广州大学数学

2024-05-16

广州大学数学(精选6篇)

篇1:广州大学数学

高等数学是高等学校一门重要的基础课,学好它对每一个大学生都是极为重要的. 这里,就学好这门课的学习方法提一点建议供同学们参考:

一, 把握三个环节,提高学习效率

二, 在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架.

三, 按“新=陈+差异”思路理解深化学习知识.

四, “三人行,则必有我师”,参加老师的辅导,向同学请教并相互讨论.

五, 处理数学问题的基本方法:

1.分割求和法;

2.以直求曲法;

3.恒等变形法: ①等量加减法;②乘除因子法; ③积分求导法;

④三角代换法; ⑤数形结合法;⑥关系迭代法;

⑦递推公式法;⑧相互沟通法; ⑨前后夹击法;

⑩反思求证法;⑾构造函数法;⑿逐步分解法

大学数学学习9谈

如何考好大学数学类课程:数学学习漫谈1

数学类课程,其特点是需要理解(有别于语言类和政治类课程)而又不需要做实验 (有别于物理、化学、生物)的基础课程。作为大学教师,我很清楚“考好”与“学好”的差别。“学好”所付出的精力和时间要比“考好”多许多,一般考试成绩也不会差。若干门核心课程需要“学好”,其它的课程能“考好”就不错了。这里只谈考好,学好以后再说。

首先,要认真听课。上课集中精神,跟教师的思路走。那怕后来发现教师的思路出错了,也有收获。不要主观认为教师应该如何讲课,不要用中学教师的标准判断大学教师。当然,大学教师良莠不齐,有些教师的课确实不值得听。但学生不宜过早的下这种判断。只要要认真听课10学时以上,再判断是否值得听。一般而论,低年级的课程,值得听的比较多。

其次,认真阅读教材,还有教师讲课用的ppt。在中学,课后不认真阅读教材也不是种好的学习习惯,虽然用题海战术或许能使这种习惯不影响考试成绩。在大学,不阅读教材很难考出好成绩。特别要注意教材和课件中的例题,无论教师是否在课堂上讲解过。课前预习下教材也是种很好的学习习惯,对考出好成绩有帮助,但未必是必须的。

最后,可能也是最重要,认真做习题。一般来说,教师留作业的题目全部弄懂,包括问过老师或同学后确实懂了,考试就可以80分以上。有题目做不出需要讨论或请教是正常的,但绝对不能抄作业。如果要考90分以上,还应该选作些书上比所留作业更难的题目。

总的讲,大学里的考试都比高中阶段的容易,或许刚开始还没有适应时的小考是例外。与高中更看重成绩相对排名不同,大学的排名在评奖学金等方面也重要,但更重要的是绝对成绩。成绩的学时加权平均成为所谓积点,在以后出国申请奖学金等方面都很重要。

如何学好大学数学类课程:数学学习漫谈2

就数学课程而言,考好与学好不同。前者更强调运用熟练,后者更强调理解深刻。当然,真正学好了,一般也能考好。所有的课程都要争取考好,而只有核心课程值得花功夫学好。

数学系的课程不少,核心的也只有几门。数学分析、线性代收(往往还包括代数方程和解析几何)、微分几何、复变函数、实变函数、抽象代数、泛函分析、拓扑学。这些核心课程仅是考得好还不够,还要学得好。其它的课程也重要,但如果这些核心课程学得好,相对比较容易。例如,常微分方程和数理方程,内容驳杂,但真正深刻的思想不多;数值分析需要上机实习,但数学本身的含量也不是很高。

如果要学好这些核心类课程,应该注意以下几点。

首先,听中国教师上课。教师的讲解总是重要的,特别是对于低年级的入门性课程。上大学交学费,却不用教师的资源,显然不是明智的选择。与中学听课更侧重解题方法不同,大学的数学课程更应该听教师的分析思路和概念解释。为有更好的听课效果,课前应简单预习,了解要讲的大致内容;课后要复习。特别注意理论的完整性。多数数学课程在具有不同尺度上的理论体系。全部数学课程是个体系,每门课程又是个子体系,课程中每章又自成体系,而教师组成材料时往往让每次课也有一定的完整性。

其次,做俄国习题集的题目。想要学好数学,必须多做练习。完成教师布置作业后仍有余力,应该把教材上比作业难的题目也都做了。在此基础上,我建议从俄国的习题集中找题目做。这出于两方面的考虑。其一,俄国的数学教学体系与中国的很接近,更准确地讲现在中国的教学体现主要是因袭俄国的,因此比较便于与课堂教学同步练习。其二,俄国很多教材没有习题或仅有很少的练习,因此必须配套专门的习题集;往往是一本习题集要配不同的教材,所以习题集的内容很丰富。当然,俄国习题集的缺点是题目太大有些是比较机械的重复性练习。最好有内行指点使用。

第三,阅读英文教材。真正的数学概念是超越语言的,因此用不同的语言思考数学问题,有助于理解的深入。一般而言,阅读英文比中文吃力,因此教材更要精选。不仅要阅读教材,而且要完成练习,这样可以检验理解程度。或许与课堂教学同步阅读英文教材不太现实,不仅是时间有限,而且教学体系差别比较大。可以学完门课程后再读英文教材。英文教材需要精选,下次再专门详细谈。

最后,课程之间打通。前面说过,全部数学课程构成个理论体系。要学好的不仅是每门课程,而且是要把各门课程融会贯通。各门课程的分别仅是为教学方便的侧重不同,彼此之间还是有联系的。例如,数学分析课程中多元曲线和曲面积分用得都是Riemann积分,而在实函数论中将学习Lebesgue积分以及其它抽象积分,这时就应该思考曲线和曲面Lebesgue积分的性质与用途。再例如,高度代数中讲线性空间都是有限维,泛函分析中引入无限维空间,两者的异同也很值得推敲。

顺便一提,坊间有大量的学习指导、习题指南之类的辅助读物。这些对考好数学或许有一定帮助,但基本上无助于学好数学。这类书的作者,在最好的情况,也只是有些教学经验,但一般缺乏职业数学家所具有的理解和洞察。

本科数学英文教材推荐:数学学习漫谈3

我选英文数学读物的原则是深度一般不超过国内数学本科的水平,教学体系尽量有所差别。最好能读大师经典,重在融会贯通。国外有些比较新的教材,在教学法方面考虑很多,确实下功夫“浅出”,但由于读者只是复习提高,我不认为这些教材合适。当然,教师还是有必要参考以充实教学内容。

基于上述考虑,如果想学好数学,在大学4年里至少应该读下列各书,并完成其中至少部分习题。

第1种,两卷本Introduction to Calculus and Analysis (Vols. 1,2) by Richard Courant and Fritz John。该书1974年由John Wiley and Sons作为Interscience系列初版,由Springer-Verlag作为Classics in Mathmatics重印。的重印本被世图公司在大陆发行。该书由汉译本,收入“数学名著译丛”。该书的内容与国内数学分析基本接近,但还包含线性代数、微分方程、变分法和复变函数的导论性内容。作者Courant是应用数学的大师,Fritz John也是偏微分方程方面的顶级专家。该书可以在学过数学分析后阅读。

第2种,Finite-Dimensional Vector Spaces by Paul R. Halmos。该书1942年作为Annals of Mathematics Studies丛书的第7种由Princeton University Press出版。修改后的第2版1958年由Van Nostrand出版,1974年由Springer-Verlag出版作为Undergraduate Texts in Mathematics丛书中的一种,国内出版了盗印本。20世图公司出版在大陆发行了Springer-Verlag的1987年重印本。作者Paul R. Halmos或许不是一流的数学家,但毫无疑问是一流的数学教育家和教科书作者。该书强调有限维空间与无限维空间的联系。因此,不仅是线性代数的复习,也是泛函分析的初步导引。该书可以在学过线性代数后阅读。

第3种,Differential Equations, Dynamical Systems, and Linear Algebra by Morris H. Hirsch and Stephen Smale。该书1974年由Academic Press出版,有高教版的汉译本。由Elsevier出了新版Differential Equaitons, Dynamical Systems, and An introduction to Chaos by Morris H. Hirsch, Stephen Smale and Robert L. Devaney,新版本于由世图公司在大陆发行,后来又有人民邮电出版社的汉译本。虽然新版中有些更时髦的内容,但线性代数的内容有所消弱。我个人更偏爱旧版。Smale是当代大师级的数学家,Hirsch也在顶级数学家之列。该书内容基本涵盖国内高度代数和常微分方程两门课程,但在某些方面论述的更为深刻。该书可以在学过常微分方程后阅读。

第4种,Complex Analysis by Lars V. Ahlfors。1979年McGraw-Hill出版该书第3版,有上海科技出版社的汉译本,20机械工业出版社在大陆发行影印本。作者Ahlfors是大师级的数学家,曾获Fields奖(1938)和Wolf奖(1981)。该书选材精练、论证严谨,有些内容的处理别具一格。有些习题,但不算很多。该书可以在学过复变函数后阅读。

第5种,A Survey of Modern Algebra by Garrett Birkhoff and Saunders Mac Lane。该书于1941年由Macmillan出了第1版,多次修订再版,到1976年出了第4版。第4版大陆有当年光华出版社的盗印版,并有高教的汉译本。由A K Peters出了第5版,20人民邮电出版社在大陆发行了第5版。该书内容丰富,几乎涵盖本科水平的全部代数内容,而且从统一的观点组织材料。该书可以在学过抽象代数后阅读。

第6种,Principles of Mathematical Analysis by Walter Rudin。该书1976年McGrawhill出了第3版,并有高教出的汉译本。年机械工业出版社在大陆发行了重印本。该书内容比国内的数学分析课程多,还包括属于拓扑学的度量空间的拓扑和属于实变函数的Lebesgue积分,特别是有流形上积分的简明导论。Rudin写过多种分析教材,但都不是本科生程度的。该书论述简明扼要,习题量比较大,而且有些题目很难。该书应该在学过实变函数后阅读,但不用等学完拓朴学。

第7种,Lecture Notes on Elementary Topology and Geometry by I. M. Singer and J. P. Thorpe。该书1967由Scott-Foresman出版,年Springer-Verlag作为Undergraduate Texts in Mathematics丛书出版。该书有高教的汉译本。两位作者都是著名数学家。该书名称中的 “Elementary”有些误导。事实上,该书包含点集拓扑、代数拓扑和微分几何等内容,比较难读。该书可以在学过拓扑学也就是完成了数学系本科全部主干课程后阅读。

还应该有分析类的书。不过,这方面我不太能吃准本科和研究生课程的分界所在,暂时先不推荐了。

数学分析的推荐读物:数学学习漫谈4

国内的数学分析教材可谓汗牛充栋,保守估计也有几十种之多。北大、复旦等高校的教授,陆续各出过4、5种教材。这些国内教材虽然各有特色,但差别并不是很明显。无论用那种教材,另外再参考一种似乎就够了。

如果要看参考书,我觉得已故北大张筑生教授的3卷本《数学分析新讲》最有特色。毕竟张筑生是微分拓扑特别是动态系统的专家,某些问题的处理是从更的高观点。如一般隐函数定理的证明用的是迭代逼近方法,引入微分形式证明了Brouwer不动点定理等。还有为配合其它课程应用需求比较早的讲了微分方程,而且微分学在几何中的应用比较系统。但那本书没有习题,因此不能检验自己的理解程度。

经典内容最全的参考书还是菲赫金哥尔茨的3卷本《微积分学教程》。内容丰富如百科全书,真可谓一套在手,别无所求。缺点是过于繁琐。或许可以查阅参考,但不必通读。我熟悉的是依据50年代俄文版译出的老版本。高教新出版了俄文第8版的汉译本,基本特点没变。

或许比看参考书更重要的是做习题。我推崇的是吉米多维奇《数学分析习题集》,全书有4千多道题目。当然不需要每道题目都做,特别是一些计算题和作图题。但把其中的所有证明题都做了或至少思考过,将大有裨益。该书的不仅是题目合适,而且难度适中。天资一般但用功的学生,就算不能独立完成全部题目,不会的题目稍加点拨就可以理解。还有些更难的数学分析问题分析之类,或者需要很高的数学解题天赋,或者更适合高年级“经典分析方法”之类选修课用。

数学分析这种基础核心课程需要看英文教材。学完1学期后可以读Introduction to Calculus and Analysis的卷1,全部学完后再读卷2。

高等代数的推荐读物:数学学习漫谈5

所谓高等代数其实是代数最基础的内容,一般包括线性代数基础再加上多项式。国内的教材也出了许多。高等代数与数学分析不同,没有特别深刻费解的概念,整个课程都是些记号和算法。如果没入门,难免晕头转向;但入了门,发现一切都很简单,经过练习,比较容易达到如鱼得水的境界。

这门课国内的标准教材是北大代数小组编写的《高等代数》。当年我读的是第一版,现在已经出了第3版。那本书的特点是内容丰富,选材均衡。如果单独讨论某部分的特点,还真不太容易。第一版版题目少些,后来还专门出个补充题目的小册子,新版又补充了习题。美中不足的是,习题没有答案,或许是其中证明题比例很大的缘故。对于这样本堪称经典的教材,有些不可思议。顺便说句题外话,该书初版有个不甚严密的论断,我当时还是年轻人比较好事,为此给位北大教授写信指出个反例,该教授是第3版修订工作的负责人之一,当年给我肯定性的回复。

线性代数也有本译自俄文的习题集,普罗斯库烈柯夫的《线性代数习题集》。在我看来,该书远不如吉米多维奇的《数学分析习题集》。全书有近2千道题目,而且如书名所示,不包括多项式的习题。作者似乎特别喜欢行列式的题目,收集了550多道。有些较难的题目有提示或解答。

学完该课程后,可以读本英文书Finite-Dimensional Vector Spaces,也算是著名教材。学过常微分方程后,还可以再学Differential Equations, Dynamical Systems, and Linear Algebra。

数学分析推荐读物补充:数学学习漫谈6

看到本很有特点的教材,常庚哲和史济怀编《数学分析教程(上、下册)》(高教,)。该书是作者在中国科技大学数学系教学经验的总结。

该书最初的雏形是何琛、史济怀和徐森林的3卷本《数学分析》。直接前身是常庚哲和史济怀3卷本的《数学分析教程》(江苏教育,)。我对史济怀的印象特别深刻,中学和大学时读过他的小册子《平均》和《母函数》,后来才知道他还当过中科大的副校长。我一直对国内教材以及所效仿的俄书教材中的多元微积分部分不满意,后来看了的徐森林《流形和Stokes定理》,才在一定程度上满足了这方面的好奇心。该书与Calculus on Manifolds by M. Spivak相比,与国内的教材衔接得更好些。顺便一提,徐森林最近有套3卷本的《数学分析》由清华大学出版社出版。

常庚哲是初等数学界的当年的名家,与张景中、杨路、单樽等齐名,不过张后来入选了中科院院士。我中学时在《数学通报》等期刊上读过他的文章,也读过他脍炙人口的小册子《抽屉原则及其他》和《复数与几何》,后者后来又扩充为《复数计算与几何证题》。这本书预示了他后来的主要研究方向是计算几何。最近才知道59年是他便是关肇直数学分析课的助教。

该书的突出特点是初等数学以及微积分基本知识的精妙运用。既给出了某些经典内容的新的处理,也引进些新的教学内容。具体的在书的序言中说得很清楚,这里不重复了。这个特点的负面影响是对教材使用者的数学成熟性要求很高。因此该书很难大面积推广。

常庚哲和张筑生都当过中国国际数学奥林匹克队的教习,不过他们各自的教材《数学分析新讲》和《数学分析教程》却有截然不同的特点。《新讲》的长处是观点和视角,从更高的角度阐述微积分,当然也有些技巧性的习题。《教程》长于技巧,用微积分的方法处理了许多“高级”题材。其实数学中不同层次和领域的一些研究技巧是类似的。此外,从教材反映的教学经验看,《教程》的作者大占优势。我估计,多数人会认为《教程》是更好的教材,因此我在漫谈4中没有推荐该书未免不公平。我个人更偏爱《新讲》。

该书的例题和习题都偏难。习题中更难的被称为问题,好在有个附录给出问题的解答和提示。部分题目的提示比较详细,因此对难题也不会无处下手。

如何读数学分析教材:数学学习漫谈7

我个人赞同要读3本数学分析的书,每本读3遍。第1本当然是教材,各校所用不同。所有书的每次阅读都要逐字逐句的看,但侧重各有不同。依次达到学习数学分析的4个不同境界,懂、熟、巧、通。这里先谈教材。

第1遍读教材要在教授讲解之前,即是所谓预习。预习的目的是要弄清楚懂和不懂的,虽然自以为懂的未必真懂,但不懂的一定是不懂了。预习要用铅笔做些标注,好在大陆的教材便宜不需要循环使用。标注分两类,1类是自己认为重要的概念、定理、证明思路等,这自然是有一定理解的;另1类是不理解的,如果有兴致还可以按不理解的程度分星级。预习后不要动手做题,这时做题事倍功半,既耽误时间,又浪费了题目。

第2遍读教材是在上课之后。听课要基本解决懂的问题,这次阅读要由“懂”到“熟”,甚至“巧”。关键是要把教材中的字面内容基本弄懂,而且要比较熟悉。对于数学分析这种课程,充分理解是个趋于无穷的过程。第2遍阅读,要能用自己的话复述概念、定理及其证明思路。重要的概念如极限、连续、一致连续、可导、可积、一致收敛等,要能用肯定方式叙述否定命题。比较长的理论性证明,如Cauchy收敛准则、闭区间上连续函数性质、积分存在条件、隐函数定理、Stokes类公式、Fourier级数收敛定理等,要掌握证明的主要步骤和关键要点。还要琢磨例题中具体的解题方法。这遍读完,就可以做习题了。在做习题的过程中,也许还要回头再看,但不用从头到尾阅读了。

第3遍通读是在解完习题之后。这次要努力读出书上没有的内容,开始由“熟”到“通”。首先,重要定理要能用反例说明条件的必要性。如果书上有反例,再自己想1个,哪怕是与书上的反例类似。其次,注意推广和特例,特殊的结论要一般化,而一般的结论要想出非平凡的特例。第三,平衡几何直观和严格证明。对严格的分析陈述要想几何图象,而对几何直觉要能严格证明。最后,运用类比和移植。数列极限与函数极限、数列与级数、积分与极限等,都是有同有异,有些类似的结论,比较这些结论,有助于深入理解。

如何读数学分析参考书:数学学习漫谈8

前面说过,数学分析课程之外,还要读两本参考书。1本是概念讲解清楚的,如“漫谈4”介绍过的已故张筑生教授编者《数学分析新讲》,以及配套的林源渠和方企勤(已故)两位教授遍《数学分析解题指南》。另1本是应用灵活的,如“漫谈6”介绍常庚哲和史济怀两位教授编《数学分析教程》。当然,如果后面两书被选为教材了,就要再找其它的书,好在用那两套书为教材的学校不多。

读参考书首先遇到的问题是参考书与教材的内容编排未必完全一致,特别是实数理论往往在不同的地方处理。但基本上是几大块,分析基础、单变量微分、多变量微积分、曲线曲面微积分和级数。我建议总的原则是如果是技术性的扩展内容,如《数学分析新讲》讲Stolz定理,《数学分析教程》讲闭区间上迭代函数的性质,这些是其他教材可能不讲了。多学些也没有坏处。如果是成节甚至成章的顺序调整,那就不急着学,大体上还要按教材的顺序。

第1遍读第1参考书应该读过教材第2遍,并且已经完成习题之后。这样与教材本质相同的内容马上可以识别出来。重点看表面不同的的内容。一般来说,各书的概念实质一样(如有不同也是等价的说法,例如函数极限的序列定义或epsilon-delta定义),定理也应该差不多。但定理比较复杂的证明过程可能有所不同,可能是方法包括出发点不同,也可能仅是叙述方式不同。除了新的具体知识点外,对相同内容的解释和描述也要重视。当然,例题也要特别重视。例题侧重不同,或强调概念的澄清如些反例,或发展些技巧,在读参考书中对后一方面更要重视。第这遍读完就做习题。习题难免有与教材重复的,可以跳过,但也要想想解题的过程。在不同的书中出现,说明该题目不同凡响。

做完习题后第2遍读第1本参考书。读法类似于第3遍读教材。因为只重视与教材不同的内容速度可以快许多。

接下来就可以第1遍读第2参考书了。方法与第1遍读第1参考书一样。但该书的特点是求“巧”。通过应用发展数学分析的技巧。其中应用包括解决些趣味性的复杂问题,或处理些应该在后续课程中出现的内容。该书的习题特别难,尤其是上卷。因此,第1遍看过后,把题目都做1遍对一般人可能很不容易,能做其中1部分,哪怕是比较简单的部分也好。做完部分习题后,把书再重读1遍,读法类似于第3遍读教材。

第3遍读第2参考书可以在每学期的期末考试之前。结合着期末复习进行。把题目重新看看,做过的是否还会,没有做过的是否现在回头看变得简单些了。

第3遍读第1参考书可以在学完整门课程之后。重新思考一番,争取把学过的理论与方法,转化为习惯和本能。特别值得一提的是,学数学分析,除具体内容外,特别注意常用的论证方法。定性的如构造区间套、抽子数列、利用聚点和无限覆盖有限化(几者在数学分析中是等价的,要能互相证明),还要后面的压缩映象原理等;定量的如不等式的运用、无穷小阶的估计等。

如何学高等代数:数学学习漫谈9

高等代数其实是代数学基础,在数学系课程中相对比较简单。因为其高度形式化和抽象化,初学者往往不适应。就内容而言,高等代数除了多项式的基础外主要是线性代数,包括行列式、线性方程组、矩阵和线性空间。作为数学分支的代数具有与初等数学中代数不同的特点。初等代数主要就是计算,方程的求根或式子的化简。在本科数学专业教学计划上,从高等代数开始,经过抽象代数,最后到群和环等专业选修课,代数学演变成对带有运算的结构进行刻画、分类等研究的学科。这种形式化,在一定程度上体现了现代数学高度抽象化的特点。

在学习高等代数书时,要注意下列几点。

第一,适应研究对象的抽象和扩展。高等代数开篇,就会引入数域的概念,作为数系概念的抽象。数域概念的特点是突出了数的两种运算的特性。随着学习的深入,会相继出现过去没有接触过的新研究对象,如映射、高维向量、矩阵、线性空间、变换等。这些新的研究对象分别由各自的运算规律而界定。这样将个别的演算抽象出共同的规律,并因此实现理论应用的广泛性。因此,对新的研究对象要特别注意所定义的相应运算。

第二,深入理解等价和化简的概念。等价是相同和相等关系的抽象和推广,用自反、对称和传递3个性质刻画。高等代数中有大量的等价关系,如线性方程组的同解、矩阵的等价、矩阵的合同、矩阵的相似、线性空间的同构等。每种等价的结构,可用种最简单的形式代表,这样就有了各种标准形。构造标准形的过程就是在保持等价的前提下化简。各种等价类的标准形式的数量特征也很重要,如秩、维数、惯性指数等。

第三,注意不同结构的联系。特别是矩阵是高等代数的核心内容。矩阵可以表示线性方程组,矩阵可以表示给定基下的线性变换,对称矩阵对应着二次型。

第四,熟悉化繁为简的常用技巧。在许多证明中,善于把问题转化为实质相同但更简单的形式。这类过程常用“不失一般性”开头。可以把向量组或矩阵的行或列重新排列,也可以选择线性空间的特定组基,或者直接写成矩阵的某种标准形式。在计算行列式等题目中,善于递推、类比等。求和号的应用也能突出问题的本质而略去重复繁复的枝节。

篇2:广州大学数学

2、当IT职员,数学与应用数学专业属于基础专业,是其他相关专业的“母专业”。该专业的毕业生如欲“转行”进入科研数据分析、软件开发、三维动画制作等职业,具备先天的优势,许多数学与应用数学专业的毕业生毕业后就从事IT行业。

3、做商务,在华尔街,许多金领都是数学专业出身的,比如金融数学家,他们运用数学思想来解决金融问题。

2022高考如何挑选适合自己的学校

1.按分数。首先,根据自己的成绩,列出了这个分数中所有可以选择的院校。

2.我们不得不关注的名校效应。比较有名的院校优先,毕竟你毕业求职的时候,用人单位看你的简历的时候,他很关心毕业院校。

3.按兴趣。选择有自己喜欢的专业的院校,最好把这个院校的专业和上一年的专业进行对比。

4.最好选择一线城市或者主要省会城市。这些城市各种资源相对丰富,人才丰富,发展锻炼的机会更多,更有利于增长知识,积累人脉,提高能力。

5.仔细查阅,了解,比较,最后决定。对于选择的院校范围,仔细查看这个院校的各种资料,进行对比筛选,综合考虑后再做基本决定。

6.志愿填报 院校要考虑分数、专业、往年招生等,尤其是填报里的最后一个学校。

篇3:广州大学数学

一、从高中角度看高中数学与大学数学的差异

1.高中数学与大学数学在内容编排上的差异.高中数学新课改的一个重要特征是数学模块化教学, 而大学数学则追求严密的逻辑性.根据[3]的调查, 高中数学渗透的大学数学的内容凌乱、不系统.例如导数的教学, 没有讲清楚函数的极限与连续, 就直接引入导数.而大学数学则系统地、完整地讲解了导数、极限、连续概念及其关系.

2.教师课堂教学模式上的差异.高中教师在数学课堂上一般采用“知识点讲解———引导练习”的模式.大学教师则采用“知识点讲解———自主练习”的教学模式.与高中老师相比, 大学老师指导学生自主学习, 赋予学生更多的选择权利和发展空间.

3.教学理念的差异.高中教师认为学习是为了高考, 所以, 高中数学的课堂就是习题的课堂.大学则设计了数学建模、经济数学等与日常生活相联系的应用数学, 让学生感觉到数学来源于生活, 服务于生活.

为了让高中生进入大学后能尽快地适应大学数学的学习, 高中教师应在高中数学课堂渗透大学数学的教学思想, 做好高中数学与大学数学的衔接.

二、在高中课堂渗透大学数学的教学思想

1.教学理念的渗透.新的课程标准有一个重要的理念, 就是培养学生学会学习, 树立终身学习的思想.所以, 高中课堂要教会学生怎样学习, 学习的目的是什么.首先, 明确教学是为了学生的发展.从学生经验出发, 数学教学要向学生的生活世界回归, 进而激发学生学习的兴趣.其次, 知道课程中的数学与现实生活中的数学是什么关系, 真正理解数学既是研究空间形式和数量关系的科学, 也是研究模式和秩序的科学.学习数学的目的就是为了解决日常生活中遇到的问题, 而不仅仅是为了考试.再次, 教给学生自觉预习、复习, 认真记笔记、独立思考, 每节、每章内容结束之后及时总结, 解完题后进行反思和回顾的学习习惯.

2.教学模式的渗透.大学数学教师高屋建瓴, 渗透数学思想, 讲解知识点, 让学生自主完成练习.高中教师则告诉学生考点, 讲给学生答案, 让学生模仿已经讲解的例题做练习.通过对比我们发现, 大学数学的课堂教学模式更有利于发挥学生的主动性.在此, 结合高中的特点, 我们建议课堂教学模式多学习一下成都十二中的“缄默式”[4].教学模式能否试用“问题导入———自主探究———知识点小结———自主练习”?这样, 教师讲的少了, 学生自主学习的多了, 也更与大学数学的课堂教学模式相近了.

3.利用多媒体进行n维空间的渗透.平面几何、立体几何都需要先培养学生的空间感.利用多媒体教学, 展现二维空间、三维空间, 渗透n维空间, 拓展了学生的空间想象力, 对大学数学黎曼几何、n阶矩阵等的学习也大有帮助.

4.知识点的严密性的渗透.新课改后, 教材附有背景知识的引入和清晰的定理推导, 有的模块还有数学史的介绍.但是, 高中教师上课时, 往往把这些能使知识更完整、更系统的东西都删掉了, 只讲考点.这就违背了新课改的初衷, 也造成了高中数学知识点的不严密.根据上述及[3]的统计, 正确的做法应该是:在高中课堂适当地补充知识点的相关知识, 以促进学生对知识点的完整的认识, 也有利于学生对相关知识及其推理的严密性的认识.

5.数学文化的渗透.数学是人类文化的重要组成部分, 它在创造、保存、传递、交流、发展人类文化中充当重要角色, 发挥着重大的作用.从某种意义上讲, 数学文化的修养比数学知识和技能本身在深层次上更能反映人才的质量, 有助于人的思维能力与创新能力的发展[5].

综上所述, 高中教师在课堂上应注意随时渗透大学数学的教学思想, 做好高中数学与大学数学教学思想的衔接.要学习先进的课程理念、教育理论、教学方法;要学习现代数学的有关内容, 扩大知识面, 不断更新知识结构;要不断提高运用现代教育技术进行教学的能力, 以满足日益变化的教学要求.

参考文献

[1]张颜春, 何中全.对高师数学专业学生数学成绩的调查及思考[J].内江师范学院学报, 2005 (2) .

[2]柴俊.高考数学分数高, 大学数学学习成绩一定好吗?[J].数学教学, 2003 (8) .

[3]赵春元.大学数学与高中数学新课标衔接的调查分析[J].沈阳工程学院学报 (社会科学版) , 2011 (10) .

[4]周光岑, 陈明英, 刘英.基于缄默知识的核心问题教学模式实践研究[J].西南民族大学学报, 2008 (12) .

篇4:大学数学中数学思想运用研究

关键词大学数学;数学思想;运用

中图分类号G4文献标识码A文章编号1673-9671-(2010)032-0120-01

在大学教数学,我们应该教学生什么?本人认为,最重要的是介绍数学的思想。数学最富有、最本质的就是它的思想。数学思想是数学的灵魂,古往今来,很多数学工作者,数学教师和数学爱好者都在关注数学思想的来源与发展,其中著名的《古今数学思想》这本书就重点阐述了重要数学思想的来源和发展,可见数学思想的重要性。我们还知道,问题是数学的心脏,方法是数学的行为,思想是数学的灵魂。不管是数学概念的建立,数学规律的发现,还是数学问题的解决,乃至整个“数学大厦”的构建,核心问题在于数学思想方法的培养和建立。“数学科学”之所以从自然科学领域中分离出来,成为现代科学的十大部门之一,其实不是因为数学知识本身,而是因为数学思想与数学意识的重要作用。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此我们应当在数学教学中不失时机地进行思想方法的渗透。对数学思想方法的研究,不仅有利于指导学生将知识通过概括和比较上升为能力,且对培养思维素质有着不可替代的作用。数学思想方法应从“隐含、渗透”阶段进入第二轮的“介绍、运用”阶段。因此,本文主要论述大学数学中数学思想的运用和如何较好地把数学思想传授给学生。

大学数学的主要内容是微积分,首先介绍微积分中所用到的几个数学思想。

1极限的思想

极限思想是微积分中最基本的数学思想。早在公元3世纪,我国杰出数学家刘徽在创立割圆术的过程中就丰富和发展了极限思想,割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣。这就是对极限思想的精辟论述,很多问题用常量数学的方法无法解决,却可用极限思想来解决。在微积分中体现在求曲边梯形面积中,通过分割,代替,求和,取极限的思想解决曲边梯形面积的问题。事实上,利用极限思想是人们能够从有限中认识

无限,从近似中认识精确,从量变中认识质变成为可能。

2函数和方程的思想

函数和方程的思想是对于数学问题要学会用变量和函数来思考,会转化未知和已知的关系,它是永恒的好数学。如在证明方程根的存在性时,用到闭区间上连续函数的零点定理,需要通过构造一个函数,并满足零点定理的条件,由此,把方程问题转化成函数问题,并进一步说明了微积分所研究的主要对象就是函数。

3归纳概括的思想

归纳概括是把问题间共同的属性概括成一种具体的概念,产生一种新的概念。在数学概念教学中,有许多概念都不是孤立产生的,如导数概念的产生,它是通过解决实际问题:变速直线运动的速度和曲线的切线问题,得到二者在数量关系上的共性,即有关变化率的念都可以归结为的形式,得出函数导数的概念。如何较好地把数学思想介绍给学生? 这依赖于许多方面,如课程设计、教材编写、教学形式、教学内容等等。数学思想是不可能填鸭那样灌输给学生的。能否较好地把数学思想介绍给学生,要求是双向的。既要求老师善于讲,也要求学生有积极的态度和学习的动机,培养学习数学的兴趣和思考的能力,从而使学生易于理解数学思想,达到运用的目的,适用于未来。下面具体说明这几个方面。

3.1态度和动机

“态度”是指一个人做事的细节精神,它能以周密、踏实的方式成就别人不能成就的事情。态度决定一切成为许多成功人的座右铭。对学生而言,拥有积极的态度必不可少,是因为他们肯定“今天”的无穷价值。动机包括愿意学习数学,感觉到学习的需要,有目的的学习,致力于数学。

3.2兴趣

兴趣是学习最有效的动力。我们常常教育学生要明确学习目的,端正学习态度,刻苦努力,等等。这些虽然必要,但是,单纯地把学习当成任务会给学生带来太大的压力。有了兴趣,学习就如燃烧,可谓“星星之火,可以燎原”。正像燃烧产生的热加快燃烧过程本身一样,只要有兴趣,学到的知识能扩大我们对学习的兴趣,诱使我们主动地去学习新的东西。兴趣不仅对学习重要,对事业上的努力同样是重要的。数学家韦尔斯(An2drewWiles)十年磨一剑攻克费尔马大定理,就是从小就迷上了这个世界难题。物理学家弗里希(O. R. Frisch) “科学家必定有孩童般的好奇心。

在大学期间培养学生对数学的兴趣的有利的条件有三:一是数学本身的确有趣; 二是年轻人容易来兴趣; 三是学生们暂时还没太多其它的兴趣。什么最能引发学生对数学的兴趣? 是数学的美,学科的重要,还是教材的生动? 无疑这些都是重要的因素,但我认为,最最重要的还是老师。一堂课,一个定理,乃至一句话都可能使得学生对数学终身的爱。例如,数学家哈代(G. H. Hardy)说到: “My eyes were first opened by Prof Love,who first taught me a fewterms and gave me my first serious concep tion of analysis.”使学生对数学感兴趣有时要因人而异,所以老师必须了解学生。

3.3思考

从笛卡尔(Descartes)的名言“我思,故我在”可知,思考的重要性是不容置疑的。孔子说过: “学而不思则罔,思而不学则殆。”如果不思考,就不是真正意义上的学习。科学的学习方法必定不能缺少思考。著名科学家牛顿在被问到是什么使得他发现了万有引力定律时,其回答非常简单: “By thinking on it continually”。这看似简单的回答却给出了一个真理: 几乎所有的伟大发现都归功于不断的思考。所以,学习的目的是为了提高自己的创新能力,只有创新才是推动社会进步的动力。而创新需要想像力。爱因斯坦说过: “Imagination ismore important thanknowledge.”但人不思考脑袋就会生锈,又哪来想像力呢?所以,大学里一定要从学生从繁忙的课时中解脱出来,多有时间思考。我相信,人就像爱做梦一样,是天生就爱思考。而年轻学生们的想像力更为丰富。要让他们这一特长得以发挥。我们一定让学生敢于提问题,善于提问题,勤于提问题。大学如何较好地把数学思想介绍给学生及数学中数学思想的运用成为大学数学教学中值得思考,重视的问题,这也是素质教育所提出的要求。

参考文献

[1]张莫宙.伯祥数学方法论稿[M].上海:上海教育出版社,2000.

篇5:广州数学补习,如何学好高中数学

数学是一门很重要的学科,学好数学是学好其他理科科目的保障,广州英才教育老师,为此总结了几点如何学好高中数学的经验。

1、培养良好的学习兴趣。

两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

(1)课前预习,对所学知识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘你学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、直角坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能对概念的理解切实可靠,在应用概念判断、推理时会准确。

2、建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。良好的学习数学习惯还包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

3、有意识培养自己的各方面能力。

数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

4、及时了解、掌握常用的数学思想和方法。

学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。

5、逐步形成 “以我为主”的学习模式。

数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

6、针对自己的学习情况,采取一些具体的措施。

记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中扩

展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再

犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化

或半自动化的熟练程度。

经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课

外题,加大自学力度,拓展自己的知识面。

及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩

固,消灭前学后忘。

学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解

题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学

思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而

不是一味地去追求速度或技巧,这是学好数学的重要问题。

7、认真听好每一节棵。

在新学期要上好每一节课,数学课有知识的发生和形成的概念课,有解题思路探索和规律总结的习题课,有数学思想方法提炼和联系实际的复习课。要上好这些课来学会数学知识,掌握学习数学的方法。

概念课

要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

习题课

要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

复习课

在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到高考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反

三、熟练应用,避免以“练”代“复”的题海战术。

篇6:广州大学数学

数学文化融入大学数学教学中,不仅体现了数学作为一种方法论工具的作用,更重要的是体现出数学信仰,具有提升民族文化理性精神的作用。该研究者认为主要做好以下几方面。

1协调好学生、教师和数学的关系,促进他们和谐的发展

通过对大学数学的学习,养成一个好的学习习惯,树立合理的数学理想。大学数学教学中要求学生功底扎实,精通知识的思想和方法,为创新打好基础,为终身学习做好知识储备。大学数学教育一般只是强调数学的基础性和工具性,大学数学教师通常重视对学生进行知识的传授和计算能力,逻辑推理能力,分析和综合能力,独立思考问题等能力的培养,在学生与数学的关系中起到答疑解惑引导鼓励的作用。大学数学教育缺少对学生的数学综合素质的培养,缺少对学生的数学意识,数学品质和数学精神的培养,而这些恰恰是数学文化所强调的。由于课时限制,教学内容不减少的情况下往往是教师很努力地教,变换不同的教学方法,比如探究式教学,引导发现式教学,情景问题式教学等等,教学方式也随着信息技术的推进发生不断变化,由原来的黑板书写逐渐进入黑板书写加多媒体技术应用中去,尝试不同角度讲解尽可能多的知识,而很多学生仍感觉大学数学难懂太抽象,对推理感到枯燥乏味,逐渐对数学学习失去兴趣,对数学学习失去信心。这种场景在数学课堂上会呈现出一种尴尬的场面。数学文化的引入,首先提升教师的数学高度,增加教师的自信心,提升教师的数学品味,力促教师树立终身学习的目标,让教师的榜样带动学生学习,可以改变教师和学生的学习状态,使教师和学生形成互动学习,增加教师和学生学习数学的乐趣和动力。数学史的引入使教师和学生更加主动地探究知识,学习数学家的严谨求实,探索创新的科学精神和敢于向科学献身的精神,在学习数学上保持积极向上的精神状态,更主动地领悟数学,培养一种向善向真向美的追求。数学哲学的探讨会促进师生在数学文化上的交流。数学及其价值是什么,哪些因素影响数学的发展。数学作为一门科学,是如何构造宇宙的,如何支撑起整个科学体系的。数学在文化体系中塑造了怎样的精神世界。教师不仅要关注学生的学习过程,关注学生的成长,还要不停提升自身的学识,在教与学的动态过程中体现出对大学数学的继承和发扬。

2形成正确的数学教育观念

数学文化教育实质是文化素质教育。数学文化教育教会人们数学式思考和理性思维。数学文化教育包括知识,能力,思维,还包括数学思想,数学品质,数学意识,数学经验等等。由于时代变化,数学教育工作也要随之变化。不仅要改变传统的教学方式,教学手段,而且教育理念也要随之变化。要不断调整教育观念,以适应现实教学的需要。很多数学知识点,都有它产生的背景,形成理论的过程,不仅要学习这些理论知识,还要掌握这些知识中所涉及的技巧,方法和思维,了解它们的来龙去脉,为将来在实际中的应用做好准备。仅有知识是不够的,更重要的是理论联系实际,能够把学到的数学知识应用在实际中,提升自身的综合素质,这才达到了我们学习数学的目的。教学过程中教师应该适当增加一些抽象知识的应用,以培养学生的学习兴趣。教师要培养学生形成学习数学的正确方法,树立学习数学的信心,逐步建立起一种数学无所不能,无处不在的观念。教师相信数学,依靠数学可以改变这个世界,可以改变我们的生活,可以改变人的思想。传统文化中数学主要突出它的实用性,所有的内容方法都融进具体事件中。大学数学课堂所教授的知识与之不同,只涉及内容方法,不太强调它的用途。这也是西方数学和中国数学之间的差别。传统数学在天文,医学,诗歌,绘画,美学,建筑,经济,语言等方面应用广泛,应该加强它的理性认识,将这种理性精神融入民族性格中。这也是大学数学教育很重要的目标。在平时的授课过程中教师注意对学生进行理性思维的培养。大学数学教师要不断学习数学文化,提高自身的数学文化修养,来适应当前变化的大学数学课堂。数学教育强调数学的科学价值,应该加强数学文化教育。鼓励学生用科学技术解决实际问题的同时,也需要把学生培养成有思想有能力综合素质过硬的人。

3丰富数学文化,深化内容,完善数学功能

数学作为一种文化,主要涉及数学文化的普及,进一步揭示数学与生活的关系,如何更好地将数学融入社会科学和自然科学中,对各学科起到积极推动促进作用。各学科的发展进步可以扩大数学的范围,深化数学的内容,反过来又可以促进数学不断地发展。大学数学中的很多公式和定理,它们是如何被发现的,是谁发现的,这些定理和公式背后还隐藏着什么,这些定理内容是如何发展的等等,这些都是数学文化的内容。数学文化不仅强调的是数学知识方面,更重要的是强调思维和审美方面。在学习数学定理和公式时需要领悟它的数学思想,经过大量的练习熟知所学的知识和方法,积累数学经验和数学意识,力促数学能力的养成。而在这一过程中精神上的起伏变化,从中可以感受到数学所带来的特殊美感。数学文化具有人类文化的一般特性。数学的抽象、确定、继承、简洁、统一的文化属性和渗透、传播、应用、预见的功能特征被挖掘出来,数学的艺术性也深深吸引了人们的眼球。数学和艺术的创造中都凝聚着美好的理想和实现这种理想的孜孜追求。很多数学家都研究过音乐。音乐是宇宙中的普遍和谐,它与数学联系紧密。音乐中美妙的旋律不过是数学美的一种体现。数学表现出的美好和谐在艺术中体现的淋漓尽致。不论是雕刻还是绘画均能够体现出数学的理性。在经济方面数学的应用可以与物理学相提并论。自然界的`运行有其自身的运行规律和可预见性,数学就是揭示这些规律的最好工具或者语言。数学在人文学科的应用大大促进了社会学的进步。如何发挥数学在创新教育中的作用已经成为教育工作者思考的问题。意识创新,素质创新还有能力创新都离不开数学。数学的发展和人类的文化发展紧密相连。数学的严密,精确,简洁,理性影响着人类的发展。

4加强情感教育,促进数学学习

上一篇:2022年品管部工作报告下一篇:高中英语青年教师共同体微型课总结