高中数学选修11学案

2022-09-27

第一篇:高中数学选修11学案

高中数学选修4-5:42数学归纳法证明不等式 学案

4.2数学归纳法证明不等式

【学习目标】

1. 会用数学归纳法证明贝努利不等式1x1nxx1,x0,nN,了解当n n

为实数时贝努利不等式也成立

2. 培养使用数学归纳法证明不等式的基本技能

【自主学习】

1. 使用数学归纳法独立完成贝努利不等式1x1nxx1,x0,nN的证n

2. 自我感悟什么样的不等式易于用数学归纳法证明?

3. 用数学归纳法证明不等式时要使用归纳假设进行放缩,如何放缩才能奏效,要积累经验,特别是出现二次式时要注意留心总结.4.对于两个数的大小的探究要提高警惕,一般探究要比较的丰富,才利于做出正确的猜测.

【自主检测】

1. 用数学归纳法证明1

12131*nnN,n1时,由n=k(k>1)时不等2n1

式成立,推证n=k+1时,左边应增加的项数是()

A.2k1B. 2k1C. 2kD. 2k1

2. 用数学归纳法证明11n1n2111nN*时,由n=k到n=k+1时,不nn2

4等式左边应添加的项是____

3.当n=1,2,3,4,5,6

时,比较2n与n2后,你提出的猜想是____

【典型例题】

111例1. 用数学归纳法证明:nN,n1 111352n1

例2. 设数列an满足an1an2nan1nN*

1.a12时,求a2,a3,a4并由此猜想an的一个通项公式

2a13时,证明对所有n1有1ann2

2例3. 已知函数gxx22xx1,fxabaxbx,

其中a、bR,a1,b1,ab,ab4对于任意的正整数n,指出fn与g2n的大小关系,并证明之

x11 +1a11a211 1an

2【课堂检测】

1.设n为正整数,fn1nN ,计算知11231n

357f2,f42,f8,f163,f32,据此可以猜测得出一般性结论为 ()222

2n1n2n2 A. f2nB. fn2C. f2nD. 以上都不对 222

n0为验证的第一个值,2.欲用数学归纳法证明对于足够大的正整数n,总有2nn3,

则() A. n01B. n0为大于1小于10的某个整数C. n010D. n02

3.用数学归纳法证明111241127,n的起始值至少应取为n126

44.等比数列an的前n项和为Sn,已知对任意的正整数n,点n,Sn均在函数

ybxr(b0,b1,b、r均为常数)的图像上.

(1)求r的值

(2)当b=2时,记bn2log2an1

nN*,证明对所有正整数n,不等式 b11b21b1b2bn1 bn

【总结提升】

1.数学归纳法依然是证明与正整数有关的不等式行之有效的方法.但在证明递推的依据是成立的时候常常需要放缩,故千万要注意不等式的基本性质和函数的单调性的作用.

2. 数学归纳法证明不等式时有时不能直接进行,常需加强命题,为此难度就比较大,且加强又不易完成.如证明1

为111223211222315nN*,n1,就可以加强2n3152nN*,n1再用数学归纳法. 2n32n1

3.不过关于n的不等式的证明不一定要用数学归纳法,有时使用函数的单调性就可以;放缩也是不可忽视的方法.

第二篇:高中数学选修2-2第二章推理与证明学案1,2

第二章推理与证明

2.1合情推理与演绎推理

2.1.1合情推理

学案编制张永国

目标定位:

了解合情推理的含义(易混点)

理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点)

了解合情推理在数学发展中的作用(难点)

一、自主学习:

归纳推理:

1.归纳推理:由某类事物的_______对象具有某些特征,推出该类事物的________对象________这些特征的推理,或者由_________概括出_______的推理,称为归纳推理.简言之,归纳推理是由________到_______、由_______到_______的推理.2.归纳推理的一般步骤:

第一步,通过观察个别情况发现____________;

第二步,从已知的相同性质中推出一个能_______________.

思考探究:

1.归纳推理的结论一定正确吗?

2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?

类比推理

1.类比推理:由两类对象具有某些类似特征和其中___________对象的某些已知特征,推出另一类对象_________这些特征的推理.简言之,类比推理是由_________到________的推理.

2.类比推理的一般步骤:

第一步:找出两类事物之间的________________;

第二步:用一类事物的性质去推理另一类事物的性质,得出__________________.

思考探究:

1.类比推理的结论能作为定理应用吗?

2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体?

(2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论?

合情推理

1.定义:归纳推理和类比推理都有是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.简言之,合情推理就是合乎情理的推理.

2.推理的过程:

思考探究:

1.归纳推理与类比推理有何区别与联系?

2.(1)由直角三角形、等腰三角形、等边三角形内角和是180°,得出所有三角形内角和都是180°;

(2)某次考试张军成绩是100分,得出全班同学成绩都是100分.以上是否属于合情推理?

二、典例剖析:

例1.根据下列条件,写出数列的前4项,并归纳猜想它的通项公式.(1)a1= 0, an1=an+(2n-1) (n∈N*);

(2) a1= 1, an1=1 a(n∈N*). 2n

自主解答:

方法技巧:

例2.已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率kPM、kPN都存在时,那么kPM与kPN之积是与点P的位置无关的定

x2y

2值,试写出双曲线221具有类似的性质,并加以证明. ab

自主解答:

方法技巧:

三、学后总结反思

2 . 1 . 2演绎推理

学案编制张永国

目标定位:

理解演绎推理的含义(重点)

掌握演绎推理的模式,会利用三段论进行简单推理(重点、难点)

合情推理与演绎推理之间的区别与联系

一、自主学习:

演绎推理的含义:

1.演绎推理是从一般性的原理出发,推出_________的结论.演绎推理又叫_______推理.2.演绎推理的特点是_____________的推理.

思考探究:

演绎推理的结论一定正确吗?

演绎推理的模式

1.演绎推理的模式采用“三段论”:

(1)大前提——已知的___________(M是P);

(2)小前提——所研究的__________(S是M);

(3)结论——根据一般原理,对特殊情况做出的判断(S是P).

2.从集合的角度看演绎推理:

(1)大前提:x∈M且x具有性质P;

(2)小前提:y∈S且SM

(3)结论__________.

思考探究:

1.把“函数y=x+2x-3的图象是一条抛物线”作为结论,用三段论表示为:大前提:_________,小前提:______,结论___________.

2.指出下面推理的大前提小前提及结论并判断是否有错误.无限小数是无理数,

22=0.6666666…是无限小数,

32是无理数. 3

演绎推理与合情推理

合情推理与演绎推理的关系:

(1)从推理形式上看,归纳是由________到_______个别到一般的推理,类比是由_________到______的推理;演绎推理是由________到________的推理.

(2)从推理所得的结论来看,合情推理的结论_____________,有待进一步证明;演绎推理在_______和___________都正确的前提下,得到的结论一定正确.

思考探究:

1.合情推理与演绎推理有什么联系.

2.指出下列推理的形式是什么?

(1)《论语》云:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民不无所措手足;所以名不正,则民无所措手足.”

(2)金、银、铜、铁都能导电,金、银、铜、铁都是金属,所以金属都能导电.

二、典例剖析:

例1.把下列演绎推理写成三段论的形式.①所有导体通电时发热,铁是导体,所以铁通电时发热;

②平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分; ③一次函数是单调函数,函数y=3x-2是一次函数,所以函数y=3x-2是单调函数.

自主解答:

方法技巧:

例2.如图所示,D、E、F分别是BC、CA、AB边上的点,∠BFD=∠A,DE∥BA,求证:DE=AF. 自主解答:

方法技巧:

例3.求证:函数ƒ(x)=- x+2x在(-∞,1)上为增函数.自主解答:

方法技巧:

三、学后总结反思:

第三篇:高中数学《2.2.1综合法和分析法》导学案 新人教A版选修1-2

§2.2.1综合法和分析法(二)

.2. 根据问题的特点,结合分析法的思考过程、特点,选择适当的证明方法. 4850

复习1:综合法是由导;

复习2:基本不等式:

二、新课导学

※ 学习探究

探究任务一:分析法

问题:

ab如何证明基本不等式(a0,b0)

2新知:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.反思:框图表示

要点:逆推证法;执果索因

※ 典型例题

1变式:求证

小结:证明含有根式的不等式时,用综合法比较困难,所以我们常用分析法探索证明的途径.

例2 在四面体SABC中,SA面ABC,ABBC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F,求证AFSC.

变式:设a,b,c为一个三角形的三边,

s1

2(abc),且s22ab,试证s2a.

小结:用题设不易切入,要注意用分析法来解决问题.

※ 动手试试

练1. 求证:当一个圆和一个正方形的周长相等时,圆的面积比正方形的面积大.

练2. 设a, b, c是的△ABC三边,S

是三角形的面积,求证:c2a2b24ab

三、总结提升

※ 学习小结

分析法由要证明的结论Q思考,一步步探求得到Q所需要的已知P1,P2,,直到所有的已知P都成立.

※ 知识拓展

证明过程中分析法和综合法的区别:

在综合法中,每个推理都必须是正确的,每个推论都应是前面一个论断的必然结果,因此语气必须是肯定的.

分析法中,首先结论成立,依据假定寻找结论成立的条件,这样从结论一直到已知条件.

※ 自我评价 你完成本节导学案的情况为().

A. 很好B. 较好C. 一般D. 较差

※ 当堂检测(时量:5分钟 满分:10分)计分:

1.

,其中最合理的是

A.综合法B.分析法C.反证法D. 归纳法

ba2.不等式①x233x;②2,其中恒成立的是 ab

A.①B.②C.①②D.都不正确

3.已知yx0,且xy1,那么

xyxyA.xy2xyB.2xyxy 22

xyxyC.x2xyyD.x2xyy 22

2224.若a,b,cR,则abcabbcac.

5.将a千克的白糖加水配制成b千克的糖水(ba0),则其浓度为;若再加入m千克的白糖(m0),糖水更甜了,根据这一生活常识提炼出一个常见的不等式:.

1. 已知ab0,

(ab)2ab(ab)2

求证

:. 8a28b

2. 设a,bR,且ab,求证:a3b3a2bab2

第四篇:11-12学年高中数学 1.3.2 函数的极值与导数同步练习 新人教A版选修2-2

选修2-2

1.3.2

函数的极值与导数

一、选择题

1.已知函数f(x)在点x0处连续,下列命题中,正确的是(  )

A.导数为零的点一定是极值点

B.如果在点x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极小值

C.如果在点x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值

D.如果在点x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极大值

[答案] C

[解析] 导数为0的点不一定是极值点,例如f(x)=x3,f′(x)=3x2,f′(0)=0,但x=0不是f(x)的极值点,故A错;由极值的定义可知C正确,故应选C.

2.函数y=1+3x-x3有(  )

A.极小值-2,极大值2

B.极小值-2,极大值3

C.极小值-1,极大值1

D.极小值-1,极大值3

[答案] D

[解析] y′=3-3x2=3(1-x)(1+x)

令y′=0,解得x1=-1,x2=1

当x<-1时,y′<0,函数y=1+3x-x3是减函数,

当-10,函数y=1+3x-x3是增函数,

当x>1时,y′<0,函数y=1+3x-x3是减函数,

∴当x=-1时,函数有极小值,y极小=-1.

当x=1时,函数有极大值,y极大=3.

3.设x0为f(x)的极值点,则下列说法正确的是(  )

A.必有f′(x0)=0

B.f′(x0)不存在

C.f′(x0)=0或f′(x0)不存在

D.f′(x0)存在但可能不为0

[答案] C

[解析] 如:y=|x|,在x=0时取得极小值,但f′(0)不存在.

4.对于可导函数,有一点两侧的导数值异号是这一点为极值的(  )

A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件

[答案] C

[解析] 只有这一点导数值为0,且两侧导数值异号才是充要条件.

5.对于函数f(x)=x3-3x2,给出命题:

①f(x)是增函数,无极值;

②f(x)是减函数,无极值;

③f(x)的递增区间为(-∞,0),(2,+∞),递减区间为(0,2);

④f(0)=0是极大值,f(2)=-4是极小值.

其中正确的命题有(  )

A.1个

B.2个

C.3个

D.4个

[答案] B

[解析] f′(x)=3x2-6x=3x(x-2),令f′(x)>0,得x>2或x<0,令f′(x)<0,得0

6.函数f(x)=x+的极值情况是(  )

A.当x=1时,极小值为2,但无极大值

B.当x=-1时,极大值为-2,但无极小值

C.当x=-1时,极小值为-2;当x=1时,极大值为2

D.当x=-1时,极大值为-2;当x=1时,极小值为2

[答案] D

[解析] f′(x)=1-,令f′(x)=0,得x=±1,

函数f(x)在区间(-∞,-1)和(1,+∞)上单调递增,在(-1,0)和(0,1)上单调递减,

∴当x=-1时,取极大值-2,当x=1时,取极小值2.

7.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点(  )

A.1个

B.2个

C.3个

D.4个

[答案] A

[解析] 由f′(x)的图象可知,函数f(x)在区间(a,b)内,先增,再减,再增,最后再减,故函数f(x)在区间(a,b)内只有一个极小值点.

8.已知函数y=x-ln(1+x2),则函数y的极值情况是(  )

A.有极小值

B.有极大值

C.既有极大值又有极小值

D.无极值

[答案] D

[解析] ∵y′=1-(x2+1)′

=1-=

令y′=0得x=1,当x>1时,y′>0,

当x<1时,y′>0,

∴函数无极值,故应选D.

9.已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则函数f(x)的极值是(  )

A.极大值为,极小值为0

B.极大值为0,极小值为

C.极大值为0,极小值为-

D.极大值为-,极小值为0

[答案] A

[解析] 由题意得,f(1)=0,∴p+q=1①

f′(1)=0,∴2p+q=3②

由①②得p=2,q=-1.

∴f(x)=x3-2x2+x,f′(x)=3x2-4x+1

=(3x-1)(x-1),

令f′(x)=0,得x=或x=1,极大值f=,极小值f(1)=0.

10.下列函数中,x=0是极值点的是(  )

A.y=-x3

B.y=cos2x

C.y=tanx-x

D.y=

[答案] B

[解析] y=cos2x=,y′=-sin2x,

x=0是y′=0的根且在x=0附近,y′左正右负,

∴x=0是函数的极大值点.

二、填空题

11.函数y=的极大值为______,极小值为______.

[答案] 1

-1

[解析] y′=,

令y′>0得-11或x<-1,

∴当x=-1时,取极小值-1,当x=1时,取极大值1.

12.函数y=x3-6x+a的极大值为____________,极小值为____________.

[答案] a+4 a-4

[解析] y′=3x2-6=3(x+)(x-),

令y′>0,得x>或x<-,

令y′<0,得-

∴当x=-时取极大值a+4,

当x=时取极小值a-4.

13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a=______,b=________.

[答案] -3

-9

[解析] y′=3x2+2ax+b,方程y′=0有根-1及3,由韦达定理应有

14.已知函数f(x)=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.

[答案] (-2,2)

[解析] 令f′(x)=3x2-3=0得x=±1,

可得极大值为f(-1)=2,极小值为f(1)=-2,

y=f(x)的大致图象如图

观察图象得-2

三、解答题

15.已知函数f(x)=x3-3x2-9x+11.

(1)写出函数f(x)的递减区间;

(2)讨论函数f(x)的极大值或极小值,如有试写出极值.

[解析] f′(x)=3x2-6x-9=3(x+1)(x-3),

令f′(x)=0,得x1=-1,x2=3.

x变化时,f′(x)的符号变化情况及f(x)的增减性如下表所示:

x

(-∞,-1)

-1

(-1,3)

3

(3,+∞)

f′(x)

+

0

-

0

+

f(x)

极大值

f(-1)

极小值

f(3)

(1)由表可得函数的递减区间为(-1,3);

(2)由表可得,当x=-1时,函数有极大值为f(-1)=16;当x=3时,函数有极小值为f(3)=-16.

16.设函数f(x)=ax3+bx2+cx,在x=1和x=-1处有极值,且f(1)=-1,求a、b、c的值,并求出相应的极值.

[解析] f′(x)=3ax2+2bx+c.

∵x=±1是函数的极值点,∴-1、1是方程f′(x)=0的根,即有

又f(1)=-1,则有a+b+c=-1,

此时函数的表达式为f(x)=x3-x.

∴f′(x)=x2-.

令f′(x)=0,得x=±1.

当x变化时,f′(x),f(x)变化情况如下表:

x

(-∞,-1)

-1

(-1,1)

1

(1,+∞)

f′(x)

+

0

-

0

+

f(x)

极大

值1

极小

值-1

由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.

17.已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.

(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;

(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.

[解析] (1)f′(x)=3ax2+2bx-3,依题意,

f′(1)=f′(-1)=0,即

解得a=1,b=0.

∴f(x)=x3-3x,

f′(x)=3x2-3=3(x-1)(x+1).

令f′(x)=0,得x1=-1,x2=1.

若x∈(-∞,-1)∪(1,+∞),则f′(x)>0,故

f(x)在(-∞,-1)上是增函数,

f(x)在(1,+∞)上是增函数.

若x∈(-1,1),则f′(x)<0,故

f(x)在(-1,1)上是减函数.

∴f(-1)=2是极大值;f(1)=-2是极小值.

(2)曲线方程为y=x3-3x.点A(0,16)不在曲线上.

设切点为M(x0,y0),则点M的坐标满足y0=x-3x0.

∵f′(x0)=3(x-1),故切线的方程为

y-y0=3(x-1)(x-x0).

注意到点A(0,16)在切线上,有

16-(x-3x0)=3(x-1)(0-x0).

化简得x=-8,解得x0=-2.

∴切点为M(-2,-2),

切线方程为9x-y+16=0.

18.(2010·北京文,18)设函数f(x)=x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两个根分别为1,4.

(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;

(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.

[解析] 本题考查了函数与导函数的综合应用.

由f(x)=x3+bx2+cx+d得f′(x)=ax2+2bx+c

∵f′(x)-9x=ax2+2bx+c-9x=0的两根为1,4.

(1)当a=3时,由(*)式得,

解得b=-3,c=12.

又∵曲线y=f(x)过原点,∴d=0.

故f(x)=x3-3x2+12x.

(2)由于a>0,所以“f(x)=x3+bx2+cx+d在(-∞,+∞)内无极值点”等价于“f

′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立”

由(*)式得2b=9-5a,c=4a.

又∵Δ=(2b)2-4ac=9(a-1)(a-9)

解得a∈[1,9],

即a的取值范围[1,9].

第五篇:11-12学年高中数学 1.3.3 函数的最值与导数同步练习 新人教A版选修2-2

选修2-2

1.3.3

函数的最值与导数

一、选择题

1.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)(  )

A.等于0

B.大于0

C.小于0

D.以上都有可能

[答案] A

[解析] ∵M=m,∴y=f(x)是常数函数

∴f′(x)=0,故应选A.

2.设f(x)=x4+x3+x2在[-1,1]上的最小值为(  )

A.0

B.-2

C.-1

D.

[答案] A

[解析] y′=x3+x2+x=x(x2+x+1)

令y′=0,解得x=0.

∴f(-1)=,f(0)=0,f(1)=

∴f(x)在[-1,1]上最小值为0.故应选A.

3.函数y=x3+x2-x+1在区间[-2,1]上的最小值为(  )

A.

B.2

C.-1

D.-4

[答案] C

[解析] y′=3x2+2x-1=(3x-1)(x+1)

令y′=0解得x=或x=-1

当x=-2时,y=-1;当x=-1时,y=2;

当x=时,y=;当x=1时,y=2.

所以函数的最小值为-1,故应选C.

4.函数f(x)=x2-x+1在区间[-3,0]上的最值为(  )

A.最大值为13,最小值为

B.最大值为1,最小值为4

C.最大值为13,最小值为1

D.最大值为-1,最小值为-7

[答案] A

[解析] ∵y=x2-x+1,∴y′=2x-1,

令y′=0,∴x=,f(-3)=13,f=,f(0)=1.

5.函数y=+在(0,1)上的最大值为(  )

A.

B.1

C.0

D.不存在

[答案] A

[解析] y′=-=·

由y′=0得x=,在上y′>0,在上

y′<0.∴x=时y极大=,

又x∈(0,1),∴ymax=.

6.函数f(x)=x4-4x

(|x|<1)(  )

A.有最大值,无最小值

B.有最大值,也有最小值

C.无最大值,有最小值

D.既无最大值,也无最小值

[答案] D

[解析] f′(x)=4x3-4=4(x-1)(x2+x+1).

令f′(x)=0,得x=1.又x∈(-1,1)

∴该方程无解,

故函数f(x)在(-1,1)上既无极值也无最值.故选D.

7.函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是(  )

A.5,-15

B.5,4

C.-4,-15

D.5,-16

[答案] A

[解析] y′=6x2-6x-12=6(x-2)(x+1),

令y′=0,得x=2或x=-1(舍).

∵f(0)=5,f(2)=-15,f(3)=-4,

∴ymax=5,ymin=-15,故选A.

8.已知函数y=-x2-2x+3在[a,2]上的最大值为,则a等于(  )

A.-

B.

C.-

D.或-

[答案] C

[解析] y′=-2x-2,令y′=0得x=-1.

当a≤-1时,最大值为f(-1)=4,不合题意.

当-1

最大值为f(a)=-a2-2a+3=,

解得a=-或a=-(舍去).

9.若函数f(x)=x3-12x在区间(k-1,k+1)上不是单调函数,则实数k的取值范围是

(  )

A.k≤-3或-1≤k≤1或k≥3

B.-3

C.-2

D.不存在这样的实数

[答案] B

[解析] 因为y′=3x2-12,由y′>0得函数的增区间是(-∞,-2)和(2,+∞),由y′<0,得函数的减区间是(-2,2),由于函数在(k-1,k+1)上不是单调函数,所以有k-1<-2

10.函数f(x)=x3+ax-2在区间[1,+∞)上是增函数,则实数a的取值范围是(  )

A.[3,+∞)

B.[-3,+∞)

C.(-3,+∞)

D.(-∞,-3)

[答案] B

[解析] ∵f(x)=x3+ax-2在[1,+∞)上是增函数,∴f′(x)=3x2+a≥0在[1,+∞)上恒成立

即a≥-3x2在[1,+∞)上恒成立

又∵在[1,+∞)上(-3x2)max=-3

∴a≥-3,故应选B.

二、填空题

11.函数y=x+(1-x),0≤x≤1的最小值为______.

[答案]

由y′>0得x>,由y′<0得x<.

此函数在上为减函数,在上为增函数,∴最小值在x=时取得,ymin=.

12.函数f(x)=5-36x+3x2+4x3在区间[-2,+∞)上的最大值________,最小值为________.

[答案] 不存在;-28

[解析] f′(x)=-36+6x+12x2,

令f′(x)=0得x1=-2,x2=;当x>时,函数为增函数,当-2≤x≤时,函数为减函数,所以无最大值,又因为f(-2)=57,f=-28,所以最小值为-28.

13.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为________.

[答案] -1

[解析] f′(x)==

令f′(x)=0,解得x=或x=-(舍去)

当x>时,f′(x)<0;当00;

当x=时,f(x)==,=<1,不合题意.

∴f(x)max=f(1)==,解得a=-1.

14.f(x)=x3-12x+8在[-3,3]上的最大值为M,最小值为m,则M-m=________.

[答案] 32

[解析] f′(x)=3x2-12

由f′(x)>0得x>2或x<-2,

由f′(x)<0得-2

∴f(x)在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增.

又f(-3)=17,f(-2)=24,f(2)=-8,

f(3)=-1,

∴最大值M=24,最小值m=-8,

∴M-m=32.

三、解答题

15.求下列函数的最值:

(1)f(x)=sin2x-x;

(2)f(x)=x+.

[解析] (1)f′(x)=2cos2x-1.

令f′(x)=0,得cos2x=.

又x∈,∴2x∈[-π,π],

∴2x=±,∴x=±.

∴函数f(x)在上的两个极值分别为

f=-,f=-+.

又f(x)在区间端点的取值为

f=-,f=.

比较以上函数值可得f(x)max=,f(x)min=-.

(2)∵函数f(x)有意义,

∴必须满足1-x2≥0,即-1≤x≤1,

∴函数f(x)的定义域为[-1,1].

f′(x)=1+(1-x2)-·(1-x2)′=1-

.

令f′(x)=0,得x=

.

∴f(x)在[-1,1]上的极值为

f=+=.

又f(x)在区间端点的函数值为f(1)=1,f(-1)=-1,比较以上函数值可得f(x)max=,f(x)min=-1.

16.设函数f(x)=ln(2x+3)+x2.求f(x)在区间上的最大值和最小值.

[解析] f(x)的定义域为.

f′(x)=2x+=

=.

当-0;

当-1

当x>-时,f′(x)>0,

所以f(x)在上的最小值为

f=ln2+.

又f-f=ln+-ln-=ln+=<0,

所以f(x)在区间上的最大值为

f=ln+.

17.(2010·安徽理,17)设a为实数,函数f(x)=ex-2x+2a,x∈R.

(1)求f(x)的单调区间及极值;

(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.

[分析] 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力.

解题思路是:(1)利用导数的符号判定函数的单调性,进而求出函数的极值.(2)将不等式转化构造函数,再利用函数的单调性证明.

[解析] (1)解:由f(x)=ex-2x+2a,x∈R知f′(x)=ex-2,x∈R.

令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:

x

(-∞,ln2)

ln2

(ln2,+∞)

f′(x)

-

0

+

f(x)

单调递减

2(1-ln2+a)

单调递增

故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),

f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).

(2)证明:设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.

由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.

于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.

于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).

而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.

即ex-x2+2ax-1>0,故ex>x2-2ax+1.

18.已知函数f(x)=,x∈[0,1].

(1)求f(x)的单调区间和值域;

(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1].若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.

[解析] (1)对函数f(x)求导,得

f′(x)==-

令f′(x)=0解得x=或x=.

当x变化时,f′(x),f(x)的变化情况如下表:

x

0

(0,)

(,1)

1

f′(x)

-

0

+

f(x)

-

-4

-3

所以,当x∈(0,)时,f(x)是减函数;

当x∈时,f(x)是增函数.

当x∈[0,1]时,f(x)的值域为[-4,-3].

(2)g′(x)=3(x2-a2).

因为a≥1,当x∈(0,1)时,g′(x)<0.

因此当x∈(0,1)时,g(x)为减函数,从而当x∈[0,1]时有g(x)∈[g(1),g(0)].

又g(1)=1-2a-3a2,g(0)=-2a,即x∈[0,1]时有g(x)∈[1-2a-3a2,-2a].

任给x1∈[0,1],f(x1)∈[-4,-3],存在x0∈[0,1]使得g(x0)=f(x1)成立,

则[1-2a-3a2,-2a]⊇[-4,-3].

解①式得a≥1或a≤-;解②式得a≤.

又a≥1,故a的取值范围为1≤a≤.

上一篇:大学生自我介绍30秒下一篇:改革开放40周年党建

本站热搜

    相关推荐