端的光信道连接, 在网络发生故障时, 执行重选路由或进行保护倒换的工作;光复用段层保证相邻的两个DWDM设备之间的DWDM信号的完整传输, 为波长复用信号提供网络功能, 包括:为支持灵活的多波长网络选路, 重新配置光复用段, 为保证DWDM光复用段适配信息的完整性进行光复用段的开销处理, 光复用段的运行、检测、管理等;光传输层为光信号在不同类型的光纤介质上 (如G.652, G.655等) 提供传输功能, 同时实现对光放大器和光再生中继器的检测和控制。

2 传统传送网的技术缺陷

近年来, 通信网络所承载的业务发生了巨大的变化, 数据业务发展非常迅速, 特别是宽带、IPTV、视频业务的发展, 对运营商的传送网络提出了新的要求。传送网络要能够提供适应这种增长的海量带宽, 更重要的是要求传送网络可以进行快速灵活的业务调度, 完善便捷的网络维护管理 (OAM功能) , 以适应业务的需求。目前传送网使用的主要是SDH和WDM技术, 但这2种技术都存在着一定的局限性: (1) SDH技术偏重于业务的电层处理, 具有灵活的调度、管理和保护能力, OAM功能完善。但是, 它以VC4为基本交叉调度颗粒, 采用单通道线路, 容量增长和调度颗粒大小受到限制, 无法满足业务的快速增长; (2) WDM技术以业务的光层处理为主, 多波长通道的传输特性决定了它具有提供大容量传输的天然优势。但是, 目前的WDM网络主要采用点对点的应用方式, 缺乏有效的网络维护管理手段。纯光调度系统 (如ROADM) 虽然可实现类似于SDH的调度和保护功能, 但由于物理受限和波长受限问题, 很难在大范围网络中应用, 而且颗粒度单一, 灵活性差, 不能实现不同厂家设备的互通。

3 光传送网 (OTN) 技术特点分析

所谓光传送网, 从功能上看, 就是在光域内实现业务信号的传送、复用、路由选择、监控, 并保证其性能指标和生存性, 它同SDH、DWDM传统传送网一样, 满足传送网的通用模型, 遵循一般传送网组织原理、功能结构的建模和信息的定义, 采用了相似的描述方式。因此, 许多SDH、DWDM传送网的功能和体系原理都可以移至光传送网。

与传统的传送网技术相比, 光传送网 (OTN) 有以下几个特点:

(1) 因为光传送网是按照信号的波长来进行信号处理, 因此, 他对所传送数字信号的传输速率、数据格式及调制方式完全透明, 这意味着光传送网不仅可以透明传送今天已经广泛使用的SDH、IP、以太网、帧中继 (FR) 和ATM信号等, 而且也完全可以透明传送今后使用的新的数字业务信号。

(2) 因为光传送网采用了DWDM传输技术, 因此, 不仅实现了超大容量的传输, 更重要的是使光传送网具有极强的可扩充性, 这使得光传送网可以不断地根据业务发展情况, 进行网络扩容。

(3) 因为光传送网采用了光交叉技术, 因此, 光传送网具有极强的重新配置及保护、恢复特性。光传送网可以进行波长级、波长组级和光纤级灵活重组, 特别是在波长级可以提供端到端的波长业务。此外, 光传送网的恢复时间可以降低到100ms量级。

(4) 因为光传送网简化了网络层次和结构, 大量使用了光无源器件, 进而简化了网络管理和规划难度, 提高了网络的可靠性, 进而大幅度降低了网络建设和运营维护的成本。

(5) 因为光传送网主要在光域内传送和处理信号, 因而, 消除了电子瓶颈。

(6) 光传送网既可以采用专门的波长传送全网统一的参考光载波频率, 也可以在光传送网内各节点使用独立的高精度和高稳定度的频率源。

4 光传送网 (OTN) 的技术发展前景

基于以上的技术和应用现状, 我们可以看出, OTN技术有着显著的优点, 目前, 国内外主流运营商都非常关注OTN技术的发展和应用, 多数运营商的WDM传输接口已经实现OTN功能。许多运营商在建网思路、标书需求等方面对OTN提出了明确要求, 因此, 为了满足日益增长的IP业务的承载需求, 适应传送网技术的发展趋势, 我国通信行业正在增加OTN技术的研发投入, 加快OTN设备的研发、标准化和推广应用。

光传送网正在由为运营商自身的业务网提供传输支撑的基础网逐步发展为可以直接为客户提供资源出租业务的业务网。由基础传输网转变为业务网有一系列问题需要研究和解决, 如业务定义、业务管理、业务接入、服务保障等, 而且组网方式、网络结构、网络覆盖也要相应地调整, 网络管理维护体制、电路调度手段、商业运营模式等都要适应业务网的需要进行相应变革。这些工作都是光传送网发展中的新生事物和运营商目前关注的重点。

篇3:光传送网关键技术及应用分析

关键词 OTN 技术 应用

中图分类号:TN929.1 文献标识码:A

1 OTN关键技术

OTN全称Optical Transport Network(光传送网)是以波分复用技术为基础,且在光层组织网络的传送网,它是跨数字传送和模拟传送两类,也是结合了两类的优势,更是管理数字传送(电领域)和模拟传送(光领域)的统一标准。

OTN技术中包括多种关键技术,其中有组网技术,传输技术,接口技术,保护恢复技术等。

(1)OTN组网与传输技术

OTN组网技术包括电层调度技术,光层调度技术以及混合层调度技术等。其中电层调度技术的实现是支持波长的交叉连接,光层调度技术的实现是支持ODUk的交叉连接,而混合层调度技术是同时支持波长和ODUk的交叉连接。采用组网技术大大减少了建网成本。OTN传输技术具有长距离,大容量的传输特点。同时采用带外的FEC技术和新型调制编码并结合色散光宇可调补偿,电域均衡等,显著提高了长距离和大容量的传输速度。

(2)OTN保护恢复技术

OTN保护恢复技术分别体现在光域和电域,在光域支持光通道1+1保护,光复用段1+1保护,光通道共享保护。在电域支持子网连接保护和环网共享保护。

(3)OTN接口技术

OTN接口技术中包括逻辑接口和物理接口。

1.1 ROADM技术

ROADM技术中文叫做可重构的光分插复用器,它是一种节点或者叫网络元素,主要由光学器件构成,是通过远程重新配置,并能够动态上下业务的波长。

ROADM技术的功能模块有前置后置光放大器,波长上路和下路,光业务信道的生成和终结,监控节点内部聚合信道或单信道功率,色散补偿等。

ROADM技术目前包括波长选择型ROADM技术和广播或选择型ROADM技术,波长选择型ROADM技术端口指配较灵活,并且能够在多个方向提供波长粒度的信道,而远程可重配置全部直通端口和上下端口。但因为结构较复杂,技术成熟程度比较低,成本较高,在商用系统中的使用较少。

1.2 OTH技术

OTH技术全称Optical Transmission Hierarchy(光传送体系),它是未来网络的主干核心,在全球的信息基础设施中起着关键作用。引入的密集波分复用技术,提高了光通信的速率。并随着光纤通信技术的不断进步以及电信网络业务结构的改善,电信界也对OTH技术不断地进行完善了。

2 OTN技术应用

随着对大颗粒业务的调度和传送的需求不断增加,人们也将OTN技术应用视为了关注的焦点,OTN技术应用的优势在于能够提供大颗粒带宽的传送和调度。在OTN技术应用主要分为在干线网和城域网中的应用,在干线网中包括在省际干线和省内干线中的应用,城域网则分为核心网,接入层和汇聚层三方面。下面从省际干线,省内干线,城域网三方面分别来介绍OTN技术的应用。

2.1 在省际干线的应用

在现有的传送业务来看OTN技术在省际干线中的应用随着网络和业务的IP化,新业务的开展和宽带用户的极具增多,省际IP流量和带宽也是成倍的增加。由于承载的业务量的剧增,波分省际干线对承载业务的需求和保护是人们十分迫切的。波分省际干线承载着PSTN 2G长途业务,NGN 3G长途业务和Internet省际干线业务等。在应用了OTN技术后,省际干线IP Over OTN 的承载模式实现了SNCP保护,MESH网保护和类似SDH的环网保护等网络保护方式,这样不仅设备的复杂程度和成本大大降低而且保护能力与SDH不相上下。

2.2 在网络中的应用—省内干线

随着目前长途传送网承载的业务量和大客户业务颗粒的增大,网络业务的灵活度和生存性问题备受关注。OTN技术应用在省际干线中实现了GE 10GE,2.5G 10GPOS大颗粒业务的安全性,可靠性,为了进一步提高网络运行质量和中继电路利用率,更好的使用传送网络资源,在省内网络干线中应用超大容量的OTN技术,在OTN交叉设备中镶嵌ASON GMPLS风不是控制平面后,提供了优先级抢占功能和多种保护恢复方式,大大的提高了网络传送网的可靠性。还可实现MESH网,可组环网,复杂环网,网络按需扩展,波长子波长业务交叉疏导和调度。省内骨干路由器承载着各个长途局间的NGN 3G IPTV 大客户专线业务等。

2.3 在网络中的应用—城域网

城域光传送网是覆盖城市及郊区范围,负责在城域范围内为路由器和交换机等数据网络节点和各种业务网提供传输电路,或直接为企业单位等大客户提供应用服务。现有的城域光传送网技术MSTP,RPR,ASON,和城域CWDM和DWDM等都是基于WDM技术或SDH技术,比较局限。OTN技术是以大颗粒调度为基础具有WDM和SDH两类的优势,形成了一种具有大颗粒宽带传送特点的大容量传送网,对于以太业务实现两层汇聚提高了带宽利用率,从组网上看使得传送网层次更加清晰,OTN技术也对业务实行保护。

3 结束语

在当今网络技术蓬勃发展,OTN关键技术以及OTN技术的应用为我们的网络生活带来了更多方便和发展平台,为下一代网络构建起着推动作用。在不久的将来OTN技术会更加完善,成为更优异的网络平台。

参考文献

[1] 刘涛.面向未来的光传送网-OTN技术.技术论坛,2001.

[2] ITH-TSG13研究组2000年2月会议总结报告(摘编).

[3] 朱娅敏.南京电信OTN组网及应用剖析(期刊论文).电信技术,2007(11).

上一篇:留坝农信社小额信贷支持地方产业调研报告下一篇:全国会计专业硕士(MPAcc)备考体会