高中数学新课程创新教学设计案例50篇 18 直线与平面垂直

2024-05-06

高中数学新课程创新教学设计案例50篇 18 直线与平面垂直(共7篇)

篇1:高中数学新课程创新教学设计案例50篇 18 直线与平面垂直

直线与平面垂直

教材分析

直线与平面垂直是在研究了直线与直线垂直、直线与平面平行、平面与平面平行的基础上进行的.它是直线与直线垂直的延伸,是学习习近平面与平面垂直以及有关距离、空间角、多面体、旋转体的基础.这节内容的学习可完善知识结构,并对进一步培养学生观察、发现问题的能力和空间想象能力,起着十分重要的作用.

直线与平面垂直的定义、判定定理、性质定理是这节课的重点.

学习直线与平面垂直的性质定理时,应该注意引导学生把直线和直线的关系问题有目的地转化为直线与平面的关系问题,这是这节课的难点.

教学目标

1.掌握直线与直线垂直,直线与平面垂直的定义,以及直线与平面垂直的判定与性质. 2.通过探索线面垂直的定义、判定定理和性质定理及其证明,进一步培养学生观察问题、发现问题的能力和空间想象、计算能力,并且加强对思维能力的训练.

3.激发学生的学习兴趣,培养学生不断发现、探索新知的精神,渗透事物间相互转化和理论联系实际的辩证唯物主义观点,并通过图形的立体美,对称美,培养教学审美意识.

任务分析

因为判定定理的证明有一定的难度,所以教材作为探索与研究来处理.又因为定理的论证层次多,构图复杂,辅助线多,运用平面几何的知识多,所以这节课的难点是判定定理的证明.突破难点的方法是充分运用实物模型演示,以具体形象思维支持逻辑思维.

教学设计

一、问题情境

上海的标志性建筑———东方明珠电视塔的中轴线垂直于地面,在这一点上,它与比萨斜塔完全不同.那么,直线与平面垂直如何定义和判定,又有什么性质呢?这将是本节课要研究的问题.

二、建立模型

我们先来研究空间中两条直线的垂直问题. 在平面内,如果两条直线互相垂直,则它们一定相交.在空间中,两条互相垂直相交的直线中,如果固定其中一条,让另一条平移到空间的某一个位置,就可能与固定的直线没有公共点,这时两条直线不会相交,也不会在同一平面内(为什么),我们同样称它们相互垂直.下面我们给出空间任意两条直线互相垂直的一般定义.

如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.

有了直线与直线垂直的概念,我们就可以利用直线与直线垂直来定义直线与平面垂直了.

[问 题]

1.什么叫直线与平面垂直?

教师演示:如图,直线l是线段AB的中垂线.固定线段AB,让l保持与AB垂直并绕直线AB在空间旋转.

教师让学生讨论:(1)直线l的轨迹是怎样的图形?(2)如何定义直线与平面垂直?

教师明晰:(1)线段AB所有垂直平分线构成的集合是一个平面.

(2)如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直,这条直线叫作平面的垂线,这个平面叫作直线的垂面.交点叫作垂足.垂线上任一点到垂足间的线段,叫作这点到这个平面的垂线段.垂线段的长度叫作这个点到平面的距离.

2.如图18-2,直线l⊥平面α,直线m

α,问l与m的关系怎样.

学生讨论后,得出结论:如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.

3.怎么画直线与平面垂直?

学生讨论后,教师总结:画直线和平面垂直时,通常要把直线画成和表示平面的平行四边形的一边垂直,如图18-2.

4.如何判断直线与平面垂直?

教师引导:根据定义判定直线与平面垂直是困难的,如何用尽可能少的线线垂直来判定线面垂直呢?

学生讨论后,教师总结.

(1)因为两条相交直线确定一平面,所以只要直线和平面内的两条相交直线垂直,就可以判定直线和平面垂直.

(2)两条平行直线也确定一平面,直线和这两条平行直线垂直,不能判定直线就和平面垂直(教师作演示说明).于是,归纳出直线和平面垂直的判定定理.

定理 如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直. 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面. 如图18-3,如果直线l∥m,l⊥平面α,则l垂直于平面α内任意两条相交直线,如a,b.根据空间两直线垂直的定义,易知m⊥a,m⊥b,所以m⊥α.

让学生总结:判定直线与平面垂直的方法.

(1)定 义.(2)判定定理.(3)推 论.

4.在平面几何中,同垂直于一条直线的两条直线平行,那么,在空间几何中,又有什么类似的结论呢? 学生讨论后,得出结论:同垂直于一个平面的两条直线平行.于是有直线和平面垂直的性质.

定理 如果两条直线垂直于同一个平面,那么这两条直线平行. 已知:如图18-4,直线l⊥平面α,直线m⊥平面α,垂足分别为A,B.

求证:l∥m.

证明:假设直线m不与直线l平行.过直线m与平面α的交点B,作直线m′∥l,由直线与平面垂直的判定定理的推论可知,m′⊥α.设m和m′确定的平面为β,α与β的交线为a,因为直线m和m′都垂直于平面α,所以直线m和m′都垂直于交线a.因为在同一平面内,通过直线上一点并与已知直线垂直的直线有且仅有一条,所以直线m和m′必重合,即l∥m.

三、解释应用 [例 题]

1.过一点和已知平面垂直的直线只有一条.已知:平面α和一点P(如图18-5).求证:过点P与α垂直的直线只有一条.

证明:不论点P在α外或内,设PA⊥α,垂足为A(或P).如果过点P,除直线PA⊥α外,还有一条直线PB⊥α,设PA,PB确定的平面为β,且α∩β=a,于是在平面β内过点P有两条直线PA,PB垂直于交线a,这是不可能的.所以过点P与α垂直的直线只有一条. 2.如图18-6,有一根旗杆AB高8m,它的顶端A挂着两条长10m的绳子.拉紧绳子,并把它的下端放在地面上的两点C,D(和旗杆脚不在同一条直线上).如果这两点都和旗杆脚B的距离是6m,那么旗杆就和地面垂直,为什么?

解:在△ABC和△ABD中,因为AB=8m,BC=BD=6m,AC=AD=10m,所以AB2+BC2=82+62=102=AC2,AB2+BD2=62+82=102=AD2.

所以∠ABC=∠ABD=90°,即AB⊥BC,AB⊥BD. 又知B,C,D三点不共线,所以AB⊥平面BCD,即旗杆和地面垂直.

3.已知:直线l⊥平面α,垂足为A,直线AP⊥l(如图18-7). 求证:AP在α内.

证明:设AP与l确定的平面为β.如果AP不在α内,则可设α与β相交于直线AM,因为l⊥α,AMα,所以l⊥AM.又已知AP⊥l,于是在平面β内,过点A有两条直线垂直于l.这是不可能的,所以AP一定在α内.

[练习] 1.已知:如图18-8,在平面α内有PA=PC,PB=PD.求证:PO⊥α.

ABCD,O是它对角线的交点,点P在α外,且

2.已知:空间四边形ABCD中,AB=AC,DB=DC,求证:BC⊥AD.

3.已知两个平行平面中,有一个平面与一条已知直线垂直,问:另一平面与已知直线的位置关系怎样?

四、拓展延伸

1.如图18-9所示,在空间,如果直线m,n都是线段AA′的垂直平分线,设m,n确定的平面为α,证明:

(1)在平面α内,通过线段AA′中点B的所有直线都是线段AA′的垂直平分线.(2)线段AA′的任一条垂直平分线都在α内.

2.如图18-10(1),如果平面α通过线段AA′的中点O,且垂直于直线AA′,那么平面α叫作线段AA′的垂直平分面(或中垂面),并称点A,A′关于平面α成镜面对称,平面α叫作A,A′的对称平面.

如图18-10(2),如果一个图形F内的所有点关于平面α的对称点构成几何图形F′,则称F,F′关于平面α成镜面对称.F到F′的图形变换称为镜面对称变换.

如果一个图形F通过镜面对称变换后的图形仍是它自身,则这个图形被称为镜面对称图形. 根据以上定义,探索与研究以下问题:(1)线段的中垂面有哪些性质?

(2)你学过的空间图形,有哪些是镜面对称图形?

(3)写一篇研究镜面对称的小论文,探索镜面对称的性质和应用.

点 评

这篇案例设计完整,构思严谨,突出的特点是把学科灰色的理论和鲜活的实际生活相结合,使学生能较好地理解和把握学科知识.同时,这篇案例注意了美育、科学精神和人文精神的渗透,能较好地培养学生的探索创新能力和实践能力,符合新课改精神.

篇2:高中数学新课程创新教学设计案例50篇 18 直线与平面垂直

教材分析

两个平面垂直的判定定理及性质定理是平面与平面位置关系的重要内容.通过这节的学习可以发现:直线与直线垂直、直线与平面垂直及平面与平面垂直的判定和性质定理形成了一套完整的证明体系,而且可以实现利用低维位置关系推导高维位置关系,利用高维位置关系也能推导低维位置关系,充分体现了转化思想在立体几何中的重要地位.这节课的重点是判定定理及性质定理,难点是定理的发现及证明.

教学目标

1.掌握两平面垂直的有关概念,以及两个平面垂直的判定定理和性质定理,能运用概念和定理进行有关计算与证明.

2.培养学生的空间想象能力,逻辑思维能力,知识迁移能力,运用数学知识和数学方法观察、研究现实现象的能力,整理知识、解决问题的能力.

3.通过对实际问题的分析和探究,激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神.

任务分析

判定定理证明的难点是画辅助线.为了突破这一难点,可引导学生这样分析:在没有得到判定定理时,只有根据两平面互相垂直的定义来证明,那么,哪个平面与这两个平面都垂直呢?对性质定理的引入,不是采取平铺直叙,而是根据数学定理的教学是由发现与论证这两个过程组成的,所以应把“引出命题”和“猜想”作为本部分的重要活动内容.

教学设计

一、问题情境

1.建筑工人在砌墙时,常用一根铅垂的线吊在墙角上,这是为什么?(为了使墙面与地面垂直)

2.什么叫两个平面垂直?怎样判定两平面垂直,两平面垂直有哪些性质?

二、建立模型

如图19-1,两个平面α,β相交,交线为CD,在CD上任取一点B,过点B分别在α,β内作直线BA和BE,使BA⊥CD,BE⊥CD.于是,直线CD⊥平面ABE.

容易看到,∠ABE为直角时,给我们两平面垂直的印象,于是有定义:

如果两个相交平面的交线与第三个平面垂直,并且这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.

平面α,β互相垂直,记作α⊥β. [问 题]

1.建筑工人在砌墙时,铅垂线在墙面内,墙面与地面就垂直吗?

如图19-1,只要α经过β的垂线BA,则BA⊥β,∴BA⊥BE,∠ABE=Rt∠.依定义,知α⊥β.于是,有判定定理:

定理 如果一个平面经过另一个平面的一条垂线,则两个平面互相垂直.

2.如果交换判定定理中的条件“BA⊥β”和结论“α⊥β”.即是从平面与平面垂直出发,能否推出直线与平面垂直?,也就平面α内满足什么条件的直线才能垂直于平面β呢?让学生用教科书、桌面、笔摆模型.通过模型发现:当α⊥β时,只有在一个平面(如α)内,垂直于两平面交线的直线(如BA)才会垂直于另一个平面(如β).

于是,有定理:

定理 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.

(先分析命题的条件和结论,然后画出图形,再结合图形,写出已知,求证)已知:如图,α⊥β,α∩β=CD,AB

α,AB⊥CD,求证:AB⊥β.

分析:要证AB⊥β,只需在β内再找一条直线与AB 垂直,但β内没有这样的直线,如何作出这条直线呢?因为α⊥β,所以可根据二面角的定义作出这个二面角的平面角.在平面β内过点B作BE⊥CD.因为AB⊥CD,所以∠ABE是二面角α-CD-β的平面角,并且∠ABE=90°,即AB⊥BE.又因为CD

三、解释应用 [例 题]

1.已知:如图,平面α⊥平面β,在α与β的交线上取线段AB=4cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3cm,BD=12cm,求CD长.

β,BE

β,所以AB⊥β.

解:连接BC. 因为AC⊥AB,所以AC⊥β,AC⊥BD. 因为BD⊥AB,所以BD⊥α,BD⊥BC. 所以,△CBD是直角三角形.

在Rt△BAC中,BC==5(cm),在Rt△CBD中,CD==13(cm). 2.已知:在Rt△ABC中,AB=AC=a,AD是斜边BC的高,以AD为折痕使∠BDC折成直角(如图19-4).

求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)∠BAC=60°.

证明:(1)如图19-4(2),因为AD⊥BD,AD⊥DC,所以AD⊥平面BDC. 因为平面ABD和平面ACD都过AD,所以平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)如图19-4(1),在Rt△BAC中,因为AB=AC=a,所以BC=a,BD=DC=.

如图19-4(2),△BDC是等腰直角三角形,所以BC=BD=2×=a.

得AB=AC=BC.所以∠BAC=60°. [练习]

1.如图19-5,有一个正三棱锥体的零件,P是侧面ACD上一点.问:如何在面ACD上过点P画一条与棱AB垂直的线段?试说明理由.

2.已知:如图19-6,在空间四边形ABCD中,AC=AD,BC=BD,E是CD 的中点. 求证:(1)平面ABE⊥平面BCD.(2)平面ABE⊥平面ACD.

四、拓展延伸

能否将平面几何中的勾股定理推广到立体几何学中去?试写一篇研究性的小论文.

点 评

篇3:高中数学新课程创新教学设计案例50篇 18 直线与平面垂直

教材分析

点到直线的距离是解析几何的重要内容之一,它的应用十分广泛.点到直线的距离是指由点向直线引垂线的垂线段的长.我们知道,求点到点的距离,有“工具”———两点间的距离公式可用,同样有必要创造出一套“工具”来方便地解决点到直线的距离问题,也就是说:已知点P(x1,y1)和直线l:Ax+By+C=0,(A,B不全为0),目标是设法用已知的量x1,y1,A,B,C把点P到l的距离表示出来,当作公式用.教材上公式的推导运用了两点间的距离公式,具体做法是作直线m过点P与l垂直,设垂足为Po(xo,yo),Po满足直线m的方程,也满足直线l的方程,将Po的坐标分别代入直线m和直线l的方程,通过恒等变形利用两点间的距离公式,推出点到直线的距离公式.这种方法思路清晰,学生易于接受,但恒等变形较抽象,学生难于掌握,故教学中应注意启发学生怎样想到这样变形.这样既可以活跃学生的思维,又可以锻炼其发现问题、研究问题、解决问题的能力.公式的推导方法还有很多,对学有余力的同学可加以启发,展开讨论,以培养其数学思维能力.

这节课的重点是理解和掌握点到直线的距离公式,并能熟练地应用公式求点到直线的距离,难点是点到直线的距离公式的推导.

教学目标

1.通过探索点到直线距离公式的思维过程,培养学生探索与研究问题能力. 2.理解和掌握点到直线的距离公式,体会知识发生、发展、运用的过程,数形结合、化归和转化的数学思维,培养学生科学的思维方法和发现问题、解决问题的能力.

任务分析

这节课是在学习了“两点间的距离公式”、“两条直线的位置关系”的基础上引入的,通过复习两直线垂直、两直线相交及两点间的距离公式,学生容易想到把点到直线的距离问题转化为两点间的距离问题.为了利用两点间的距离公式,须要求垂足的坐标.若利用垂线与已知直线相交解出垂足的坐标,想法自然,但求解较繁,为了简化解题过程,自然要想其他方法,教材采用了设而不求,整体代换来解决问题,简单明了,但恒等变形较难,因此,通过分析两点间的距离公式与点到直线距离的联系和区别,找到恒等变形的思路是解决问题的关键.本课通过观察、分析掌握两点间距离公式的特点,总结应用两点间距离公式的步骤;通过例题和练习使学生掌握并能应用两点间距离公式解决有关问题;通过探索和研究有关问题培养学生的数学思维能力.

教学设计

一、问题情境 1.某供电局计划年底解决本地区一个村庄的用电问题,经过测量,若按部门内部设计好的坐标图(以供电局为原点,正东方向为x轴的正半轴,正北方向为y轴的正半轴,长度单位为km),则这个村庄的坐标是(15,20),它附近只有一条线路通过,其方程为3x-4y-10=0.问:要完成任务,至少需要多长的电线?

这实际上是一个求点到直线的距离问题,那么什么是点到直线的距离,如何求村庄到线路的距离呢?

2.在学生思考讨论的基础上,教师收集学生各种的求法,得常见求法如下:(1)设过点P(15,20)与l:3x-4y-10=0垂直的直线为m,易求m的方程为4x+3y-120=0.由

解得即m与l的交点

由两点间的距离公式,得

故要完成任务,至少需要9km长的电线.

(2)设直线l:3x-4y-10=0与x轴的交点为Q,则Q(一点M(0,-),易让向量

=(,0).在直线l上任取)与向量n=(3,-4)垂直.

设向量知 与向量n的夹角为θ,点P到直线l的距离为d,由向量的数量积的定义易

(3)设过点P(15,20)与l:3x-4y-10=0垂直的直线为m,易求m的方程为4(x-15)+3(y-20)=0. 设垂足为Po(xo,yo),则4(xo-15)+3(yo-20)=0,①

又因为点Po在l上,所以3xo-4yo-10=0,即3xo-4yo=10,而3×15-4×20-10=3×15-4×20-3xo+4yo=-3(xo-15)+4(yo-20),即3(xo-15)-4(yo-20)=45.

把等式①和等式②两边相加,得 25[(xo-15)2+(yo-20)2]=452,∴(xo-15)2+(yo-20)2=,3.教师展现学生们的求法,师生共同点评各种求法,得出:求垂线与直线的交点坐标,再用两点间的距离公式使问题得解,想法虽自然,但计算量较大;不求垂足的坐标,设出垂足的坐标代入直线方程,进而通过等式变形,利用两点间的距离公式求得结果,想法既巧妙,又简单明了.

二、建立模型

设坐标平面上(如图24-1),有点P(x1,y1)和直线l:Ax+By+C=0(A,B不全为0).

我们来寻求点到直线l距离的算法.

作直线m通过点P(x1,y1),并且与直线l垂直,设垂足为P0(x0,y0).容易求得直线m的方程为

B(x-x1)-A(y-y1)=0. 由此得B(x0-x1)-A(y0-y1)=0.① 由点P0在直线l上,可知Ax0+By0+C=0,即C=-Ax0-By0.

所以Ax1+By1+C=Ax1+By1-Ax0-By0,即A(x1-x0)+B(y1-y0)=Ax1+By1+C.② 把等式①和②两边平方后相加,整理可得

(A2+B2)[(x1-x0)2+(y1-y0)2]=(Ax1+By1+C)2,即(x1-x0)2+(y1-y0)2=

容易看出,等式左边即为点P(x1,y1)到直线l距离的平方.由此我们可以得到点P(x1,y1)到直线l的距离d的计算公式:

归纳求点P(x1,y1)到直线l:Ax+By+C=0的距离的计算步骤如下:(1)给出点的坐标x1和y1赋值.(2)给A,B,C赋值.

(3)计算

注意:(1)在求点到直线的距离时,直线方程要化为一般式.

(2)当直线与x轴或y轴平行时,公式也成立,但此时求距离一般不用公式.

三、解释应用 [例 题]

1.求点P(-1,2)到下列直线的距离: l1:2x+y=5,l2:3x=2. 注意:规范解题格式.

2.求两平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0,(C1≠C2)之间的距离. 分析:求两条平行线间的距离,就是在其中一条直线上任取一点,求该点到另一条直线的距离.

解:在l1上任取一点P(x1,y1),则Ax1+By=-C1,点P到l2的距离d=

3.建立适当的直角坐标系,证明:等腰三角形底边上任一点到两腰的距离之和等于一腰上的高.

解:以等腰三角形底边所在的直线为x轴,底边上的高所在的直线为y轴,建立直角坐标系(如图24-2).

不妨设底边|AB|=2a,高|OC|=b,则直线AC:即bx-ay+ab=0;

直线BC:∴点B(a,0).,即bx+ay-ab=0,在线段AB上任取一点D(m,0),则-a≤m≤a.

∴d1+d2=的高.

[练习],即等腰三角形底边上任一点到两腰的距离之和等于一腰上1.求下列点到直线的距离.

(1)0(0,0),l1:3x+4y-5=0.

(2)A(1,0),l2:

x+y-=0.

(3)B(1,2),l3:3x+y=0.(4)C(-2,3),l4:y-7=0.

2.求两条平行直线2x+3y-8=0和2x+3y+18=0之间的距离.

3.(1)求过点A(-1,2),且与原点的距离为的直线方程.

(2)若点P(x,y)在直线x+y-4=0上,O为原点,求OP的最小值.

(3)若△ABC的三顶点分别为A(7,8),B(0,4),C(2,-4),求△ABC的面积.

(4)求点P(0,1)关于直线x-2y+1=0的对称点的坐标.(5)求直线2x+11y+16=0关于点P(0,1)对称的直线方程.

四、拓展延伸

1.点到直线的距离公式应用非常广泛,你能举例说明它在解决实际问题中的应用吗? 2.点到直线的距离公式的推导方法有很多,对学有余力的同学可探索其他推导方法,下面介绍两种常见的推导方法.(1)如图,已知点P0(x0,y0),直线l:Ax+By+C=0,求点P0到直线l的距离. 不妨设A≠0,B≠0,这时l和x轴、y轴都相交.过点P0作直线l的垂线,交l于Q.令|P0Q|=d,过P0作x轴的平行线交l于R(x1,y0),作y轴的平行线交l于S(x0,y2).

由Ax1+By0+C=0,Ax0+By2+C=0得

易证A=0或B=0,公式也成立.

(2)点到直线的距离公式也可用向量的知识求得,此法更能体现出代数与几何的联系,比其他方法更简单,直观,易懂.求法如下:

①如图24-4,证明向量n=(A,B)与直线l垂直.

不妨设A≠0,直线l与x轴的交点是Q(-,0).

如果P1(x1,y1)是直线l上不同于Q的点,则Ax1+By1+C=0.

∴A(x1+)+B(y1-0)=0,即(A,B)·(x1+,y1-0)=0,∴向量n=(A,B),与向量直.

②求点P0到直线l的距离d.

=(x1+,y1-0)垂直,即向量n与直线l垂由数量积的定义,如果向量

与向量n的夹角为θ,那么

易证当A=0或B=0时,公式也成立.

点 评

篇4:高中数学新课程创新教学设计案例50篇 18 直线与平面垂直

教材分析

平面向量的基本定理是说明同一平面内任一向量都可以表示为两个不共线向量的线性组合,它是平面向量坐标表示的基础,也是平面图形中任一向量都可由某两个不共线向量量化的依据.这节内容以共线向量为基础,通过把一个向量在其他两个向量上的分解,说明了该定理的本质.教学时无须严格证明该定理,只要让学生弄清定理的条件和结论,会用该定理就可以了.

向量的加法、减法、实数与向量的积的混合运算称为向量的线性运算,也叫“向量的初等运算”.由平面向量的基本定理,知任一平面内的直线型图形都可表示为某些向量的线性组合,这样在证明几何命题时,可先把已知和结论表示成向量形式,再通过向量的运算,有时能很容易证明几何命题.因此,向量是数学中证明几何命题的有效工具之一.为降低难度,目前要求用向量表示几何关系,而不要求用向量证明几何命题.

平面向量的基本定理的理解是学习的难点,而应用基本向量表示平面内的某一向量是学习的重点.

教学目标

1.了解平面向量基本定理的条件和结论,会用它来表示平面图形中任一向量,为向量坐标化打下基础.

2.通过对平面向量基本定理的归纳、抽象和概括,体验数学定理的产生、形成过程,提升学生的抽象和概括能力.

3.通过对平面向量基本定理的运用,增强向量的应用意识,进一步体会向量是处理几何问题的强有力的工具之一.

任务分析

这节课是在学生熟悉向量加、减、数乘线性运算的基础上展开的,为了使学生理解和掌握好平面向量的基本定理,教学时,常应用构造式的作图方法,同时采用师生共同操作,增强直观认识,归纳和总结出任意向量与基本向量的线性组合关系,并且通过适当的练习,使学生进一步认识和理解这一基本定理.

教学设计

一、问题情景 1.在ABCD中,(1)已知=a,=b,试用b,b来表示,;

(2)已知=c,=d,试用c,d表示向量,.2.给定平面内任意两个不共线向量e1,e2,试作出向量3e1+2e2,e1-2e2. 3.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示?

二、建立模型 1.学生回答

(1)由向量加法,知=a+b;由向量减法,知=a-b,=a+0·b.

(2)设AC,BD交于点O,由向量加法,知

2.师生总结

以a,b为基本向量,可以表示两对角线的相应向量,还可表示一边对应的向量估计任一向量都可以写成a·b的线性表达.

任意改成另两个不共线向量c,d作基本向量,也可表示其他向量. 3.教师启发,通过了e1+2e2,e1-2e2的作法,让学生感悟通过改变λ1,λ2的值,可以作出许多向量a=λ1e1+λ2e2.在此基础上,可自然形成一个更理性的认识———平面向量的基本定理.

4.教师明晰

如图,设e1,e2是平面内两个不共线的向量,a是这一平面内的任一向量.

在平面内任取一点O,作

=e1,=e2,=a;过点C作平行于直线OB的直线,与直线OA交于M;过点C作平行于直线OA的直线,与直线OB交于N.这时有且只有实数λ1,λ2,使

=λ1e1,=λ2e2.由于

+,所以a=λ1e1+λ2e2,也就是说任一向量a都可表示成λ1e1+λ2e2的形式,从而有

平面向量的基本定理 如果e1,e2是一平面内的两个不平行向量,那么该平面内的任一向量a,存在唯一的一对实数λ1,λ2,使a=λ1e1+λ2e2.

我们把不共线向量e1,e2叫作表示这一平面内所有向量的一组基底,有序实数对(λ1,λ2)叫a在基底e1,e2下的坐标.

三、解释应用 [例 题]

1.已知向量e1,e2(如图38-3),求作向量-2.5e1+3e2. 注:可按加法或减法运算进行.

2.如图38-4,解:∵,不共线,=t(t∈R),用,表示.

[练习]

1.已知:不共线向量e1,e2,求作向量a=e1-2e2.

2.已知:不共线向量e1,e2,并且e1-3e2=λ1e1+λ2e2,求实数λ1,λ2. 3.已知:基底{a,b},求实数x,y满足向量等式:3xa+(10-y)b=(4y+7)a+2xb.

4.在△ABC中,=a,=b,点G是△ABC的重心,试用a,b表示.

5.已知:ABCDEF为正六边形,=a,.

=b,试用a,b表示向量6.已知:M是平行四边形ABCD的中心,求证:对于平面上任一点O,都有

.四、拓展延伸

点 评

篇5:高中数学新课程创新教学设计案例50篇 18 直线与平面垂直

教材分析

“”的证明学生比较容易理解,学生难理解的是“当且仅当a=b时取„=‟号”的真正数学内涵,所谓“当且仅当”就是“充分必要”.

教学重点是定理及其应用,难点是利用定理求函数的最值问题,进而解决一些实际问题.

教学目标

1.理解两个实数的平方和不小于它们积的2倍这一重要不等式的证明,并能从几何意义的角度去解释,形成数形结合的完美统一.

2.理解两个正数的算术平均数不小于它们的几何平均数定理的证明,及其几何意义,会用这两个重要不等式解决简单的实际应用题.

3.通过定理的证明培养学生的逻辑推理能力,通过定理的应用揭示数学的应用价值.

任务分析

这节内容从实际问题情境展开探讨,“如要围成面积为16m2的一个矩形,所需绳子最短是多少?即设长为x,宽为,则周长为l=2x+2×,求当x取何值时,l最小.”让学生去猜测,去思考,充分调动学生的积极性,激发学生的想象和猜想能力.当学生猜想它应为正方形这一结论时,教师适时引导如何去证明猜想的正确性,激发学生的求知欲望,从而达到由问题到结论的证明,开阔学生的思路,陶冶学生的情操.

教学设计

一、问题情境 教师出示问题,引导学生分析、思考:某工厂要建造一个长方体形无盖贮水池,其容积为4800m,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少元?

3二、建立模型

1.通过比较a+b与2ab的大小,引入重要不等式. ∵a2+b2-2ab=(a-b)2,∴当a≠b时,(a-b)>0; 当a=b时,(a-b)2=0.

即(a-b)2≥0,从而有a2+b2≥2ab. 2.结论明晰

定理1 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时,取“=”号).

22思考:对于定理1和定理2,当且仅当a=b时取“=”号的具体含义是什么?

三、解释应用 [例 题] 1.已知x,y都是正数,求证:

小结;上述结论是我们用定理求最值的依据,可简述为和为定值积最大,积为定值和最小.

2.设法解决本节课开始提出的问题.

因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价为297600元.

3.0求证:在直径为d的圆内接矩形中,面积最大的是正方形,并且这个正方形的面积等于d. 22.设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm的空白,左、右各留5cm的空白.问:怎样确定画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?

答:当画面高为88cm、宽为55cm时,所用纸张面积最小.

3.用一段长为L(m)的篱笆围成一个边靠墙的矩形菜园,问:当这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?

上述两种解答的答案不同,哪一种方法是错误的,为什么?

四、拓展延伸

点 评

篇6:高中数学新课程创新教学设计案例50篇 18 直线与平面垂直

教材分析

对数函数是一类重要的函数模型,它与指数函数互为反函数.教材是在学生学过指数函数、对数及其运算的基础上引入对数函数的概念的.须要说明的是,这里与传统的教材有所不同,即没有先学习反函数,这对学生学习对数函数的概念、图像及性质有较大影响,使指数函数的知识点不能直接应用于对数函数的知识点,但从对数的定义中知道:指数式与对数式可互化.因此,在某些方面,如在画对数函数y=log2x的图像列表时,可以把画指数函数y=2x图像时列的表中的x与y的值对调.这节内容的重点是对数函数的概念、图像及性质,难点是对数函数与指数函数的关系.

教学目标

1.通过具体实例,直观了解对数函数模型刻画的数量关系,初步理解对数函数的概念,并能画出具体对数函数的图像,掌握对数函数的图像和性质.

2.知道指数函数y=ax与对数函数y=logax互为反函数(a>0且a≠1). 3.能应用对数函数的性质解有关问题.

任务分析

首先复习指数函数、对数的定义及对数的性质,这也是学习本节内容的基础.解析式x=logay是函数,叫作对数函数,为了符合习惯,常写成y=logax.这些内容学生较难理解,教学时要引起重视.教学中,要注意从实例出发,使学生从感性认识提高到理性认识;要注意运用对比的方法;要结合对数函数的图像抽象概括对数函数的性质.注意:不要求讨论形式化的函数定义,也不要求求已知函数的反函数,只须知道对数函数与指数函数互为反函数.

教学设计

一、问题情境

同指数函数中的细胞分裂问题,即:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,4个分裂成8个……1个这样的细胞分裂x次后,得到的细胞的个数为y.

我们已经知道,个数y是分裂次数x的函数,解析式是y=2x.形式上是指数函数(这里的定义域是N).

思考:在这个问题中,细胞分裂的次数x是不是细胞分裂个数y的函数?若是,这个函数的解析式是什么? x也是y的函数,由对数的定义得到这个新函数是x=log2y.其中,细胞的个数y是自变量,细胞分裂的次数x是函数.

二、建立模型 1.学生讨论

(1)函数x=log2y与指数函数y=2x有何关系?

(2)函数x=log2y中的自变量、字母与我们以前所学的函数有何区别?

结论:问题(1):两函数中的x表示的都是细胞分裂的次数,y表示的都是细胞分裂的个数,对应法则都是以2为底数,一个是取对数,一个是取指数,正好相逆.

注意:这里不能说它们互为反函数,因为还没有学习反函数的概念.

问题(2):这里的自变量所用字母是y,以前学习的函数的自变量常用字母x,即这里的用法不合习惯.

2.教师明晰

定义:函数x=long2y,(a>0,且a≠1)叫作对数函数,它的定义域是(0,+∞),值域是(-∞,+∞).

由对数函数的定义可知,在指数函数y=ax和对数函数x=logay中,x,y两个变量之间的关系是一样的.不同的只是在指数函数y=ax里,x是自变量,y是因变量,而在对数函数x=logay中,y是自变量,x是因变量.习惯上,我们常用x表示自变量,y表示因变量,因此,对数函数通常写成y=logay,(a>0且a≠1,x>0).

3.练习

在同一坐标系中画出下列函数的图像.

(1)y=long2x.

(2)y=解:列表:

表12-1

思考:上表中的x,y的对应值与指数函数中所列表的对应值有何关系? 描点,画图:

4.观察上面的函数图像,结合列表,仿照指数函数的性质,归纳总结出对数函数的性质

(1)定义域是(0,+∞),值域是(-∞,+∞).(2)函数图像在y轴的右侧且过定点(1,0).

(3)当a>1时,函数在定义域上是增函数,且当x>1时,y>0;当0<x<1时,y<0.

当0<a<1时,函数在定义域上是减函数,且当x>1时,y<0;当0<x<1时,y>0.

三、解释应用

[例 题]

1.求下列函数的定义域.

(1)y=log2x2.

(2)y=loga(4-x).

(3)y=

解:(1){x|x≠0}.

(2)(-∞,4).

(3)(0,1). 2.比较下列各组数的大小.(1)log23与log23.5.

(2)loga5.1与loga5.9,(a>0且a≠1).(3)log67与log76. 解:(1)考查对数函数y=log2x. ∵2>1,∴它在(0,+∞)上是增函数. 又3<3.5,∴log23<log23.5.

(2)当a>1时,loga5.1<loga5.9; 当0<a<1时,loga5.1>loga5.9.(3)log67>1>log76.

总结:本例是利用对数的单调性比较两个对数的大小,当底数与1的大小不确定时,要分类讨论;当不能直接进行比较时,可在两个数中间插入一个已知数间接比较两个数的大小. 3.溶液的酸碱度是通过pH值来刻画的,pH值的计算公式为pH=-lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是mol/L.

(1)根据对数函数性质及上述pH值的计算公式,说明溶液的酸碱度与溶液中氢离子的浓度之间的变化关系.

(2)已知纯净水中氢离子的浓度为[H+]=10-7mol/L,计算纯净水的pH值. 解:(1)根据对数的性质,有

pH=-lg[H+]=lg[H+]-1=lg,所以溶液中氢离子的浓度越大,溶液的酸度就越小.

(2)当[H+]=10-7时,pH=-lg10-7=7,所以,纯净水的pH值是7.

4.设函数f(x)=lg(ax-bx),(a>1>b>0),问:当a,b满足什么关系时,f(x)在(1,+∞)上恒取正值?

解:当x∈(1,+∞)时,lg(ax-bx)>0恒成立令g(x)=ax-bx. ∵a>1>b>0,∴g(x)在(0,+∞)上是增函数,ax-bx>1恒成立. ∴当x>1时,g(x)>g(1)=a-b,∴当a-b≥1时,f(x)在(1,+∞)上恒取正值. [练习]

1.求函数y=的定义域.

2.比较log0.50.2与log0.50.3的大小.

3.函数y=lg(x2-2x)的增区间是 ____________ .

4.已知a>0,且a≠1,则在同一直角坐标系中,函数y=a-x和y=loga(-x)的图像有可能是().

5.大西洋鲑鱼每年都要逆流而上2000m,游回产地产卵.研究鲑鱼的科学家发现,一岁鲑鱼的游速可以表示为函数,单位是m/s,其中Q表示鲑鱼的耗氧量.

(1)当一条鲑鱼的耗氧量是2700个单位时,它的游速是多少?(2)计算一条鲑鱼的最低耗氧量.

四、拓展延伸

1.作出对数函数y=logax,(a>1)与y=logax,(0<a<1)的草图. 2.说出指数函数与对数函数的关系.

以指数函数y=2x与对数函数y=log2x为代表加以说明.

(1)对数函数y=log2x是把指数函数y=2x中自变量与因变量对调位置而得出的. 教师明晰:当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量.我们称这两个函数互为函数.函数y=f(x)的反函数记作:y=f-1(x). 对数函数y=log2x与指数函数y=2x互为反函数.

(2)对数函数y=log2x与指数函数y=2x的图像关于直线y=x对称.

(3)指数函数与对数函数对照表. 表12-2

点 评

篇7:高中数学新课程创新教学设计案例50篇 18 直线与平面垂直

教材分析

这节课主要是把学生学习的角从不大于周角的非负角扩充到任意角,使角有正角、负角和零角.首先通过生产、生活的实际例子阐明了推广角的必要性和实际意义,然后又以“动”的观点给出了正、负、零角的概念,最后引入了几个与之相关的概念:象限角、终边相同的角等.在这节课中,重点是理解任意角、象限角、终边相同的角等概念,难点是把终边相同的角用集合和符号语言正确地表示出来.理解任意角的概念,会在平面内建立适当的坐标系,通过数形结合来认识角的几何表示和终边相同的角的表示,是学好这节的关键.

教学目标

1.通过实例,体会推广角的必要性和实际意义,理解正角、负角和零角的定义. 2.理解象限角的概念、意义及表示方法,掌握终边相同的角的表示方法.

3.通过对“由一点出发的两条射线形成的图形”到“射线绕着其端点旋转而形成角”的认识过程,使学生感受“动”与“静”的对立与统一.培养学生用运动变化的观点审视事物,用对立统一规律揭示生活中的空间形式和数量关系.

教学设计

一、问题情境 [演 示] 1.观览车的运动.

2.体操运动员、跳台跳板运动员的前、后转体动作. 3.钟表秒针的转动. 4.自行车轮子的滚动. [问 题]

1.如果观览车两边各站一人,当观览车转了两周时,他们观察到的观览车上的某个座位上的游客进行了怎样的旋转,旋转了多大的角?

2.在运动员“转体一周半动作”中,运动员是按什么方向旋转的,转了多大角? 3.钟表上的秒针(当时间过了1.5min时)是按什么方向转动的,转动了多大角? 4.当自行车的轮子转了两周时,自行车轮子上的某一点,转了多大角?

显然,这些角超出了我们已有的认识范围.本节课将在已掌握的0°~360°角的范围的基础上,把角的概念加以推广,为进一步研究三角函数作好准备.

二、建立模型

1.正角、负角、零角的概念

在平面内,一条射线绕它的端点旋转有两个方向:顺时针方向和逆时针方向.习惯上规定,按逆时针旋转而成的角叫作正角;按顺时针方向旋转而成的角叫作负角;当射线没有旋转时,我们也把它看成一个角,叫作零角.

2.象限角

当角的顶点与坐标原点重合、角的始边与x轴正半轴重合时,角的终边在第几象限,就把这个角叫作第几象限的角.如果角的终边在坐标轴上,就认为这个角不属于任何象限.

3.终边相同的角

在坐标系中作出390°,-330°角的终边,不难发现,它们都与30°角的终边相同,并且这两个角都可以表示成0°~360°角与k个(k∈Z)周角的和,即

390°=30°+360°,(k=1); -330°=30°-360°,(k=-1).

设S={β|β=30°+k·360°,k∈Z},则390°,-330°角都是S中的元素,30°角也是S中的元素(此时k=0).容易看出,所有与30°角终边相同的角,连同30°角在内,都是S中的元素;反过来,集合S中的任一元素均与30°角终边相同.一般地,所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z},即任一与α终边相同的角,都可以表求成角α与整数个周角的和.

三、解释应用 [例 题]

1.在0°~360°范围内,找出与下列各角终边相同的角,并判断它们是第几象限的角.(1)-150°.

(2)650°.

(3)-950°5′.

2.分别写出与下列角终边相同的角的集合S,并把S中适合不等式-360°≤β<720°的元素写出来.

(1)60°.(2)-21°.(3)363°14′. 3.写出终边在y轴上的角的集合.

解:在0°~360°范围内,终边在y轴上的角有两个,即90°,270°.因此,与这两个角终边相同的角构成的集合为

S1={β|β=90°+k·360°,k∈Z}={β|β=90°+2k·180°,k∈Z},而所有与270°角终边相同的角构成的集合为

S2={β|β=270°+k·360°,k∈Z}= {β|β=90°+(2k+1)·180°,k∈Z}. 于是,终边在y轴上的角的集合为

S=S1∪S2={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)·180°,k∈Z}={β|β=90°+n·180°,n∈Z}.

注:会正确使用集合的表示方法和符号语言. [练习]

1.写出与下列各角终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.

(1)45°.(2)-30°.(3)420°.(4)-225°. 2.辨析概念.(分别用集合表示出来)

(1)第一象限角.(2)锐角.(3)小于90°的角.(4)0°~90°的角. 3.一角为30°,其终边按逆时针方向旋转三周后的角度数为.

4.终边在x轴上的角的集合为;终边在第一、三象限的角的平分线上的角集合为.

四、拓展延伸

1.若角α与β终边重合,则α与β的关系是;若角α与β的终边互为反向延长线,则角α与β的关系是.

2.如果α在第二象限时,那么2α,是第几象限角?

注:(1)不能忽略2α的终边可能在坐标轴上的情况.

(2)研究在哪个象限的方法:讨论k的奇偶性.(如果是呢?)

任意角的三角函数

教材分析

这节课是在初中学习的锐角三角函数的基础上,进一步学习任意角的三角函数.任意角的三角函数通常是借助直角坐标系来定义的.三角函数的定义是本章教学内容的基本概念和重要概念,也是学习后续内容的基础,更是学好本章内容的关键.因此,要重点地体会、理解和掌握三角函数的定义.在此基础上,这节课又进一步研讨了三角函数的定义域,函数值在各象限的符号,以及诱导公式

(一),这既是对三角函数的简单应用,也是为学习后续内容做了必要准备.

教学目标

1.让学生认识三角函数推广的必要性,经历三角函数的推广的过程,增强对数的理解能力.

2.理解和掌握三角函数的定义,在此基础上探索与研究三角函数定义域、三角函数值的符号和诱导公式

(一),并能初步应用它们解决一些问题.

3.通过对任意角的三角函数的学习,初步体会数学知识的发生、发展和运用的过程,提高学生的科学思维水平.

教学设计

一、情景设置

初中我们学习过锐角三角函数,知道它们都是以锐角为自变量,由其所在的直角三角形的对应边的比值为函数值,并且定义了角α的正弦、余弦、正切、余切的三角函数.这节课,我们研究当α是一个任意角时的三角函数的定义.

在初中,三角函数的定义是借助直角三角形来定义的.如图32-1,在Rt△ABC中,现在,把三角形放到坐标系中.如图32-2,设点B的坐标为(x,y),则OC=b=x,CB=a=y,OB=,从而

即角α的三角函数可以理解为坐标的比值,在此意义下对任意角α都可以定义其三角函数.

二、建立模型

一般地,设α是任意角,以α的顶点O为坐标原点,以角α的始边的方向作为x轴的正方向,建立直角坐标系xOy.P(x,y)为α终边上不同于原点的任一点.如图:

那么,OP=,记作r,(r>0).

对于三个量x,y,r,一般地,可以产生六个比值:.当α确定时,根据初中三角形相似的知识,可知这六个比值也随之相应的唯一确定.根据函数的定义可以看出,这六个比值都是以角为自变量的函数,分别把角的正弦、余弦、正切、余切、正割和余割函数,记为

称之为α

对于定义,思考如下问题:

1.当角α确定后,比值与P点的位置有关吗?为什么?

2.利用坐标法定义三角函数与利用直角三角形定义三角函数有什么关系? 3.任意角α的正弦、余弦、正切都有意义吗?为什么?

三、解释应用 [例 题]

1.已知角α的终边经过P(-2,3),求角α的六个三角函数值. 思考:若P(-2,3)变为(-2m,3m)呢?(m≠0)2.求下列角的六个三角函数值.

注:强化定义. [练习]

1.已知角α的终边经过下列各点,求角α的六个三角函数值.(1)P(3,-4).(2)P(m,3). 2.计 算.

(1)5sin90°+2sin0°-3sin270°+10cos180°.

四、拓展延伸 1.由于角的集合与实数集之间可以建立一一对应的关系,三角函数可以看成以实数为自变量的函数,如sina=,不论α取任何实数,恒有意义,所以sina的定义域为{α|α∈R}.类似地,研究cosa,tana,cota的定义域.

2.根据三角函数的定义以及x,y,r在不同象限内的符号,研究sina,cosa,tana,cota的值在各个象限的符号.

3.计算下列各组角的函数值,并归纳和总结出一般性的规律.(1)sin30°,sin390°.

(2)cos45°,cos(-315°).

规律:终边相同的角有相同的三角函数值,即sin(α+k360°)=sina,cos(α+k·360°)=cosa,tan(α+k·360°)=tana,(k∈Z).

五、应用与深化 [例 题]

1.确定下列三角函数值的符号.

2.求证:角α为第三象限角的充要条件是sinθ<0,并且tanθ>0. 证明:充分性:如果sinθ<0,tanθ>0都成立,那么θ为第三象限角.

∵sinθ<0成立,所以θ的终边可能位于第三或第四象限,也可能位于y轴的负半轴上. 又∵tanθ>0成立,∴θ角的终边可能位于第一或第三象限. ∵sinθ<0,tanθ>0都成立,∴θ角的终边只能位于第三象限.

必要性:若θ为第三象限角,由三角函数值在各个象限的符号,知sinθ<0,tanθ>0. 从而结论成立. [练习]

1.设α是三角形的一个内角,问:在sina,cosa,tana,tan取负值?为什么?

中,哪些三角函数可能2.函数 的值域是 ____________ .

同角三角函数的基本关系式

教材分析

这节课主要是根据三角函数的定义,导出同角三角函数的两个基本关系式sina+cosa=1与=1与,并初步进行这些公式的两类基本应用.教学重点是公式sina+cosa的推导及以下两类基本应用:

2(1)已知某角的正弦、余弦、正切中的一个,求其余两个三角函数.(2)化简三角函数式及证明简单的三角恒等式.

其中,已知某角的一个三角函数值,求它的其余各三角函数值时,正负号的选择是本节的一个难点,正确运用平方根及象限角的概念是突破这一难点的关键;证明恒等式是这节课的另一个难点.课堂上教师应放手让学生独立解决问题,优化自己的解题过程.

教学目标

1.让学生经历同角三角函数的基本关系的探索、发现过程,培养学生的动手实践、探索、研究能力.

2.理解和掌握同角三角函数的基本关系式,并能初步运用它们解决一些三角函数的求值、化简、证明等问题,培养学生的运算能力,逻辑推理能力.

3.通过同角三角函数基本关系的学习,揭示事物之间的普遍联系规律,培养学生的辩证唯物主义世界观.

任务分析 这节课的主要任务是引导学生根据三角函数的定义探索出同角三角函数的两个基本关系式:sin2a+cos2a=1及,并进行初步的应用.由于该节内容比较容易,所以,课堂上无论是关系式的探索还是例、习题的解决都可以放手让学生独立完成,即由学生自己把要学的知识探索出来,并用以解决新的问题.必要时,教师可以在以下几点上加以强调:(1)“同角”二字的含义.(2)关系式的适用条件.(3)化简题最后结果的形式.(4)怎样优化解题过程.

教学设计

一、问题情境

教师出示问题:上一节内容,我们学习了任意角α的六个三角函数及正弦线、余弦线和正切线,你知道它们之间有什么联系吗?你能得出它们之间的直接关系吗?

二、建立模型

1.引导学生写出任意角α的六个三角函数,并探索它们之间的关系

在角α的终边上任取一点P(x,y),它与原点的距离是r(r>0),则角α的六个三角函数值是

2.推导同角三角函数关系式

引导学生通过观察、分析和讨论,消元(消去x,y,r),从而获取下述基本关系.(1)平方关系:sin2a+cos2a=1.

(2)商数关系:t:

说明:①当放手让学生推导同角三角函数的基本关系时,部分学生可能会利用三角函数线,借助勾股定理及相似三角形的知识来得出结论.对于这种推导方法,教师也应给以充分肯定,并进一步引导学生得出|sinα|+|cosα|≥1.

②除以上两个关系式外,也许部分学生还会得出如下关系式:.教师点拨:这些关系式都很对,但最基本的还是(1)和(2),故为了减少大家的记忆负担,只须记住(1)和(2)即可.以上关系式均为同角三角函数的基本关系式.

教师启发:(1)对“同角”二字,大家是怎样理解的?(2)这两个基本关系式中的角α有没有范围限制?

(3)自然界的万物都有着千丝万缕的联系,大家只要养成善于观察的习惯,也许每天都会有新的发现.刚才我们发现了同角三角函数的基本关系式,那么这些关系式能用于解决哪些问题呢?

三、解释应用 [例 题]

1.已知sinα=,且α是第二象限角,求角α的余弦值和正切值.

2.已知tanα=-,且α是第二象限角,求角α的正弦和余弦值.

说明:这两个题是关系式的基本应用,应让学生独立完成.可选两名同学到黑板前板书,以便规范解题步骤.

变式1 在例2中若去掉“且α是第二象限角”,该题的解答过程又将如何? 师生一起完成该题的解答过程.

解:由题意和基本关系式,列方程组,得

由②,得sinα=-

cosα,代入①整理,得6cos2α=1,cos2α=

∵tanα=-<0,∴角α是第二或第四象限角.

当α是第二象限角时,cosα=-,代入②式,得;

当α是第四象限角时,cosα=,代入②式,得.小结:由平方关系求值时,要涉及开方运算,自然存在符号的选取问题.由于本题没有具体指明α是第几象限角,因此,应针对α可能所处的象限,分类讨论.

变式2 把例2变为:

已知tanα=-,求的值.

解法1:由tanα=-及基本关系式可解得

针对两种情况下的结果居然一致的情况,教师及时点拨:

观察所求式子的特点,看能不能不通过求sinα,cosα的值而直接得出该分式的值. 学生得到如下解法:

由此,引出变式3.

已知:tanα=-,求(sinα-cosα)2的值.

有了上一题的经验,学生会得到如下解法:

教师归纳、启发:这个方法成功地避免了开方运算,因而也就避开了不必要的讨论.遗憾的是,因为它不是分式形式,所以解题过程不像“变式2”那样简捷.那么,能解决这一矛盾吗?

学生得到如下解法:

教师引导学生反思、总结:(1)由于开方运算一般存在符号选取问题,因此,在求值过程中,若能避免开方的应尽量避免.

(2)当式子为分式且分子、分母都为三角函数的n(n∈N且n≥1)次幂的齐次式时,采用上述方法可优化解题过程.

[练习]

当学生完成了以上题目后,教师引导学生讨论如下问题:

(1)化简题的结果一定是“最简”形式,对三角函数的“最简”形式,你是怎样理解的?(2)关于三角函数恒等式的证明,一般都有哪些方法?你是否发现了一些技巧?

四、拓展延伸

教师出示问题,启发学生一题多解,并激发学生的探索热情.

已知sinα-cosα=-,180°<α<270°,求tanα的值.

解法1:由sinα-cosα=-,得

反思:(1)解法1的结果比解法2的结果多了一个,看来产生了“增根”,那么,是什么原因产生了增根呢?

(2)当学生发现了由sinα-cosα=-α的范围变大了时,教师再点拨:

怎样才能使平方变形是等价的呢? 由学生得出如下正确答案:

得到sin2α-2sinαcosα+cos2α=的过程中,∵180°<α<270°,且sinα-cosα=-cosα|,因此|tanα|>1,只能取tanα=2.

<0,∴sinα<0,cosα<0,且|sinα|>|强调:非等价变形是解法1出错的关键!

诱导公式 教材分析

这节内容以学生在初中已经学习了锐角的三角函数值为基础,利用单位圆和三角函数的定义,导出三角函数的五组诱导公式,即有关角k·360°+α,180°+α,-α,180°-α,360°-α的公式,并通过运用这些公式,把求任意角的三角函数值转化为求锐角的三角函数值,从而渗透了把未知问题化归为已知问题的化归思想.这节课的重点是后四组诱导公式以及这五组公式的综合运用.把这五组公式用一句话归纳出来,并切实理解这句话中每一词语的含义,是切实掌握这五组公式的难点所在.准确把握每一组公式的意义及其中符号语言的特征,并且把公式二、三与图形对应起来,是突破上述难点的关键.

教学目标

1.在教师的引导下,启发学生探索发现诱导公式及其证明,培养学生勇于探求新知、善于归纳总结的能力.

2.理解并掌握正弦、余弦、正切的诱导公式,并能应用这些公式解决一些求值、化简、证明等问题.

3.让学生体验探索后的成功喜悦,培养学生的自信心.

4.使学生认识到转化“矛盾”是解决问题的有效途径,进一步树立化归思想.

任务分析

诱导公式的重要作用之一就是把求任意角的三角函数值转化为求锐角的三角函数值.在五组诱导公式中,关于180°+α与-α的诱导公式是最基本的,也是最重要的.在推导这两组公式时,应放手让学生独立探索,寻求“180°+α与角α的终边”及“-α与角α的终边”之间的位置关系,从而完成公式的推导.此外,要把90°~360°范围内的三角函数转化为锐角的三角函数,除了利用第二、四、五个公式外,还可以利用90°+α,270°±α与α的三角函数值之间的关系.应引导学生在掌握前五组诱导公式的基础上进一步探求新的关系式,从而使学生在头脑中形成完整的三角函数的认知结构.

教学设计

一、问题情境 教师提出系列问题

1.在初中我们学习了求锐角的三角函数值,现在角的概念已经推广到了任意角,能否把任意角的三角函数值转化为锐角的三角函数值呢?

2.当α=390°时,能否求出它的正弦、余弦和正切值? 3.由2你能否得出一般性的结论?试说明理由.

二、建立模型 1.分析1 在教师的指导下,学生独立推出公式

(一),即

2.应用1 在公式的应用中让学生体会公式的作用,即把任意角的三角函数值转化为0°~360°范围内的角的三角函数值.

练习:求下列各三角函数值.

(1)cos3.分析2 π.

(2)tan405°.

如果能够把90°~360°范围内的角的三角函数值转化为锐角的三角函数值,即可实现“把任意角的三角函数值转化为锐角的三角函数值”的目标.例如,能否将120°,240°,300°角与我们熟悉的锐角建立某种联系,进而求出其余弦值?

引导学生利用三角函数的定义并借助图形,得到如下结果:

cos120°=cos(180°-60°)=-cos60°=-,cos240°=cos(180°+60°)=-cos60°=-,cos300°=cos(360°+60°)=cos60°=4.分析3

一般地,cos(180°+α),cos(180°-α),cos(360°-α)与cosα的关系如何?你能证明自己的结论吗?由学生独立完成下述推导: 设角α的终边与单位圆交于点P(x,y).由于角180°+α的终边就是角α的终边的反向延长线,则角180°+α的终边与单位圆的交点P′与点P关于原点O对称.

由此可知,点P′的坐标是(-x,-y).

又∵单位圆的半径r=1,∴cosα=x,sinα=y,tanα=(180°+α)=-y,tan(180°+α)=从而得到:

.,cos(180°+α)=-x,sin

5.分析4 在推导公式三时,学生会遇到如下困难,即:若α为任意角,180°-α与角α的终边的位置关系不容易判断.这时,教师可引导学生借助公式二,把180°-α看成180°+(-α),即:先把180°-α的三角函数值转化为-α的三角函数值,然后通过寻找-α的三角函数值与α的三角函数值之间的关系,使原问题得到解决.

由学生独立完成如下推导:

如图,设任意角α的终边与单位圆相交于P(x,y),角-α的终边与单位圆相交于点P′.∵这两个角的终边关于x轴对称,∴点P′的坐标是(x,-y).又∵r=1,∴cos(-α)=x,sin(-α)=-y,tan(-α)=从而得到:

进而推出:

注:在问题的解决过程中,教师要注意让学生充分体验成功的快乐. 6.教师归纳

公式

(一)、(二)、(三)、(四)、(五)都叫作诱导公式,利用它们可以把k·360°+α,180°±α,-α,360°-α的三角函数转化为α的三角函数.那么,在转化过程中,发生了哪些变化?这种变化是否存在着某种规律?

引导学生进行如下概括:α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.为了便于记忆,还可编成一句口诀“函数名不变,符号看象限”.

三、解释应用 [例 题]

1.求下列各三角函数值.

通过应用,让学生体会诱导公式的作用:

①把任意角的三角函数转化为锐角三角函数,其一般步骤为

评注:本题中,若代入cosα·cot3α形式,就须先求得cosα的值.由于不能确定角α所在象限,解题过程将变得烦锁.以此提醒学生注意选取合理形式解决问题.

四、拓展延伸

教师出示问题:前面我们利用三角函数的定义及对称性研究了角α+k·360°(k∈Z),-α,180°±α,360°-α的三角函数与角α的三角函数之间的关系,这些角有一个共同点,即:均为180°的整数倍加、减α.但是,在解题过程中,还会遇到另外的情况,如前面遇到的120°角,它既可以写成180°-60°,也可以写成90°+30°,那么90°+α的三角函数与α的三角函数有着怎样的关系呢?

学生探究:经过独立探求后,有学生可能会得到如下结果:

设角α的终边与单位圆交于点P(x,y),角90°+α的终边与单位圆交于点P′(x′,y′)(如图),则cosα=x,sinα=y,cos(90°+α)=x′,sin(90°+α)=y′. 过P作PM⊥x轴,垂足为M,过P′作P′M′⊥y轴,垂足为M′,则△OPM≌△OP′M′,∴OM=OM′,MP=M′P′,即x=y′,y=x′.

进而得到cos(90°+α)=sinα,sin(90°+α)=cosα.对此结论和方法,教师不宜作任何评论,而应放手让学生展开辩论和交流,最后得到正确结果:

由于OM与OM′,MP与M′P′仅是长度相等,而当点P在第一象限时,P′在第二象限,∴x′<0,y′>0,又∵x>0,y>0,∴x′=-y,y′=x. 从而得到:

教师进一步引导:

(1)推导上面的公式时,利用了点P在第一象限的条件.当点P不在第一象限时,是否仍有上面的结论?

(通过多媒体演示角α的终边在不同象限的情景,使学生理解公式六中的角α可以为任意角)

(2)推导公式六时,采用了初中的平面几何知识.是否也能像推导前五组公式那样采用对称变换的方式呢?

学生探究:学生先针对α为锐角时的情况进行探索,再推广到α为任意角的情形. 设角α的终边与单位圆交点为P(x,y),(如图).由于角α的终边经过下述变换:2(轴的对称点P′(-y,-x),∴x′=-y,y′=x.

+α的终边与单位圆的交点为P′(x′,y′)-α)+2a=,即可得到

+α的终边.这是两次对称变换,即先作P关于直线y=x的对称点M(y,x),再作点M关于y

由此,可进一步得到:

教师归纳:公式六、七、八、九也称作诱导公式,利用它们可以把90°±α,270°±α的三角函数转化为α的三角函数.

引导学生总结出:

90°±α,270°±α的三角函数值等于α的余名函数值,前面加上一个把α看成锐角时原函数值的符号.

上一篇:妈妈不要哭作文下一篇:中班安全教案《安全标志》