超长结构裂缝控制技术

近日,出现了许多关于超长结构裂缝控制技术的资讯,360文秘网 第一时间为您准备了这一期:第一篇:超长结构裂缝控制技术 钢筋混凝土结构的裂缝控制王铁梦 (冶金建筑研究总院 教授 博导)〔提 要〕 钢筋混凝土的裂缝控制问题是建筑工程中很重要的问题之一,特别是最近20年来,泵送商品混凝土获....

第1篇:超长结构裂缝控制技术

钢筋混凝土结构的裂缝控制

王铁梦 (冶金建筑研究总院 教授 博导)

〔提 要〕 钢筋混凝土的裂缝控制问题是建筑工程中很重要的问题之一,特别是最近20年来,泵送商品混凝土获得广泛应用之后,混凝土均质性有了很大改善的同时,裂缝控制技术难度大大增加了,本文是在大量建设实践和现场实验研究基础上,概述了变形作用引起裂缝的原因,约束变形特征,抗与放的设计准则以及综合技术措施等。

〔关键词〕 裂缝 收缩 徐变 松弛 约束 抗拉应变“抗与放” 正常使用性 综合

1.概 述

20年来,在工民建钢筋混凝土结构领域,一个相当普遍的质量问题就是结构的裂缝问题,且有日趋增多的趋势,它已影响到正常的生活和生产,并困扰着大批工程技术人员和管理人员,是一个迫切需要解决的技术难题。

由于结构在外荷载作用下的破坏和倒塌是从裂缝扩展开始的,因此人们对裂缝往往产生一种建筑破坏的恐惧感,是可以理解的。早在1932年,前苏联A. флолейт 教授的钢筋混凝土强度理论就指出,如正常配筋受弯构件的破坏状态是指受拉区钢筋到达屈服强度,受压区混凝土到达受弯的抗压强度,此状态称为承载力极限状态。这一状态全过程是伴随着荷载的不断增加,裂缝出现(钢筋应力只有40~60MPa),裂缝扩展,受压区塑性不断发展,最后达到完全破坏。此时破坏荷载往往是裂缝出现荷载时的3~5倍,因此,很多大型钢筋混凝土结构,仅仅自重就超过了极限荷载的30%,在此条件下钢筋混凝土结构带有轻微裂纹是完全正常的,结构是安全的,恐惧是不必要的。

国内外关于荷载作用下钢筋混凝土构件的设计都有自己的经验公式,并已纳入有关规范,尽管计算结果出入较大,但毕竟可以参考应用。

但是近年来大量裂缝的出现,并非与荷载作用有直接关系,通过大量的调查与实测研究证明这种裂缝是由于变形作用引起,包括温度变形(水泥的水化热、气温变化、环境生产热),收缩变形(塑性收缩、干燥收缩、碳化收缩)及地基不均匀沉降(膨胀)变形。由于这些变形受到约束引起的应力超过混凝土的抗拉强度导致裂缝,统称“变形作用引起的裂缝”。 2.裂缝的直接原因 2.1 收缩及水化热增加

自从70年代末(1978~1979年)我国混凝土施工工艺产生了巨大的进步—泵送商品混凝土工艺。从过去的干硬性,低动性,现场搅拌混凝土转向集中搅拌,转向大流动性泵送浇注,水泥用量增加,水灰比增加,砂率增加,骨料粒径减小,用水量增加等导致收缩及水化热增加。 2.2 混凝土强度等级日趋提高

建筑结构混凝土强度等级日趋提高,但有许多结构不适当的 选择了过高的强度等级。习惯上认为:“强度等级越高安全度越大,就高不就低,提高强度等级没坏处”。有时迁就施工方便,采用高强混凝土,这是一种误导,导致水泥标号增加,水泥用量增加,水用量增加,细骨料及粗骨料径偏小,砂率偏大等都使水化热及收缩增加。 2.3 结构约束应力不断增大

结构规模日趋增大,结构形式日趋复杂,超长超厚及超静定结构成为经常采用结构形式并采用现浇施工,这种结构形式有显著约束作用,对于各种变形作用必然引起较大约束应力。 2.4 外加剂的负效应

外加剂及掺合料种类繁多,只有强度指标缺乏对水化热及收缩变形影响的长期实验资料(至少一年),有些试验资料并不严格,有许多外加剂严重的增加收缩变形,有的甚至降低耐久性。 2.5 忽略结构约束

国内外结构设计中都经常忽略构造钢筋重要性,因而经常出现构造性裂缝。结构设计中经常忽略结构约束性质,不善于利用“抗与放”的设计原则,缺乏相应的设计施工规范、规程。 2.6 养护方法不当

目前在混凝土施工中采用的养护方法基本沿用过去简易的方法,这种方法已远不适应泵送混凝土的较大温度收缩变形的要求。 2.7 混凝土抗拉性能不足

这种裂缝在抗力方面都是由于混凝土抗拉性能不足(抗拉强 度和极限拉伸)引起的,这方面的材料级配研究很少。

综合上述,国际公认泵送商品混凝土对混凝土的质量(均质性)有很大的提高,对供应方式有重要的改进,但是对混凝土的裂缝控制的难度大大增加了,因此,这类问题不是我国特有的技术问题,是国际上钢筋混凝土的共性难题。 3. 大体积混凝土的定义

过去大体积混凝土的定义是根据几何尺寸,主要是根据厚度定义的,国际上一般采用0.8m~1m作为界限。自80年代以后大体积混凝土的定义有了改变,新的定义是:“任意体量的混凝土,其尺 寸大到足以必须采取措施减小由于体积变形引起的裂缝,统称为大体 积混凝土”,这是美国混凝土协会的定义。由此可见,在近代泵送商品混凝土获得广泛应用的条件下,即便是很薄的结构,虽然水化热很低,但是其收缩很大,控制收缩裂缝的要求比过去任何时候都显得非常重要。因此,泵送混凝土的薄壁结构也应当按照大体积混凝土的要求采取措施控制混凝土的收缩裂缝,特别是环境气温变化与收缩共同作用对于薄壁结构尤为不利,收缩换算为当量降温。 4. 钢筋混凝土承受变形应力的特点 4.1 “抗与放”设计准则

结构承受的约束作用分内约束(自约束)和外约束两类。结构的变形如果是完全自由的变形达到最大值,则内应力为零,也就不可能产生任何裂缝。如果变形受到约束,在全约束状态下则应力达到最大值,而变形为零。在全约束与完全自由状态的中间过程,即为弹性约束状态,亦即自由变形分解成为约束变形和显现变形(实际变形)。实际变形越大,约束应力越小;实际变形越小,约束应力越大,这种约束状态与荷载作用下的结构受力状态(虎克定律)有着根本区别。

在约束状态下,结构首先要求有变形的余地,如结构能满足此要 求,不再产生约束应力。如结构没有条件满足此要求,则必然产生约束应力,超过混凝土的抗拉强度,导致开裂。所以,提出了“抗与放” 的设计准则,应当在工程设计中,根据结构所处的具体时空条件加以灵活的应用。从结构形式的选择方面(微动、滑动及设缝措施,提供“放”的条件)及材料性能方面(提高抗拉强度、抗拉变形能力及韧性等提供“抗”的条件)采取综合措施,如抗放相结合,以抗为主或以放为主的措施。

4.2 约束内力与结构刚度的关系

外荷载作用下结构的内力只与荷载及结构几何尺寸有关,但在变形作用条件下,结构的约束内力不仅与变形作用及结构几何尺寸有关,尚与结构刚度有关,这是约束内力与荷载内力的重要区别。

例如:一个简支梁的两端受到转动的约束,当梁沿截面高度为h,承受温差ΔT时(如预制板两端焊接于屋架上弦),则梁上的

约束力矩M:

式中α——混凝土的线膨胀系数

(1)

约束力矩不仅与温差和截面高度有关,而且与梁的抗弯刚度成正比,刚度越大,约束力矩越大,这适宜于裂缝出现及扩展阶段,当然应当考虑钢筋混凝土的抗弯刚度是变化的。

当温差不断增加,钢筋混凝土构件进入极限状态时,裂缝充分发展,刚度下降并趋近于零时则力矩也趋近于零。所以,变形力矩不影响结构的极限状态,这一论断己为实验证实。但是裂缝影响使用(渗漏)及耐久性(钢筋锈蚀)。如果结构的承载力由抗剪、抗冲切作决定,变形作用引起的贯穿性裂缝可能降低承载力。 4.3 钢筋混凝土与素混凝土裂缝控制的区别

任何尚未荷载作用的混凝土,它的组合材料包括水泥、水、砂、 石、外加剂及掺合料等组分相互物理化学作用硬化成为一种多空隙复合材料,由于初始温度收缩应力作用而形成内部许多微观裂缝,这种裂缝在外力作用下不断扩展,成为宏观裂缝,继续扩展对素混凝土迅速导致破坏。

但是,对于钢筋混凝土,特别是有充分构造配筋的钢筋混凝土出现一定程度的裂缝,不会迅速导致破坏,只是限制裂缝宽度问题,使其不达到有害程度。因此,构造配筋显得十分重要,可以有效地控制裂缝的出现及分散裂缝(用许多微细无害裂缝取代少量粗大的有害裂缝)。 5. 混凝土的某些基本物理力学性质 5.1 混凝土的收缩及水化热

在工民建领域,大部分结构构件(板墙梁等构件)均属薄壁结构,泵送混凝土浇注的构件收缩量很大,因此经常出现收缩裂缝。混凝土的收缩机理至今尚未统一,但大多数的研究成果认为混凝土是具有大量孔隙的

。。

材料。孔隙的半径颇不一致,半径较小的毛细孔,半径约小于300A(A=10m)。其中水份蒸发引起孔壁压力的变化,导致混凝土体积的缩小。混凝土内除了少部分水提供水泥水化的需要,其余大部分水分都要蒸发掉,收缩变形同时发生,最终收缩完成的时间大约20年,但其主要部分的收缩是在最早的1~2年内。由于近来水泥活性和强度等级的增加,收缩量显著增加,并且拖延时间较长。影响收缩的因素很多,如水泥品种采用矿渣水泥比普通硅酸盐水泥水化热低了,但其收缩约大25%。遇到超厚的大底板或大块式基础,则水化热 起控制作用,宜选用粉煤灰水泥或矿渣水泥,所以,应根据截面的厚度分别选用不同品种的水泥。其次水泥颗粒越细,活性越大,标号越高,用量越多,其收缩越大,因此提高水泥强度的方法不应靠磨细的途径,而应当依靠改善矿物成分的办法。

众所周知,水灰比大,收缩将显著增加,同时抗拉强度降低。如水灰比为0.6的收缩比水灰比为0.4的收缩增加约40%。有时尽管水灰比不变,增加用水量,同时增加水泥量即水泥浆量,如水泥浆量为0.2(水泥浆占混凝土总重量比例)比0.4时的收缩量增加约45%。减水剂可有效的降低水灰比及用水量,而粉煤灰具有圆珠润滑效应和火山灰效应,所以“双掺技术”对泵送混凝土既可提高和易性又可减少收缩。

养护条件对混凝土的收缩影响很大,养护14天的收缩比养护3天的收缩降低约20%。环境的相对湿度越高,收缩越小,许多结构所处的环境湿度波动很大,如最低30%~40%,最高达80%~90%。环境温度越高,风速越大,收缩越大,高空浇灌容易引起开裂,如高架桥梁及桥墩。

混凝土的配筋对于收缩值起一定的约束作用,但是与配筋率的高低有关,按目前构造配筋率的情况看来,降低收缩的影响是比较小的。根据泵送商品混凝土的收缩试验,其收缩值约在6~8×10,有的试验还远远超过了这个数量,有些大桥的桥墩和高层建筑的厚壁立柱由于施工质量及过大的坍落度,形成了中部骨料多,外部或上表面砂浆厚,从而形成极不均匀的收缩,砂浆和水泥浆的收缩比混凝土的收缩大约增加2~5倍,并由于表面水份蒸发快从而形成大面积的-

4-10表面裂缝。混凝土粗细骨料的含泥量和粉料含量都增加收缩。

目前建筑市场出现了很多新型的外加剂和掺合料,质量保证主要靠强度试验的结果,几乎没有进行体积变形稳定性方面的试验,而许多材料都有增加收缩的特点,必须进行长时期准确的收缩试验,才能得到有利于控制裂缝的材料。

各种水泥的水化热试验比较容易,一般水泥厂家都已进行专门的试验,有资料可查,不在赘述。

5.2 混凝土的徐变(蠕变)因素的考虑

混凝土的徐变机理也有许多种,如弹性徐变理论、老化徐变理论、继效徐变理论等等。作为工程裂缝控制的应用,我们只能应用其中主要的成果,以常系数的形式,考虑在弹性计算的结果中,从而简化了非线形分析。由于混凝土的徐变作用,给钢筋混凝土和预应力钢筋混凝土带来有利和不利两方面的影响。从不利方面看来,它可以造成预应力损失,增加挠度,可以降低钢筋和混凝土的粘着力等。从有利方面看来,它可以使弹性的温度收缩应力大大的松弛,根据变形速率及混凝土龄期,它对应力降低的程度约0.3~0.8倍,保温保湿养护越好,降温越慢,松弛系数越小,具体数字可参考文献

1、2。 5.3 混凝土的抗拉强度及极限拉伸

泵送混凝土浇注后,其抗压强度和抗拉强度都随着时间而增长,但增长的速率,抗拉滞后于抗压,水泥标号的提高及水泥用量的增加, 对抗压强度增长较为显著,而对抗拉强度增长较小。

相对变形约束应力,混凝土的极限拉伸尤为重要,国内外曾进行过一些试验研究。例如苏联布拉茨克和克拉斯诺雅尔斯克水电站的试 验表明混凝土轴向拉伸应变值变化范围为0.5×10~1.0×10。法国鲍斯进行的轴向拉伸试验。在抗拉强度为2.05MPa时,局限拉伸值为0.9×10。美国卡普兰在轴向拉伸试验中极限拉伸值为0.81×10。前苏联齐斯克列里提出当轴向抗拉强度为1.2MPa时,极限拉伸为0.7×10。我国水工系统(研究单位和工程单位)对混凝土的极限抗拉强度也作过不少研究,并在工程中采用。如丹江工程混凝土极限拉伸值为(0.58~0.8)×10,乌江渡工程为(0.6~1.02)×10等等,极限拉伸很小,抗裂能力很弱(收缩变形超过极限拉伸5~10倍)。

冶金系统,不少设备基础,特别是高炉基础、炼钢基础,混凝土的浇注量大多在5000m以上,轧钢基础的混凝土量100000m~200000m,厚度2.5m~9.5m,长度由35m~600m,均属超长超厚的大体积钢筋混凝土,开裂后可引起钢筋的锈蚀、降低持久强度、刚度和防水性能、严重者影响自动化生产工艺。防止和控制这类基础的温度裂缝也是很重要的。为此我们在民用建筑工程中开展了混凝土轴向拉伸强度及变形性能的试验研究。

通过对双掺(减水剂及粉煤灰)混凝土的抗拉试验,发现混凝土随着荷载速率及养护条件,其极限拉伸和抗拉强度波动很大,在极慢速(接近实际温度和湿度缓慢变化速度)条件下,其极限拉伸可达(2~3)×10,显然这里包含了徐变变形,这对温度收缩应力是很有利的(在强度计算中用松弛系数乘以弹性应力与按变形计算增加极限拉伸是等同的)。

-

43

33-4

-4-4-4

-4-4-4

特别值得注意的是,混凝土中的较大含泥量及其它杂质可以明显地降低混凝土的抗拉性能,有的混凝土骨料中混入了有害膨胀物引起混凝土的崩裂,因此要求泵送混凝土必须遵循“精料供应”的原则。

合理的配筋,特别是构造配筋,细一点密一点可以提高混凝土的极限拉伸,推荐齐斯克列里经验公式:

p.a

(2) 式中 ε——混凝土的极限拉应变;

f——标准抗拉强度;

p——配筋率×100;

d——钢筋直径单位cm;

这是瞬时荷载作用下的公式,如果极慢速约束变形作 用考虑徐变作用,至少可以增加一倍。 6. 结构设计或施工中近似计算的模型选择

我国在工民建领域解决变形作用引起裂缝的问题主要是按混凝土设计规范采取设永久性变形缝的办法,根据现浇、预制、土中、室 内、露天等条件,有明确的伸缩缝许可间距规定。该规定自从50年代沿用苏联规范规定,我们当时曾多次向苏联有关单位和苏联专家咨询有关规定的依据,他们的回答:“全凭经验”,采取相似规定的还有东欧及其它一些国家。

的确,该法解决了许多工程裂缝问题,其缺点是伸缩缝止水带经常渗漏并难以维修。更重要的是在实践中发生了许多反常现象:有的工程尺寸很小,却出现了严重开裂;另外也有的工程超长而未出现明显开裂,说明设缝与否,不是决定开裂与否的唯一因素。其它如材料级配、结构约束、结构配筋、施工工艺、养护条件以及环境温湿度气象条件等综合因素都影响结构约束内力及裂缝的出现。通过实际工程裂缝反算与现场推力试验,假定结构相互连续式约束采用水平弹簧模型,弹簧侧移刚度由试验和经验给出。推导出长墙中部正截面法向拉应力,端部剪应力,伸缩缝许可间距以及一再从中间开裂的机理,见参1.2。在排架及框架约束应力分析中提出了考虑弹性抵抗作用、装配式系数、徐变影响系数、开裂刚度及利用混凝土后期强度的计算发表于1957~1958年,见参考文献

3、

4、

5、6。多年来通过裂缝处理实践近似理论计算进行了反复的校核与补充。 7. 裂缝控制设计原则与措施

钢筋混凝土结构的裂缝是不可避免的,但其有害程度是可以控制的,有害与无害的界限由结构使用功能决定的。裂缝控制的主要方法是通过设计、施工、材料等方面综合技术措施将裂缝控制在无害范围内。综合技术措施包括:合理选择结构形式,降低结构约束程度,对与水平构件梁、板、墙等采用中低强度级混凝土,加强构造配筋,如板顶部的受压区连续配筋,板的tc阳角及阴角配置放射筋,增加梁的腰筋间距200mm。优选有利于抗拉性能的混凝土级配,尽力减小水灰比、减少坍落度、降低砂率增加骨料粒径,降低含泥量及杂质含量。选用影响收缩和水化热较小的外加剂和掺合料。采取保温保湿的养护技术,尽量利用混凝土后期强度(60天)。对于超长结构可采取跳仓浇灌或后浇带方法施工。对于复杂的结构难免出现少量裂缝影响正常使用和耐久性.裂缝分为表面裂缝,浅层裂缝,纵深裂缝(深层裂缝),贯穿裂缝等。少量有害裂缝采用近代化学灌浆技术处理,满足设计使用和耐久性要求,不应因此降低工程质量评定标准。

在宝钢近百项大体积混凝土工程,上海浦东世界金融大厦、新上海国际大厦、浦贸大厦、周长1000余米的8万人体育场、民防大厦、国际网球中心、人民广场地下车库、厦门国际会展中心、青岛国际会展中心、深圳鸿基大厦转换层都是超长大体积混凝土工程,通过综合措施,都满足设计和正常使用要求。 参考文献

1. 王铁梦,建筑物的裂缝控制(M),上海科技出版社 1987.10 2. 王铁梦,工程结构裂缝控制(M)中国建工出版社 1997.8 3. 王铁梦,工业建筑温度伸缩缝研究.哈尔滨工业大学学报 1957.3 4.5.6.苏联“工业建筑”1958.10,1960.4,1960.6 7. Wang Tie Meng,Qin Quan,Li Yong Lu.An Expert System for Diagnosing Repairing C racks in

Castinplace Concrete structures Sixth Intern.Conference on Computin g in Civill

Engineering.Atlanta U.S.A,1989,9:11~13

收稿日期 2000-05-07

址 上海宝山丁家桥宝钢指挥部(201900)

话 021-56103621

Cracking Control of Reinforced Concrete Construction

Wang Tiemeng

〔Abstract〕Cracking Control of Reinforced Concrete is o ne of the most important problems in civil engineering,specially after developme nt of pumping concrete,as increased uniformity of concrete,as more difficulty of cracking control.On the bases of large amount of cracks treating experience and exprimental research,the author has summarized reason of cracking、restraint de formation characteristic、design principle“to resist” and “to release” and p ut forward comprehensive method for cracking control.

〔Key words〕Crack shrinkage creep relaxation restraint tensile strain “to resist and to release” serviceability comprehensive 

第2篇:超长结构裂缝控制

钢筋混凝土结构的裂缝控制

王铁梦 (冶金建筑研究总院 教授 博导)

〔提 要〕 钢筋混凝土的裂缝控制问题是建筑工程中很重要的问题之一,特别是最近20年来,泵送商品混凝土获得广泛应用之后,混凝土均质性有了很大改善的同时,裂缝控制技术难度大大增加了,本文是在大量建设实践和现场实验研究基础上,概述了变形作用引起裂缝的原因,约束变形特征,抗与放的设计准则以及综合技术措施等。

〔关键词〕 裂缝 收缩 徐变 松弛 约束 抗拉应变“抗与放” 正常使用性 综合

1.概 述

20年来,在工民建钢筋混凝土结构领域,一个相当普遍的质量问题就是结构的裂缝问题,且有日趋增多的趋势,它已影响到正常的生活和生产,并困扰着大批工程技术人员和管理人员,是一个迫切需要解决的技术难题。

由于结构在外荷载作用下的破坏和倒塌是从裂缝扩展开始的,因此人们对裂缝往往产生一种建筑破坏的恐惧感,是可以理解的。早在1932年,前苏联A. флолейт 教授的钢筋混凝土强度理论就指出,如正常配筋受弯构件的破坏状态是指受拉区钢筋到达屈服强度,受压区混凝土到达受弯的抗压强度,此状态称为承载力极限状态。这一状态全过程是伴随着荷载的不断增加,裂缝出现(钢筋应力只有40~60MPa),裂缝扩展,受压区塑性不断发展,最后达到完全破坏。此时破坏荷载往往是裂缝出现荷载时的3~5倍,因此,很多大型钢筋混凝土结构,仅仅自重就超过了极限荷载的30%,在此条件下钢筋混凝土结构带有轻微裂纹是完全正常的,结构是安全的,恐惧是不必要的。

国内外关于荷载作用下钢筋混凝土构件的设计都有自己的经验公式,并已纳入有关规范,尽管计算结果出入较大,但毕竟可以参考应用。

但是近年来大量裂缝的出现,并非与荷载作用有直接关系,通过大量的调查与实测研究证明这种裂缝是由于变形作用引起,包括温度变形(水泥的水化热、气温变化、环境生产热),收缩变形(塑性收缩、干燥收缩、碳化收缩)及地基不均匀沉降(膨胀)变形。由于这些变形受到约束引起的应力超过混凝土的抗拉强度导致裂缝,统称“变形作用引起的裂缝”。 2.裂缝的直接原因 2.1 收缩及水化热增加

自从70年代末(1978~1979年)我国混凝土施工工艺产生了巨大的进步—泵送商品混凝土工艺。从过去的干硬性,低动性,现场搅拌混凝土转向集中搅拌,转向大流动性泵送浇注,水泥用量增加,水灰比增加,砂率增加,骨料粒径减小,用水量增加等导致收缩及水化热增加。 2.2 混凝土强度等级日趋提高

建筑结构混凝土强度等级日趋提高,但有许多结构不适当的 选择了过高的强度等级。习惯上认为:“强度等级越高安全度越大,就高不就低,提高强度等级没坏处”。有时迁就施工方便,采用高强混凝土,这是一种误导,导致水泥标号增加,水泥用量增加,水用量增加,细骨料及粗骨料径偏小,砂率偏大等都使水化热及收缩增加。 2.3 结构约束应力不断增大

结构规模日趋增大,结构形式日趋复杂,超长超厚及超静定结构成为经常采用结构形式并采用现浇施工,这种结构形式有显著约束作用,对于各种变形作用必然引起较大约束应力。 2.4 外加剂的负效应

外加剂及掺合料种类繁多,只有强度指标缺乏对水化热及收缩变形影响的长期实验资料(至少一年),有些试验资料并不严格,有许多外加剂严重的增加收缩变形,有的甚至降低耐久性。 2.5 忽略结构约束

国内外结构设计中都经常忽略构造钢筋重要性,因而经常出现构造性裂缝。结构设计中经常忽略结构约束性质,不善于利用“抗与放”的设计原则,缺乏相应的设计施工规范、规程。 2.6 养护方法不当

目前在混凝土施工中采用的养护方法基本沿用过去简易的方法,这种方法已远不适应泵送混凝土的较大温度收缩变形的要求。 2.7 混凝土抗拉性能不足

这种裂缝在抗力方面都是由于混凝土抗拉性能不足(抗拉强 度和极限拉伸)引起的,这方面的材料级配研究很少。

综合上述,国际公认泵送商品混凝土对混凝土的质量(均质性)有很大的提高,对供应方式有重要的改进,但是对混凝土的裂缝控制的难度大大增加了,因此,这类问题不是我国特有的技术问题,是国际上钢筋混凝土的共性难题。 3. 大体积混凝土的定义

过去大体积混凝土的定义是根据几何尺寸,主要是根据厚度定义的,国际上一般采用0.8m~1m作为界限。自80年代以后大体积混凝土的定义有了改变,新的定义是:“任意体量的混凝土,其尺 寸大到足以必须采取措施减小由于体积变形引起的裂缝,统称为大体 积混凝土”,这是美国混凝土协会的定义。由此可见,在近代泵送商品混凝土获得广泛应用的条件下,即便是很薄的结构,虽然水化热很低,但是其收缩很大,控制收缩裂缝的要求比过去任何时候都显得非常重要。因此,泵送混凝土的薄壁结构也应当按照大体积混凝土的要求采取措施控制混凝土的收缩裂缝,特别是环境气温变化与收缩共同作用对于薄壁结构尤为不利,收缩换算为当量降温。 4. 钢筋混凝土承受变形应力的特点 4.1 “抗与放”设计准则

结构承受的约束作用分内约束(自约束)和外约束两类。结构的变形如果是完全自由的变形达到最大值,则内应力为零,也就不可能产生任何裂缝。如果变形受到约束,在全约束状态下则应力达到最大值,而变形为零。在全约束与完全自由状态的中间过程,即为弹性约束状态,亦即自由变形分解成为约束变形和显现变形(实际变形)。实际变形越大,约束应力越小;实际变形越小,约束应力越大,这种约束状态与荷载作用下的结构受力状态(虎克定律)有着根本区别。

在约束状态下,结构首先要求有变形的余地,如结构能满足此要 求,不再产生约束应力。如结构没有条件满足此要求,则必然产生约束应力,超过混凝土的抗拉强度,导致开裂。所以,提出了“抗与放” 的设计准则,应当在工程设计中,根据结构所处的具体时空条件加以灵活的应用。从结构形式的选择方面(微动、滑动及设缝措施,提供“放”的条件)及材料性能方面(提高抗拉强度、抗拉变形能力及韧性等提供“抗”的条件)采取综合措施,如抗放相结合,以抗为主或以放为主的措施。

4.2 约束内力与结构刚度的关系

外荷载作用下结构的内力只与荷载及结构几何尺寸有关,但在变形作用条件下,结构的约束内力不仅与变形作用及结构几何尺寸有关,尚与结构刚度有关,这是约束内力与荷载内力的重要区别。

例如:一个简支梁的两端受到转动的约束,当梁沿截面高度为h,承受温差ΔT时(如预制板两端焊接于屋架上弦),则梁上的

约束力矩M:

式中α——混凝土的线膨胀系数

(1)

约束力矩不仅与温差和截面高度有关,而且与梁的抗弯刚度成正比,刚度越大,约束力矩越大,这适宜于裂缝出现及扩展阶段,当然应当考虑钢筋混凝土的抗弯刚度是变化的。

当温差不断增加,钢筋混凝土构件进入极限状态时,裂缝充分发展,刚度下降并趋近于零时则力矩也趋近于零。所以,变形力矩不影响结构的极限状态,这一论断己为实验证实。但是裂缝影响使用(渗漏)及耐久性(钢筋锈蚀)。如果结构的承载力由抗剪、抗冲切作决定,变形作用引起的贯穿性裂缝可能降低承载力。 4.3 钢筋混凝土与素混凝土裂缝控制的区别

任何尚未荷载作用的混凝土,它的组合材料包括水泥、水、砂、 石、外加剂及掺合料等组分相互物理化学作用硬化成为一种多空隙复合材料,由于初始温度收缩应力作用而形成内部许多微观裂缝,这种裂缝在外力作用下不断扩展,成为宏观裂缝,继续扩展对素混凝土迅速导致破坏。

但是,对于钢筋混凝土,特别是有充分构造配筋的钢筋混凝土出现一定程度的裂缝,不会迅速导致破坏,只是限制裂缝宽度问题,使其不达到有害程度。因此,构造配筋显得十分重要,可以有效地控制裂缝的出现及分散裂缝(用许多微细无害裂缝取代少量粗大的有害裂缝)。 5. 混凝土的某些基本物理力学性质 5.1 混凝土的收缩及水化热

在工民建领域,大部分结构构件(板墙梁等构件)均属薄壁结构,泵送混凝土浇注的构件收缩量很大,因此经常出现收缩裂缝。混凝土的收缩机理至今尚未统一,但大多数的研究成果认为混凝土是具有大量孔隙的

。。

材料。孔隙的半径颇不一致,半径较小的毛细孔,半径约小于300A(A=10m)。其中水份蒸发引起孔壁压力的变化,导致混凝土体积的缩小。混凝土内除了少部分水提供水泥水化的需要,其余大部分水分都要蒸发掉,收缩变形同时发生,最终收缩完成的时间大约20年,但其主要部分的收缩是在最早的1~2年内。由于近来水泥活性和强度等级的增加,收缩量显著增加,并且拖延时间较长。影响收缩的因素很多,如水泥品种采用矿渣水泥比普通硅酸盐水泥水化热低了,但其收缩约大25%。遇到超厚的大底板或大块式基础,则水化热 起控制作用,宜选用粉煤灰水泥或矿渣水泥,所以,应根据截面的厚度分别选用不同品种的水泥。其次水泥颗粒越细,活性越大,标号越高,用量越多,其收缩越大,因此提高水泥强度的方法不应靠磨细的途径,而应当依靠改善矿物成分的办法。

众所周知,水灰比大,收缩将显著增加,同时抗拉强度降低。如水灰比为0.6的收缩比水灰比为0.4的收缩增加约40%。有时尽管水灰比不变,增加用水量,同时增加水泥量即水泥浆量,如水泥浆量为0.2(水泥浆占混凝土总重量比例)比0.4时的收缩量增加约45%。减水剂可有效的降低水灰比及用水量,而粉煤灰具有圆珠润滑效应和火山灰效应,所以“双掺技术”对泵送混凝土既可提高和易性又可减少收缩。

养护条件对混凝土的收缩影响很大,养护14天的收缩比养护3天的收缩降低约20%。环境的相对湿度越高,收缩越小,许多结构所处的环境湿度波动很大,如最低30%~40%,最高达80%~90%。环境温度越高,风速越大,收缩越大,高空浇灌容易引起开裂,如高架桥梁及桥墩。

混凝土的配筋对于收缩值起一定的约束作用,但是与配筋率的高低有关,按目前构造配筋率的情况看来,降低收缩的影响是比较小的。根据泵送商品混凝土的收缩试验,其收缩值约在6~8×10,有的试验还远远超过了这个数量,有些大桥的桥墩和高层建筑的厚壁立柱由于施工质量及过大的坍落度,形成了中部骨料多,外部或上表面砂浆厚,从而形成极不均匀的收缩,砂浆和水泥浆的收缩比混凝土的收缩大约增加2~5倍,并由于表面水份蒸发快从而形成大面积的-

4-10表面裂缝。混凝土粗细骨料的含泥量和粉料含量都增加收缩。

目前建筑市场出现了很多新型的外加剂和掺合料,质量保证主要靠强度试验的结果,几乎没有进行体积变形稳定性方面的试验,而许多材料都有增加收缩的特点,必须进行长时期准确的收缩试验,才能得到有利于控制裂缝的材料。

各种水泥的水化热试验比较容易,一般水泥厂家都已进行专门的试验,有资料可查,不在赘述。

5.2 混凝土的徐变(蠕变)因素的考虑

混凝土的徐变机理也有许多种,如弹性徐变理论、老化徐变理论、继效徐变理论等等。作为工程裂缝控制的应用,我们只能应用其中主要的成果,以常系数的形式,考虑在弹性计算的结果中,从而简化了非线形分析。由于混凝土的徐变作用,给钢筋混凝土和预应力钢筋混凝土带来有利和不利两方面的影响。从不利方面看来,它可以造成预应力损失,增加挠度,可以降低钢筋和混凝土的粘着力等。从有利方面看来,它可以使弹性的温度收缩应力大大的松弛,根据变形速率及混凝土龄期,它对应力降低的程度约0.3~0.8倍,保温保湿养护越好,降温越慢,松弛系数越小,具体数字可参考文献

1、2。 5.3 混凝土的抗拉强度及极限拉伸

泵送混凝土浇注后,其抗压强度和抗拉强度都随着时间而增长,但增长的速率,抗拉滞后于抗压,水泥标号的提高及水泥用量的增加, 对抗压强度增长较为显著,而对抗拉强度增长较小。

相对变形约束应力,混凝土的极限拉伸尤为重要,国内外曾进行过一些试验研究。例如苏联布拉茨克和克拉斯诺雅尔斯克水电站的试 验表明混凝土轴向拉伸应变值变化范围为0.5×10~1.0×10。法国鲍斯进行的轴向拉伸试验。在抗拉强度为2.05MPa时,局限拉伸值为0.9×10。美国卡普兰在轴向拉伸试验中极限拉伸值为0.81×10。前苏联齐斯克列里提出当轴向抗拉强度为1.2MPa时,极限拉伸为0.7×10。我国水工系统(研究单位和工程单位)对混凝土的极限抗拉强度也作过不少研究,并在工程中采用。如丹江工程混凝土极限拉伸值为(0.58~0.8)×10,乌江渡工程为(0.6~1.02)×10等等,极限拉伸很小,抗裂能力很弱(收缩变形超过极限拉伸5~10倍)。

冶金系统,不少设备基础,特别是高炉基础、炼钢基础,混凝土的浇注量大多在5000m以上,轧钢基础的混凝土量100000m~200000m,厚度2.5m~9.5m,长度由35m~600m,均属超长超厚的大体积钢筋混凝土,开裂后可引起钢筋的锈蚀、降低持久强度、刚度和防水性能、严重者影响自动化生产工艺。防止和控制这类基础的温度裂缝也是很重要的。为此我们在民用建筑工程中开展了混凝土轴向拉伸强度及变形性能的试验研究。

通过对双掺(减水剂及粉煤灰)混凝土的抗拉试验,发现混凝土随着荷载速率及养护条件,其极限拉伸和抗拉强度波动很大,在极慢速(接近实际温度和湿度缓慢变化速度)条件下,其极限拉伸可达(2~3)×10,显然这里包含了徐变变形,这对温度收缩应力是很有利的(在强度计算中用松弛系数乘以弹性应力与按变形计算增加极限拉伸是等同的)。

-

43

33-4

-4-4-4

-4-4-4

特别值得注意的是,混凝土中的较大含泥量及其它杂质可以明显地降低混凝土的抗拉性能,有的混凝土骨料中混入了有害膨胀物引起混凝土的崩裂,因此要求泵送混凝土必须遵循“精料供应”的原则。

合理的配筋,特别是构造配筋,细一点密一点可以提高混凝土的极限拉伸,推荐齐斯克列里经验公式:

p.a

(2) 式中 ε——混凝土的极限拉应变;

f——标准抗拉强度;

p——配筋率×100;

d——钢筋直径单位cm;

这是瞬时荷载作用下的公式,如果极慢速约束变形作 用考虑徐变作用,至少可以增加一倍。 6. 结构设计或施工中近似计算的模型选择

我国在工民建领域解决变形作用引起裂缝的问题主要是按混凝土设计规范采取设永久性变形缝的办法,根据现浇、预制、土中、室 内、露天等条件,有明确的伸缩缝许可间距规定。该规定自从50年代沿用苏联规范规定,我们当时曾多次向苏联有关单位和苏联专家咨询有关规定的依据,他们的回答:“全凭经验”,采取相似规定的还有东欧及其它一些国家。

的确,该法解决了许多工程裂缝问题,其缺点是伸缩缝止水带经常渗漏并难以维修。更重要的是在实践中发生了许多反常现象:有的工程尺寸很小,却出现了严重开裂;另外也有的工程超长而未出现明显开裂,说明设缝与否,不是决定开裂与否的唯一因素。其它如材料级配、结构约束、结构配筋、施工工艺、养护条件以及环境温湿度气象条件等综合因素都影响结构约束内力及裂缝的出现。通过实际工程裂缝反算与现场推力试验,假定结构相互连续式约束采用水平弹簧模型,弹簧侧移刚度由试验和经验给出。推导出长墙中部正截面法向拉应力,端部剪应力,伸缩缝许可间距以及一再从中间开裂的机理,见参1.2。在排架及框架约束应力分析中提出了考虑弹性抵抗作用、装配式系数、徐变影响系数、开裂刚度及利用混凝土后期强度的计算发表于1957~1958年,见参考文献

3、

4、

5、6。多年来通过裂缝处理实践近似理论计算进行了反复的校核与补充。 7. 裂缝控制设计原则与措施

钢筋混凝土结构的裂缝是不可避免的,但其有害程度是可以控制的,有害与无害的界限由结构使用功能决定的。裂缝控制的主要方法是通过设计、施工、材料等方面综合技术措施将裂缝控制在无害范围内。综合技术措施包括:合理选择结构形式,降低结构约束程度,对与水平构件梁、板、墙等采用中低强度级混凝土,加强构造配筋,如板顶部的受压区连续配筋,板的tc阳角及阴角配置放射筋,增加梁的腰筋间距200mm。优选有利于抗拉性能的混凝土级配,尽力减小水灰比、减少坍落度、降低砂率增加骨料粒径,降低含泥量及杂质含量。选用影响收缩和水化热较小的外加剂和掺合料。采取保温保湿的养护技术,尽量利用混凝土后期强度(60天)。对于超长结构可采取跳仓浇灌或后浇带方法施工。对于复杂的结构难免出现少量裂缝影响正常使用和耐久性.裂缝分为表面裂缝,浅层裂缝,纵深裂缝(深层裂缝),贯穿裂缝等。少量有害裂缝采用近代化学灌浆技术处理,满足设计使用和耐久性要求,不应因此降低工程质量评定标准。

在宝钢近百项大体积混凝土工程,上海浦东世界金融大厦、新上海国际大厦、浦贸大厦、周长1000余米的8万人体育场、民防大厦、国际网球中心、人民广场地下车库、厦门国际会展中心、青岛国际会展中心、深圳鸿基大厦转换层都是超长大体积混凝土工程,通过综合措施,都满足设计和正常使用要求。 参考文献

1. 王铁梦,建筑物的裂缝控制(M),上海科技出版社 1987.10 2. 王铁梦,工程结构裂缝控制(M)中国建工出版社 1997.8 3. 王铁梦,工业建筑温度伸缩缝研究.哈尔滨工业大学学报 1957.3 4.5.6.苏联“工业建筑”1958.10,1960.4,1960.6 7. Wang Tie Meng,Qin Quan,Li Yong Lu.An Expert System for Diagnosing Repairing C racks in

Castinplace Concrete structures Sixth Intern.Conference on Computin g in Civill

Engineering.Atlanta U.S.A,1989,9:11~13

收稿日期 2000-05-07

址 上海宝山丁家桥宝钢指挥部(201900)

话 021-56103621

Cracking Control of Reinforced Concrete Construction

Wang Tiemeng

〔Abstract〕Cracking Control of Reinforced Concrete is o ne of the most important problems in civil engineering,specially after developme nt of pumping concrete,as increased uniformity of concrete,as more difficulty of cracking control.On the bases of large amount of cracks treating experience and exprimental research,the author has summarized reason of cracking、restraint de formation characteristic、design principle“to resist” and “to release” and p ut forward comprehensive method for cracking control.

〔Key words〕Crack shrinkage creep relaxation restraint tensile strain “to resist and to release” serviceability comprehensive 

第3篇:超长距通信技术论文

超长站距光传输技术及其在电力系统的运用分析

【摘要】众所周知,当前超长站距光传输技术的应用前景非常广阔,因此,有必要分析和探讨其在电力系统中的应用。基于此,这篇文章主要从三个方面对其运用进行分析,首先分析超长站距光传输三个主要技术,其次对其具体应用进行探讨,最后,将其在电力系统中应用的注意事项阐述出来,希望给有关机构提供参考与借鉴。

【关键词】超长站距光传输技术;电力系统;光放大技术;色散补偿技术

在社会经济不断进步与发展的今天,电力能源发挥的作用越来越重要。由此判断未来在建设电网工程中,对于大容量和长距离会提出更高要求,在这样的背景条件下,超长距离光传输技术应运而生,它符合未来电网技术发展趋势,能够有效满足各种需求。但是当前在多种因素影响和作用下,其应用还存在一些问题,导致其应有的价值和功能没有得到充分发挥,很大程度上影响国家整体电网建设。

1. 超长站距光传输技术分析

1.1. 超长站距光传输系统主要指标

1.1.1. 发送光功率

一般2.5GSDH系统光卡的发光功率在0dBm左右,通过增加增益来提升发送光功率,从而达到延长传输距离的目的。

1.1.2. 接收灵敏度

满足误码要求条件下的最小接收光功率,目前市场上常见的SDH系统大多是标准化产品,OPA接收灵敏度一般为-38dBm。

1.1.3. 系统色散容限

在长距离传输系统中,传输距离受限于系统的色散容限。最大距离≤系统色散容限/光缆色散系数。如果这个最大距离不能满足应用要求,就需要进行色散补偿。

1.2. 光放大器技术分类

光放大器是一种不需要经过光/电/光的变换而直接对光信号进行放大的有源器件,能高效补偿光功率在光纤传输中的损耗,延长通信系统的传输距离,扩大用户分配网覆盖范围,是新一代的长距离、大容量、高速光通信系统和光纤CATV、用户接入网等光纤传输系统的关键部件。至今已经研制出的光放大器有两类,即光纤放大器和半导体放大器,每类又有不同的应用结构和形式。如表1所示

相比之下,掺铒光纤放大器(EDFA)得到了最为广泛的应用,在SDH和WDM系统中,使用最多的也是掺铒光纤放大器。

1.2.1. 掺铒光纤放大器

研究发现,在石英光纤的芯层之中,如果掺入一些三价稀土金属元素,如Er(铒)、Pr(镨)、Nd(钕)等,即形成了一些特殊的光纤,这种光纤在泵浦光的激励下可放大光信号。目前应用最为广泛的是掺铒光纤放大器(EDFA),其特点是高增益、低噪声、能放大不同速率和调制方式的信号,并能在近几十纳米范围内同时放大多波长信号,对偏振不敏感。

1.2.2. 拉曼放大技术拉曼

此技术以光学中拉曼散射效应影响非线性规律为基础研究制作而形成,传输的强泵浦光波拉曼增益影响光线中弱信号,从而使放大过程得以实现。与此同时,借助光纤本身放大作用,拉曼放大技术无需有针对性的降低光纤功率,就可以有效放大光传输。此技术的优点非常明显,它的适用性非常广泛,能够在所有不同规格光纤中得到应用,因此,现阶段在通信工程光纤放大传输中此技术得到广泛应用。

1.2.3. 色散补偿技术

色散影响中继距离,这是因为传输脉冲受到色散影响之后会变宽,进而有脉冲码间干扰发生。想要将色散克服掉,就要将色散补偿技术应用于超长站距光传输系统中。现阶段,最常用的色散固定式器件有补偿色散光纤(简称DCF)和光纤光栅(简称C-FBG)。对于DCF而言,它的器件带非常宽,可以补偿各个波长,然而,它的补偿值具有单一性特征,不能对波长色散进行有效准确控制。C-FBG就是顺着光纤方向逐步缩短光栅周期,它的补偿具有针对性,波长不同,补偿也有差异,此种补偿方式在未来有广阔的发展前景。

2. 电力系统应用超长站距光传输技术

2.5Gbit/s是电力系统通信光纤线路的一般传输速率,接下来以此为根据,提出210km及275km两种站距下的应用方案。最常应用的光纤是G.652,其衰减系数通常在一定范围内,具体工程实践中可以将其看作为0.21dB/km。在超长站距的光方法系统设计时,通常需要考虑衰减限制的再生段距离计算和色散限制的再生段距离计算。

衰减限制的再生段距离计算采用ITU-T建议G.691最坏值法,按下式进行计算:L=(Ps-Pr-Pp-ΣAc-Mc)/(Af+As)。对于色散受限系统,色散受限最坏值计算方法为:L=Dmax/|D|(光缆型号G.652,色散系数|D|取18ps/nm.km)。

210km跨距及275km跨距的传输跨段损耗计算如表2所示,传输跨段设计拓扑如图1所示:

系统配置 OEO8000ps EFEC/nm,前置放大器PA;19dB增益光放BA;(19+38) OEO8000ps EFEC/nm,前置放大器PA;19dB增益光放BA;RA拉曼放大器;(19+52)

3. 超长距光传输技术应用的注意事项

第一,在建设电力通信工程过程中,必须要从实际情况出发,以实际通信网络发展情况及规划为依据,对站距进行科学设计。防止过度重视超长,反而对匹配技术有所忽视,从而造成光传输中产生中断信号情况,最终对电力系统正常运行产生不利影响。

第二,科学合理掌控入纤光功率。如果入纤光具有较大功率,就会导致光纤变热,对光纤造成损害。对于连接活动器而言,其光功率大于20dBm时,就会使损坏危险产生。在计算和设计电力系统通信工程过程时,控制功率富余度十分关键,保持10dMb以下功率具有必要性和重要性。

第三,提高应用拉曼放大器应用力度,增加应用遥泵放大器试点。当前拉曼放大器具有较成熟的应用案例,设备价格也出现一定程度下降趋势,在保证电力系统具有高度稳定性和可靠性基础上,可以进行广泛应用。

第四,对各个器件包括拉曼、色散、遥泵等模块进行规范化和标准化管理。现阶段,一些销售拉曼等器件的厂家,同时绑定光端设备进行销售,却不能兼容其他厂家光端设备,从而不利于组网系统和管理网络,使工程投入资本大幅度提升。

第五,促進各个光放器件网络监管功能的提升。在标准化、规范化这些器件条件下,还要增加通用网管接入性能,对于网络管理而言,能够对工作状况进行全过程监控,同时其配置具有动态化特点,可以对色散、功率值进行改进,从而有利于更加灵活的建设网络。

4.结束语

综上所述,在电力系统中运用超长站距光传输技术意义重大,一方面能够满足未来电网不断发展的需求,另一方面其应用前景十分广阔。当前在应用过程中仍然存在一些不足,这就需要相关人员从实际情况出发,对色散补偿技术和相关放大技术进行科学合理化处理并对其应用要求进行满足,同时将数值控制工作做好。全面推广和应用超长站距光传输技术,促进电力系统的持续、健康发展。

参考文献:

[1]吴广哲,李伟华,吴珍,等.基于高阶泵浦的10Gbps超长站距光传输系统研究与测试[J].电力信息与通信技术,2017,15(10):1-7.

[2]王峰,邹德生,张晓静,等.超长站距光通信技术在电力系统中的应用分析[J].中国新通信,2018,20(13):25.

[3]李园喜.光传输网络设备的对接与维护技术[J].中国新通信,2020,22(13):33.

作者:陆华 黄传峰

第4篇:混凝土建筑结构裂缝控制的技术措施

建筑施工过程中, 会受到一些因素的影响, 在施工中出现裂缝质量问题, 裂缝质量问题对建筑的整体质量有着很大影响, 加强裂缝质量问题的解决就显得比较重要。通过从理论上深化混凝土建筑结构裂缝控制的研究, 就能为实际裂缝控制提供理论支持。

1. 混凝土建筑结构裂缝类型和存在的原因分析

混凝土建筑结构的施工中, 裂缝质量问题是比较常见的, 裂缝的类型比较多, 裂缝产生的原因也就比较多, 对裂缝的类型和产生的原因进行分析就显得比较重要。混凝土建筑结构裂缝类型中, 干缩裂缝是比较突出的裂缝类型[1]。在对混凝土建筑施工养护阶段, 混凝土中的水分蒸发就比较容易出现干缩的现象, 在蒸发的速度比较快的时候, 就会形成混凝土表面干缩变形的质量问题, 在裂缝的表现形式上为浅细裂缝, 有的会呈现出平行线状或者是网状的裂缝形式。这些干缩裂缝的产生就会对混凝土结构的质量产生影响。

混凝土建筑结构的裂缝类型当中, 结构性裂缝也是比较常见的, 在对混凝土浇筑施工中, 在外界的荷载下产生。对不同的受力情况也会有不同的类型, 其中的荷载裂缝就是比较重要的结构性裂缝内容, 主要是混凝土结构在受到了外力作用下, 使得混凝土的表面和内部产生了拉应力, 而一旦混凝土的表面不能承受这一拉应力的时候, 就会产生裂缝。产生的荷载裂缝类型也比较多, 其中有弯矩裂缝以及剪切裂缝等等, 其中的弯矩裂缝主要是弯矩造成。在结构性裂缝类型中, 沉降裂缝也是重要形式之一, 这是建筑的地基条件因素影响下造成的, 地质的土质松软以及不均匀等所致。

混凝土建筑结构裂缝产生的原因, 在施工材料的因素影响下, 就会出现裂缝。施工材料的质量和整体施工质量有着紧密的联系, 如果不能有效保障施工材料的质量, 就必然会在混凝土施工中难以保障质量。对施工材料的选择以及应用方面, 没有注重混凝土原料的质量控制, 对原料的粒径没有严格控制, 水泥的含量没有符合标准等, 这些都比较容易在混凝土施工后产生裂缝质量问题。

另外, 受到施工因素的影响, 没有注重施工工艺的科学把握, 在施工中对混凝土浇筑没有采取科学方法, 这就比较容易产生裂缝。对混凝土的运输以及搅拌和浇筑的时候, 在各环节的质量控制没有重视, 例如混凝土浇筑的不连续等, 这就比较容易造成裂缝质量问题。

2. 混凝土建筑结构裂缝控制技术实施

2.1 从原材料质量控制着手

混凝土的建筑结构裂缝的控制需要采取科学的方法加以应用, 在对建筑施工的原材料质量控制方面要充分重视, 这是控制混凝土裂缝的重要举措。混凝土建筑结构裂缝的产生, 其中很大程度上受到原材料质量的因素影响, 所以在这一环节的质量控制上要加强实施[2]。对混凝土原材料的选择中, 要对设计的要求基础得以满足, 对水泥的选择可选择水化热能量相对比较低的原料, 对建筑施工质量要求满足的基础上, 对水泥的各项指标以及性能的检测要充分重视, 保障原材料的质量, 这样才能减少裂缝质量问题的出现, 对裂缝质量问题有效控制。

2.2 建筑混凝土结构设计优化

建筑混凝土结构的设计过程中, 在结构设计方面是比较重要, 结构的科学化设计, 也能有助于裂缝的有效控制。墙体的施工受到环境因素影响比较大, 如果在结构设计方面如果没有充分重视环境温湿度的因素, 就比较容易出现纵向收缩裂缝。所以具体的结构设计, 就要能增加附加筋, 进一步增强抗裂的能力, 在构造筋的间距方面要能小于150毫米, 配筋率要能在0.6%左右[3]。在结构设计层面得到了优化, 就能有助于裂缝的控制。

2.3 注重具体裂缝的控制

建筑混凝土结构施工中, 裂缝的控制技术应用, 就要能针对性控制。例如在对干缩性裂缝的控制过程中, 就要对混凝土的搅拌以及施工的配合比科学化, 能和实际的设计要求相契合, 对混凝土的用水量也要能有效控制, 掺加减水剂对用水量进行控制。在对混凝土的养护工作方面加强重视, 在混凝浇筑完成之后, 在养护工作的实施方面, 可在混凝土表面进行增加草甸以及麻片等, 对混凝土表面和内部的温度差不能过大, 保持混凝土表面的湿润性[4]。这些都有助于裂缝的有效控制。例如对温度裂缝的控制, 就要选择低热量的水泥, 可选择粉煤灰水泥以及硅酸盐水泥等, 这样就能有助于减少裂缝问题的出现。在对这些方法措施的实施下, 就能最大程度的对裂缝质量问题进行控制。除此之外, 对混凝土结构裂缝的控制, 要在混凝土的浇筑施工方面充分重视, 保持混凝土浇筑的连续性等。这样就能有助于保障混凝土结构的质量。

3. 结语

综上所述, 建筑混凝土结构的施工过程中, 对结构的裂缝质量控制就显得比较重要, 只有充分重视裂缝控制的方法应用, 才能保障实际裂缝控制效果良好呈现。通过从理论上对裂缝控制的研究, 希望能对实际的裂缝控制起到促进作用。

摘要:现阶段我国的建筑领域发展比较迅速, 对混凝土建筑结构的施工要求也有着提高, 充分重视施工质量的控制, 在施工结构裂缝的质量控制方面进行加强, 就成为施工质量提高的重要基础。本文主要就混凝土建筑结构裂缝类型和存在的原因进行分析, 然后结合实际对裂缝控制的措施实施详细探究。

关键词:混凝土,结构裂缝,施工技术

参考文献

[1] 王杰.《防止多高层混凝土建筑渐次倒塌的设计与分析》将出版[J].工业建筑, 2016 (02)

[2] 李龙.混凝土建筑和技术之最[J].建筑技术通讯, 2015 (01)

[3] 李翔, 文俊, 王聚浩.浅析混凝土建筑工程建造财政管理[J].河北农机, 2013 (02)

[4] 闫兴旺.混凝土建筑结构裂缝存在的原因及其控制措施[J].中国新技术新产品, 2016 (06)

第5篇:砌体结构裂缝控制措施

砌体结构裂缝成因及有效控制研究工学论文

摘要:通过分析砌体结构裂缝的类型和形成机理,从设计、选材、施工、监控、加固等几个方面探讨了有效控制裂缝产生和发展的措施。

关键词:砌体结构,裂缝;类型;机理;控制措施

1 砌体结构裂缝的类型及成因

1.1 地震裂缝

地震对砌体结构的影响十分大,通常造成墙体出现水平裂缝、斜裂缝、“X”形裂缝,严重的出现歪斜甚至倒塌。水平裂缝是由于墙肢较窄,在地震作用下墙体受弯、受剪的缘故。在大开间的纵墙上。窗间墙的上下端会产生的。斜裂缝一般属于主拉应力超过砌体强度所引起的剪切破坏现象,墙体开裂后出现滑移、碎落等现象,直至局部倒塌、压塌。“X”形裂缝由于建筑物墙体受地震反复作用,由斜裂缝发展而来。

1.2 温度裂缝

由于砖砌块与混凝土楼板的温度线膨胀系数相差很大。当温度升高时,混凝土顶盖变形大。墙体变形相对较小。导致砖砌体和混凝土屋盖之间产生约束应力。屋盖受压、墙体受拉受剪开裂。当砌块材料为混凝土砌块时,由于混凝土砌块的强度比砖砌块少得多,更容易引起墙面开裂。裂缝形态有门窗洞边的“八”字斜裂缝、山墙上部的斜裂缝、平屋顶下或屋顶圈粱下沿砖(块)灰缝的水平裂缝以及水平包角裂缝。

1.3 收缩裂缝

干涨湿缩是自然界的普遍现象,组成砌体结构的各组成材料的含水率不同,受干涨湿缩影响也不协调,因此产生了各种收缩裂缝。收缩裂缝的形态有,在墙体中部出现的阶梯形裂缝,环块体周边灰缝的裂缝;在外墙的窗下墙出现竖向均匀裂缝,山墙等大墙面出现的竖向、水平向裂缝。

1.4 结构超载裂缝

随着结构使用功能的转变和砌体材料强度的降低,加之砂浆和砖这两种材料的弹性模量、横向变形和强度不相同。当外部荷载超过结构的极限状态而形成了受压、受拉和受剪裂缝等破坏形态。

1.5 地基不均匀沉降裂缝

一般情况下,地基受到上部传递的压力,引起地基的沉降变形呈凹形,从而导致地基反力在边缘区较高。这种沉降使建筑物形成中部沉降大、端部沉降小的弯曲,产生正弯距。结构中下部受拉,端部受剪,特别是由于端部地基反力梯度很大,端部的剪应力很大,墙体由于剪力形成的主拉应力破裂,裂缝呈正八字形。此外,当地基中部有回填砂、石,或中部地基坚硬而端部软弱,或由于荷载相差悬殊,建筑物端部沉降大干中部时,会形成负弯距。主拉应力将引起墙体的斜裂缝或倒八字裂缝。局部的沉降不均不仅可以引起斜裂缝,由于垂直沉降还可能引起砌体的水平裂缝。

2 砌体结构裂缝控制的措施

裂缝导致砌体房屋承载能力和抗震性能大大降低,势必会影响了建筑物的使用功能和安全性。新建的砌体房屋必须考虑抗震防裂因素,已经产生裂缝的砌体房屋必须通过评估、加固措施进行裂缝控制,以免危及人们生命财产安全。

2.1 结构选型

合理选择砌体结构的受力体型对控制裂缝具有十分重要的意义,在地震裂缝的控制上尤为重要。砌体房屋概念应做到:房屋体型宜规整、简单;横纵墙布置要得当、刚度分布较均匀;设置必要的圈梁和钢笳混凝土构造柱或芯柱,楼梯间和大开间房屋的结构考虑抗扭因素。 2.2 地震裂缝控制要点

建筑物要完全避免地震裂缝是完全做不到的。只能采取适当措施,做到小震不裂或少裂、大震不倒,建筑设计时,应根据本地区抗震等级合理进行抗震设计;施工时保证必要的构造要求和施工质量;合理设置抗震缝。

2.3 温度裂缝控制要点

温度裂缝的控制关键是设置伸缩缝。尽可能消除热胀冷缩源头,伸缩缝的设置需满足《砌体结构设计规范》。同时应通过提高砂浆强度、提高饱满度、空斗改实砌、加筋砌体、加设构造柱等方式增强砌体的承载能力。对于主体结构上设置好的伸缩缝,在后期的装饰工程、设备安装等环节不能掩埋、填塞伸缩缝。

2.4 收缩裂缝控制要点

物体的干涨湿缩现象不仅与周围环境相关,而且与物体本上的物理性质尤其是含水率等密切相关。为控制好砌体结构的收缩裂缝,首先要在材料性质上把好关,材料须符合规范要求;同时在墙的高度、厚度不大于离相交墙或转角墙允许接缝距离之半突然变化处及门、窗洞口的一侧或两侧设置竖向控制缝;控制缝宜做成隐式,与砌体的灰缝相一致,控制缝的宽度不大于12mm,控制缝内应用弹性密封材料。

2.5 结构超载裂缝控制要点

砌体房屋的功能不能随意改变,不能在楼面上随意安放设备、施加动力荷载;不能随意改变砌体房屋的受力形式,尤其是不能破坏承重结构;对于房龄较长的砌体房屋,要适当减轻楼(屋)面荷载,以免房屋产生超载裂缝。

2.6 地基不均匀沉降裂缝控制要点

对于不均匀沉降导致的裂缝应以预防为主,把好设计和施工质量关。具体做法为;在建筑物平面转折处、建筑高度荷载突变处、结构类型不同处以及地基土软硬交界处设置沉降缝;适当减轻结构自重;通过设置封闭圈梁和构造柱,特别是增强顶层和底层圈梁、合理布置纵横墙、采用整体性好、刚度大的基础形式等增强建筑物的刚度和强度;减小或调整基底的附加应力改变基础地面尺寸使不同荷载的基础沉降量接近;荷载变化较大的房屋,应分期分阶段组织施工;施工时先建荷载大的高层,后建荷载较小的低层先建深基础,后建浅基础,避免增加新的附加应力;观测裂缝发展的速度、部位、程度,决定是表面处理还是上部加固或基础加固处理。

3 结语

砌体结构具有抗压性能好,保温、耐火、耐久性能好。经济适用,取材和施工方便,便于管理维护等优点,在工业和民用建筑的承重结构和维护结构中仍具有十分广阔的应用前景。对于砌体结构的裂缝我们不能小视,应能尽早发现尽早处理。

【超长结构裂缝控制技术】相关文章:

砌体结构裂缝产生控制02-03

混凝土结构裂缝控制08-14

影响裂缝控制的建筑结构论文04-29

浅论关于砌体结构裂缝控制措施09-10

关于砌体结构裂缝控制措施的建议09-29

分手后的伤感说说超长11-15

工民建中钢筋混凝土结构裂缝的控制措施09-20

对混凝土结构工程裂缝控制探析09-10

工民建中钢筋混凝土结构裂缝的控制措施09-11

qq伤感超长超拽网名09-28