认识生活中的电磁辐射

2023-02-13

第一篇:认识生活中的电磁辐射

生活中的电磁辐射研究性学习结题报告

指导老师:朱正瑞老师牛选民老师

课题组长:刘晓玲张永福王亚娟王建成吴玲贺新元 课题组成员:高二五班70名学生

开题时间:2012. 03结题时间:2012.05

一、课题研究背景

进入21世纪,随着电子技术的发展,架设的电源线越来越多,电视,电脑,移动电话,微波炉走入我们的生活,为我们的生活带来了极大的便利,同时也使波长更长,频率在30000MHz内的电磁辐射充斥着我们的空间,破坏了良好的电磁生态环境,构成了现代社会新的“隐型杀手”。电磁辐射无处不在,电磁辐射对人们日常生活的影响也无处不在.但大部分人们都还没意识到它所存在危害性。因此,我们选择该课题进行研究,我们主要研究了使用电脑过程中产生的电磁辐射及其危害,我们希望从中可以学到知识,但我们更希望通过我们的研究,可以寻找出更好的防辐射的方法,给人们以帮助。

二、课题研究的目的及其意义

课题旨在对电磁波的各方面进行学习:通过观察和查阅资料,了解电磁波的产生及传播途径,了解其对我们的影响;通过对电与磁的探究,了解其在我们生活中的用途;经过分析和讨论,阐述它的害处并针对这些害处讨论相应的防辐措施,整理成文稿形式,与同学们分享研究心得。

三、研究成果

1、研究电磁辐射的内涵:电磁辐射是指能量以电磁波形式由源发射到 1

空间的现象。

2、电磁辐射的来源:主要有天然辐射(天然的电磁辐射来自于地球的热辐射,太阳热辐射,宇宙射线,雷电等)和人工辐射(人工电磁辐射来自于广播,电视,雷达,通信基站及电磁能在工业,科学,医疗和生活中的应用设备)。

经过我们小组的调查,我们了解到日常生活中常见的有较强的电磁辐射的电器主要有:手机、电脑、微波炉、电冰箱、电视等电器

3、电磁辐射的危害:电磁辐射对人体的危害主要有四大点:

(1)、诱发基因突变、促使变异细胞产生(1.皮肤衰老加快。2.白血病在内的各种恶性肿瘤增加。3.T淋巴细胞活性降低、B淋巴细胞活性降低导致白血病在内的各种恶性肿瘤增加。4.精子活性降低、数量减少导致不孕症。5.胚胎细胞产生大量变异细胞导致胚胎发育不良、孕妇流产率升高、畸胎发生率升高)

(2). 激素分泌紊乱(

1、肾上腺素、去甲肾上腺素分泌减少导致抗损伤能力降低。

2、垂体分泌生长激素减少导致发育迟缓。

3、甲状腺及旁腺分泌出现异常导致发育障碍、骨代谢异常。

4、松果体细胞产生松果体素少导致免疫力降低、生物钟紊乱。)

(3). 神经衰弱(

1、头痛、头晕。

2、失眠、健忘、多梦。

3、食欲差、心悸、心律失常。) 四. 热效应(

1、影响中枢神经系统,导致头痛、头晕、乏力、嗜睡。

2、眼中晶状体变混浊导致白内障甚至双目失明)

4、如何预防电磁辐射对我们人体的伤害?这是我们小组研究的一个重点,经过我们小组的研究与调查,总结出防辐射主要从6方面入手:。

(1)别把家用电器都集中在一起使用。

(2)假如有应用手册,应根据指示规范,保持安全操作距离。

(3)尽量避免长时间操作。

(4)保持室内空气流通。

(5)当电器不使用时,最好把电源关掉,而不是让它处于备用状态,这样不仅可以省电,还可以减少微量电磁辐射的累积。

(6)多食富含维生素C的食物,以利于调节人体电磁场紊乱。

5、电脑造成的电磁辐射

电脑是一项划时代的发明,它给人们带来了工作、学习、生活上的种种方便,但随之也带来了忧虑,人们或多或少地担心长期从事电脑工作对身体健康的影响,如电脑辐射会不会对人体产生损伤。为更好的了解电脑释放的电磁辐射的危害和我们应采取的防治措施,我们对电脑的相关问题在高二年级展开了调查,经过我们小组的调查,我们了解到大多数人都知道电脑有电磁辐射,并提出了电磁辐射的防治措施。总结如下:

(1)在电脑桌旁放一盆仙人掌,仙人掌可以吸收电脑释放出来的电磁辐射;

(2)身体处于屏幕71厘米以外的地方,接受的电磁辐射就会大大减少;

(3)不要在电脑后面或两侧安置工作台,因为电脑的后背或两侧发出的电磁辐射要远远大于前面的屏幕等。

四、课题研究的实施过程

本课题在两位老师的大力支持和全体课题组成员的共同努力下,经

过一个半月的不断探索和实践,已形成了阶段性的成果,下面介绍一下本课题的研究实施过程和取得的一些成效。我们在进行本课题研究时,大致分为四个阶段:

第一阶段(2012年3月上旬) 准备阶段:

制定课题计划,落实人员分工,邀请老师对课题研究方案设计进行论证,组织人员学习课题研究的理论,明确课题研究的目的和意义。

第二阶段(2012年3月中旬) 初步研究阶段:

由于刚接触这个课题,所以我们对电磁辐射的有关情况了解不多,为了方便我们更好的研究电磁辐射,我们首先通过上网查找什么是电磁辐射并了解电磁辐射的来源,通过研讨课、讨论座谈、资料分析等形式的开展研究活动,及时发现研究中的问题,调整和改进研究的方案,计划,及时做阶段性总结,初步形成研究氛围。

第三阶段(2012年3月下旬到4月上旬) 全面研究阶段:

在前阶段的基础上,我们这次重点研究电磁辐射对生活的影响和对我们人体的伤害,以及我们应该采取哪些预防电磁辐射的措施。为了更利于我们的研究,我们在高二年级做了一份问卷调查。并对研究过程中出现的问题及时地进行研究、评估与改进,撰写研究论文。

第四阶段(2012年4月中旬) 总结评估鉴定阶段:

完成了对电磁辐射的探讨和研究,我们就对我们小组讨论的内容和结论作出总结,并收集与课题有关的资料,进行整理分析,撰写研究报告,邀请老师进行课题鉴定。

五、课题研究所取得的成果及评价

在课题研究的过程中,以课题组成员为核心,我们成功的完成了关于电磁辐射的研究,了解了电磁辐射的来源和影响并提出了我们小组经讨论过后的防辐措施。在课题的研究过程中,各成员分工明确,互相合作,互相帮助收集电磁辐射的相关资料,整理一些零碎的资料,对有电磁辐射的电器进行分类。各成员积极参与小组讨论,提出自己对预防电磁辐射的意见等。

六、研究中存在的主要问题

目前,我们虽然针对本课题研究做了一些可谓扎实、有效的研究工作,也取得了一些成绩,但是,我们都清晰的认识到在研究过程中还有许多问题值得反思和改进。

1、人们对生活中存在的电磁辐射的认识还有待进一步提高。

2、预防电磁辐射的措施有些较为理论,不太切合实际。

七、研究心得

在这短短几个月的研究性学习中,我们碰到了许多的坎坷.无论在意见分歧上还是任务分工上,都遇到许多阻碍.但是最后在大家讨论研究下,问题终于迎刃而解.这使我们深切体会到合作,团结与责任的意义.每个人的想法,意见都各不相同,会引起组员意见分歧.然而这恰恰给我们的研究性学习起了重要的作用.因为一个人的思想是比较狭窄的,而大家取长补短,互相帮助得到的结果才是最完美的.所谓”三各臭皮匠,顶一个诸葛亮.”而且研究性学习不是一个人或两个人的事,它是需要整组成员抱着一颗责任心去合作,去团结的.

我们达到了研究性学习的目的。天上不会掉馅饼,研究性学习也一

样,没有现成的学习内容,固定的模式,惟一的方法。这也使我们的研究学习更具难度更加丰富。这从中就是对我们学习能力的提高及开拓我们创新精神的另一种考验。在这次从主题制定,素材收集,走访调查,书籍与网络的结合利用,增强了我们的综合素质水平,在这个阶段中,我们体验到了团结互助,分工合作的快乐。

它锻炼了我们锲而不舍的精神。在实际研究调查过程中,我们会遇到一些难题,如问卷调查中的人际交流方面,如何使对方简单正确了解我们的意图,配合我们的调查等。这时总会遇到一些资料与实际情况并不相符合,使得我们必须亲力亲为。自己去实地调查资料等。在这些困难面前我们有时忙得焦头烂额都无法解决,很多时候想过放弃,但在组员之间的互相帮助与鼓励下,最终还是使问题迎刃而解。当研究性学习完成时,我们更坚信:世上无难事,只怕有心人。

西峰育才中学高二五班物理课题组

第二篇:明辨是非,正确认识社会生活中的真善美和假恶丑现象

10204/10212班主题班会

活动主题:明辨是非,正确认识社会生活中的真善美和假恶丑现象

活动目的:通过本次班会使同学们明白在以后的生活中如何正确的去看待“善”与“丑”

主持人:彭加廷 王立博 活动时间:2011年12月22日星期四 参加人数:10204/10212全体同学

主持人甲:是与非、善与恶、美与丑本来就是一个相对概念,没有绝对的是与非,也没有绝对的善与恶、美与丑,同一事物在一个角度看为是,换个角度就是非。所以这是一个非常灵活而涵盖面太广的问题。把自身的修为做好,不管别人的是非善恶。存一片善心,不辨是非,不怕是非,不管是非,是非自然消失,所谓大智若愚!这样活得轻松!

主持人乙:真者,非假也。真者,为道中之道也。真者,含义有二:一者,为个体,为真我,为原人之初也。他相对独立,永恒存在,天真无邪,灵气十足,无生无死,永恒生物。此真者,是人外在活动的内在动因;二者,为主体,为无数原人的统一整体,为宇宙的至上意识。他绝对独立,永恒存在,全知全能,是万源之源,是万变不离其宗的宗,它是我们永恒追求的真理。 善者,非恶也。善者,原人之初也。善者,他本有心、有觉、有智,意识向上,皈依真理,公而无私,全心全意为主体意识服务,为整体的统一而活动。

主持人甲:在这个世界上,总是不同程度地存在着真善美和假恶丑,一如蜜蜂和苍蝇共生于美丽的大自然。蜜蜂喜欢在花海中徜徉,苍蝇嗜好在粪丘上流浪,它们各自追求着截然差异的理想和完全不同的目标。

人类——大自然的骄子,一代又一代地生存在这个美丽的世界上。做为生命个体,也难免浸染了这种大自然的两面习性和良莠品质,因此才有了人性的真善美和假恶丑,甚至在突如其来的自然灾难面前,也不知疲倦地上演着。许多人舍己助人、无私奉献,诠释着真善美;一些人贻害他人、自私自利,宣扬着假恶丑。一样的人不一样的人性,因此产生了好人和坏人。好人和坏人,表面上是难以分辨的,可是他们只要付诸言行,立刻把思想和灵魂暴露无贻,真善美和假恶丑同时揭开似乎神秘的面纱,于是好人和坏人立分,仿佛沙去珠现水落石出一般。 请看灾难面前,国家领导人奔赴灾区亲临现场指挥抗灾抢险,人民子弟兵奋不顾身争分夺秒地从废墟下抢救同胞的生命,老师用自己的血肉身躯保护自己的学生,全国各族同胞踊跃献血慷慨捐钱„„展现了人性的真善美。

请看灾难面前,一些人趁火打劫,拐卖婴儿,很快落入人民警察的手掌,真正是“法网恢恢、疏而不漏”;某北大毕业的范姓语文教师率先逃出教室,根本不顾自己身后的学生,甚至在某论坛里大肆宣扬什么“不能首先牺牲自己、在这种紧要关头,哪怕是自己的母亲,也绝对不会去管”的丑恶论调;轰然倒塌的教学楼四周,巍然屹立的是机关办公大楼以及高级私人住宅,“豆腐渣”工程竟然是为“祖国未来的花朵”准备的„„折射了人性的假恶丑。可是不管怎么样,人类毕竟和蜜蜂苍蝇不同,因为人类是拥有文明充满智慧的,是追求知识渊博道德高尚理想远大的。真善美和假恶丑,两者简直是殊死较量不共戴天。真善美总归是要排斥甚至消灭干净假恶丑的,这是宇宙永恒不变的真理!

主持人乙:下面请同学们听一段故事

这是一个讲述天上和人间的故事,说明了人世间所存在真善美和假恶丑。它告诉我们:真善美的人永远受到人们的敬爱;而假恶丑的人则被人们仇视。而改邪归正的人则被人们赞扬。故事是一个小村庄的灾难引起的,结局自然是完美的。

从前,有一个滨海村庄,树木枝叶繁茂;花朵争奇斗艳;人们男耕女织。一派和平的景象。

可是有一天,潮水刚刚涨起来,大地开始震动起来,海水也冒出小泡泡来,大地越震动越厉害,海水开始咆哮,男男女女,老老少少都吓得尖叫着跑出屋子,结果就死了好多人。这种灾难每过一个月就会发生一次。

村庄的村长每天都在村庄的圣地里对天祈祷:“上帝啊,救救我的村民们吧!我愿意用我的生命去交换!”这样日复一日,上帝终于被感动了。一天夜里,上帝在梦中告诉村长:“当你醒来的时候,拿着你床头的魔法杖在你们村里最高的山上指着前方转一圈,一切就都会恢复原状的,不过你要付出的,是生命的代价。当一切如初时,请你到圣地里,接受生命的灭亡!”

第二天早上,村长一觉醒来,发现床头果然有一把魔法杖,欣喜若狂,也不管自己的死活,拿起魔法杖就向村庄里最高的山走去。

„„

终于,整个山庄又像以前一样鸟语花香了。可是这时,村长却不愿意去圣地里受死,就找了一个和自己长得非常像的人去圣地领死,以为这样就可以摆脱一切了,他却不知道,本来上帝是想让他上天做神仙的,先测测他的欲望,没想到,村长竟做出这种事了,这一举动触怒了上帝,他要让全村人都付出代价。

善神维纳斯不忍心看到人类受到灾难,就悄悄托梦把这个消息告诉了村里的每一个人,大家都收拾了一下东西逃走了。可这一切都躲不过梦神的眼睛,梦神把维纳斯所做的报告给了上帝希望得到上帝的宠爱,上帝得知维纳斯做的事后大怒,把维纳斯关进天牢,并奖赏了梦神。维纳斯在天牢里受尽折磨,痛苦极了。

丘比特看到这一切,替维纳斯感到难过,他要求晋见上帝,说:“你若放了维纳斯,我可以让人世间一百年都没有爱!”上帝听后,想了想说:“好吧!”于是,他放出维纳斯,警告她:“这回是丘比特救了你,你应该好好感谢他。不过,你如果再敢这样做,非杀了你不可!” 维纳斯出牢后,觉得不对劲儿,就去问丘比特,丘比特无奈之下说出了真相。维纳斯一听,大惊:人世间若没有爱,只有恨,那可怎么得了!她咬着嘴唇去找上帝——她宁愿受苦也不能让人类遭受如此磨难。上帝听完维纳斯的要求后,怒气冲冲地说:“你这不知好歹的家伙,来人啊,拉进天牢!”

那个村庄的人们知道后,都谴责村长,把他送到上帝那里,并请求上帝放了维纳斯,上帝面无表情道:“现在做什么都晚了!”说完,一转头就要走,可是,他刚扭过头,心脏一阵巨痛,倒在了地上。众神一时慌了手脚,亏得人里有个神医,他把了把上帝的脉,摇摇头,叹了口气说:“准备后事吧„„”。

不久后,新上帝即位天下大赦,维纳斯也被放了出来,人们今天这个去送点牛奶,明天那个做些糕点,不过多长时间,维纳斯就痊愈了,她感激地看着乡亲,不知该说些什么好。

至于那个村长,则被村民逐出村子,受到世人的歧视。梦神呢?也在丘比主持人甲:同学们,读了这个故事,你是不是更明白我们应该怎么做了呢?是的,我们应该从现在始,以真善美为荣,以假恶丑为耻,树立正确的荣辱观,勉励自己,每个方面都做到最好。从现在开始做起,从身边做起,从小事做起。下面请同学们谈谈自己对善恶美丑的看法 (同学们积极讨论并发言) 特的熏陶和指导下思想高尚起来,传为一时佳话。 主持人:同学们,真善美和假恶丑,既是一对天敌,也是一对孪生兄弟,当你追求真善美时,意味着世间存在着假恶丑,当你宣扬某一物、某一人为真善美时,意味着另一物、另一人为假恶丑。否则没有参照,何来定义? 零源学说认为:社会、人类无须刻意求真,也不可闭眼作假;无须刻意向善,也不可堕落作恶;无须刻意唯美,亦不可故意效丑;唯有求零,尽达零源。零是世间之本法,零源是法之动力。若真假都向零靠拢,善恶都向零贴近,美丑都向零倾斜,则零源不断,天平少动,社会安宁,人类和平。当真善美、假恶丑都接近于零时,则失一分真不失真,多一分假不为假;去一分善不缺善,增一分恶不显恶;添一分美不为美,露一分丑不觉丑。所以作为中职生的我们就更应该正确的去判断生活中的是非善恶。

主持人:本次主题班会到此结束。

第三篇:电磁兼容EMC中的屏蔽技术分析

电场,磁场,电磁场的屏蔽其实是不同的! 磁场的屏蔽问题,是一个既具有实际意义又具有理论意义的问题.根据条件的不同,电磁场的屏蔽可分为静电屏蔽、静磁屏蔽和电磁屏蔽三种情况,这三种情况既具有质的区别,又具有内在的联系,不能混淆.

静电屏蔽

在静电平衡状态下,不论是空心导体还是实心导体;不论导体本身带电多少,或者导体是否处于外电场中,必定为等势体,其内部场强为零,这是静电屏蔽的理论基础.因为封闭导体壳内的电场具有典型意义和实际意义,我们以封闭导体壳内的电场为例对静电屏蔽作一些讨论.

(一)封闭导体壳内部电场不受壳外电荷或电场影响.

如壳内无带电体而壳外有电荷q,则静电感应使壳外壁带电.静电平衡时壳内无电场.这不是说壳外电荷不在壳内产生电场,根发电场.由于壳外壁感应出异号电荷,它们与q在壳内空间任一点激发的合场强为零.因而导体壳内部不会受到壳外电荷q或其他电场的影响.壳外壁的感应电荷起了自动调节作用.如果把上述空腔导体外壳接地,则外壳上感应正电荷将沿接地线流入地下.静电平衡后空腔导体与大地等势,空腔内场强仍然为零.如果空腔内有电荷,则空腔导体仍与地等势,导体内无电场.这时因空腔内壁有异号感应电荷,因此空腔内有电场.此电场由壳内电荷产生,壳外电荷对壳内电场仍无影响.

由以上讨论可知,封闭导体壳不论接地与否,内部电场不受壳外电荷影响.

(二)接地封闭导体壳外部电场不受壳内电荷的影响.

如果壳内空腔有电荷q,因为静电感应,壳内壁带有等量异号电荷,壳外壁带有等量同号电荷,壳外空间有电场存在,此电场可以说是由壳内电荷q间接产生.也可以说是由壳外感应电荷直接产生的.但如果将外壳接地,则壳外电荷将消失,壳内电荷q与内壁感应电荷在壳外产生电场为零.可见如果要使壳内电荷对壳外电场无影响,必须将外壳接地.这与第一种情况不同.

这里还须注意:

①我们说接地将消除壳外电荷,但并不是说在任何情况壳外壁都一定不带电.假如壳外有带电体,则壳外壁仍可能带电,而不论壳内是否有电荷.

②实际应用中金属外壳不必严格完全封闭,用金属网罩代替金属壳体也可达到类似的静电屏蔽效果,虽然这种屏蔽并不是完全、彻底的.

③在静电平衡时,接地线中是无电荷流动的,但是如果被屏蔽的壳内的电荷随时间变化,或者是壳外附近带电体的电荷随时间而变化,就会使接地线中有电流.屏蔽罩也可能出现剩余电荷,这时屏蔽作用又将是不完全和不彻底的.

总之,封闭导体壳不论接地与否,内部电场不受壳外电荷与电场影响;接地封闭导体壳外电场不受壳内电荷的影响.这种现象,叫静电屏蔽.静电屏蔽有两方面的意义:

其一是实际意义:屏蔽使金属导体壳内的仪器或工作环境不受外部电场影响,也不对外部电场产生影响.有些电子器件或测量设备为了免除干扰,都要实行静电屏蔽,如室内高压设备罩上接地的金属罩或较密的金属网罩,电子管用金属管壳.又如作全波整流或桥式整流的电源变压器,在初级绕组和次级绕组之间包上金属薄片或绕上一层漆包线并使之接地,达到屏蔽作用.在高压带电作业中,工人穿上用金属丝或导电纤维织成的均压服,可以对人体起屏蔽保护作用.在静电实验中,因地球附近存在着大约100V/m的竖直电场.要排除这个电场对电子的作用,研究电子只在重力作用下的运动,则必须有eE

其二是理论意义:间接验证库仑定律.高斯定理可以从库仑定律推导出来的,如果库仑定律中的平方反比指数不等于2就得不出高斯定理.反之,如果证明了高斯定理,就证明库仑定律的正确性.根据高斯定理,绝缘金属球壳内部的场强应为零,这也是静电屏蔽的结论.若用仪器对屏蔽壳内带电与否进行检测,根据测量结果进行分析就可判定高斯定理的正确性,也就验证了库仑定律的正确性.最近的实验结果是威廉斯等人于1971年完成的,指出在式

F=q1q2/r2±δ中,δ<(2.7±3.1)×10-16,

可见在现阶段所能达到的实验精度内,库仑定律的平方反比关系是严格成立的.从实际应用的观点看,我们可以认为它是正确的.

静磁屏蔽

静磁场是稳恒电流或永久磁体产生的磁场.静磁屏蔽是利用高磁导率μ的铁磁材料做成屏蔽罩以屏蔽外磁场.它与静电屏蔽作用类似而又有不同.

静磁屏蔽的原理可以用磁路的概念来说明.如将铁磁材料做成截面如图7的回路,则在外磁场中,绝大部份磁场集中在铁磁回路中.这可以把铁磁材料与空腔中的空气作为并联磁路来分析.因为铁磁材料的磁导率比空气的磁导率要大几千倍,所以空腔的磁阻比铁磁材料的磁阻大得多,外磁场的磁感应线的绝大部份将沿着铁磁材料壁内通过,而进入空腔的磁通量极少.这样,被铁磁材料屏蔽的空腔就基本上没有外磁场,从而达到静磁屏蔽的目的.材料的磁导率愈高,筒壁愈厚,屏蔽效果就愈显著.因常用磁导率高的铁磁材料如软铁、硅钢、坡莫合金做屏蔽层,故静磁屏蔽又叫铁磁屏蔽.

静磁屏蔽在电子器件中有着广泛的应用.例如变压器或其他线圈产生的漏磁通会对电子的运动产生作用,影响示波管或显像管中电子束的聚焦.为了提高仪器或产品的质量,必须将产生漏磁通的部件实行静磁屏蔽.在手表中,在机芯外罩以软铁薄壳就可以起防磁作用.

前面指出,静电屏蔽的效果是非常好的.这是因为金属导体的电导率要比空气的电导率大十几个数量级,而铁磁物质与空气的磁导率的差别只有几个数量级,通常约大几千倍.所以静磁屏蔽总有些漏磁.为了达到更好的屏蔽效果,可采用多层屏蔽,把漏进空腔里的残余磁通量一次次地屏蔽掉.所以效果良好的磁屏蔽一般都比较笨重.但是,如果要制造绝对的“静磁真空”,则可以利用超导体的迈斯纳效应.即将一块超导体放在外磁场中,其体内的磁感应强度B永远为零.超导体是完全抗磁体,具有最理想的静磁屏蔽效果,但目前还不能普遍应用.

电磁屏蔽

电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减.从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小.导体表面的场量最大,愈深入导体内部,场量愈小.这种现象也称为趋肤效应.利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置.它比静电、静磁屏蔽更具有普遍意义.

电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段.合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备.如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音.音频馈线用屏蔽线也是这个道理.示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描.在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备.

用什么材料作电磁屏蔽呢?因电磁波在良导体中衰减很快,把由导体表面衰减到表面值的1/e(约36.8%)处的厚度称为趋肤厚度(又称透入深度),用d表示,有电磁屏蔽 ,电磁场在导电介质中传播时,其场量(E和H)的振幅随距离的增加而按指数规律衰减.从能量的观点看,电磁波在导电介质中传播时有能量损耗,因此,表现为场量振幅的减小.导体表面的场量最大,愈深入导体内部,场量愈小.这种现象也称为趋肤效应.利用趋肤效应可以阻止高频电磁波透入良导体而作成电磁屏蔽装置.它比静电、静磁屏蔽更具有普遍意义.

电磁屏蔽是抑制干扰,增强设备的可靠性及提高产品质量的有效手段.合理地使用电磁屏蔽,可以抑制外来高频电磁波的干扰,也可以避免作为干扰源去影响其他设备.如在收音机中,用空芯铝壳罩在线圈外面,使它不受外界时变场的干扰从而避免杂音.音频馈线用屏蔽线也是这个道理.示波管用铁皮包着,也是为了使杂散电磁场不影响电子射线的扫描.在金属屏蔽壳内部的元件或设备所产生的高频电磁波也透不出金属壳而不致影响外部设备.

用什么材料作电磁屏蔽呢?因电磁波在良导体中衰减很快,把由导体表面衰减到表面值的1/e(约36.8%)处的厚度称为趋肤厚度(又称透入深度),用d表示,有

其中μ和σ分别为屏蔽材料的磁导率和电导率.若电视频率f=100 MHz,对铜导体(σ=5.8×107/ ?m,μ≈μo=4π×10-7H/m)可求出d=0.00667mm.可见良导体的电磁屏蔽效果显著.如果是铁(σ=107/ ?m)则d=0.016mm.如果是铝(σ=3.54×107/ ?m)则d=0.0085mm.

为了得到有效的屏蔽作用,屏蔽层的厚度必须接近于屏蔽物质内部的电磁波波长(λ=2πd).如在收音机中,若f=500kHz,则在铜中d=0.094mm(λ=0.59mm).在铝中d=0.12mm(λ=0.75mm ).所以在收音机中用较薄的铜或铝材料已能得到良好的屏蔽效果.因为电视频率更高,透入深度更小些,所需屏蔽层厚度可更薄些,如果考虑机械强度,要有必要的厚度.在高频时,由于铁磁材料的磁滞损耗和涡流损失较大,从而造成谐振电路品质因素Q值的下降,故一般不采用高磁导率的磁屏蔽,而采用高电导率的材料做电磁屏蔽.在电磁材料中,因趋肤电流是涡电流,故电磁屏蔽又叫涡流屏蔽.

在工频(50Hz)时,铜中的d=9.45mm,铝中的d=11.67mm.显然,采用铜、铝已很不适宜了,如用铁,则d=0.172mm,这时应采用铁磁材料.因为在铁磁材料中电磁场衰减比铜、铝中大得多.又因是低频,无需考虑Q值问题.可见,在低频情况下,电磁屏蔽就转化为静磁屏蔽.电磁屏蔽和静电屏蔽有相同点也有不同点.相同点是都应用高电导率的金属材料来制作;不同点是静电屏蔽只能消除电容耦合,防止静电感应,屏蔽必须接地.而电磁屏蔽是使电磁场只能透入屏蔽体一薄层,借涡流消除电磁场的干扰,这种屏蔽体可不接地.但因用作电磁屏蔽的导体增加了静电耦合,因此即使只进行电磁屏蔽,也还是接地为好,这样电磁屏蔽也同时起静电屏蔽作用.

综上所述,静电屏蔽、静磁屏蔽、电磁屏蔽的物理内容、物理条件、屏蔽作用是不同的,所用材料也要从具体情况出发.但它们都是屏蔽电磁场,是有本质联系的.

第四篇:15电磁在非牛顿流体中的应用

15电磁流量计在非牛顿流体流量测量中的应用

流量计确定一次装置精确度的方法是建立在参考流动条件基础上的。但是,不同工作原理的流量计对参考流动条件的敏感程度是不同的,有的甚至相差甚远。参考流动条件中所规定的具有充分发展的层流或紊流的速度分布和牛顿流体与我们要讨论的问题相关。

“由牛顿流体所形成的速度分布是所有流量计(编注:本文主要指速度式流量计和标准节流装置等)的基本参比状况,各种修正都是根据这个速度分布进行的。为确定非牛顿流体对流量计的影响,需要在实验室进行专门的测试。由于非牛顿流体的种类繁多,目前这方面已公布的数据甚少。”在许多应用的场合下,有许多非牛顿流体处于层流状态,其速度分布与牛顿流体不同,它们偏离了牛顿流体层流速度分布的情况,其速度分布是难于预报的,但已知其分布是对称的,而达到这种速度分布所需的直管段长度通常仅为牛顿流体所需长度的1/3到1/2。[10] 封闭管道中使用的电磁流量计是通过测量流体的面平均流速进而算出流量的速度式流量计,但它与其它速度式流量计不同的是,电磁流量计具有可以测量非牛顿流体,并且无须进行雷诺数、压力、温度、黏度和密度修正的显著特点,这与其输出信号的特性有关。

在日本1979年出版的《流量测量手册》[11] 一书中说:“电磁流量计检测电极所产生的感应电动势与平均流速成正比,因此,无论管路内的流动为层流也好,或因雷诺数的变化而变为紊流也好,只要流速分布与管轴对称,一般也会感应出与平均流速成正比的电动势,但

1 是,必须注意一般在弯管和阀门的前后的流动,由于流速分布变乱,不会出现上述情况。”当时的电磁流量计虽然可以做到从层流到紊流的测量,无须进行雷诺数修正,但要求流速分布必须是与管轴对称的。

在美国1983年出版的《流量测量工程手册》[10]一书中也有类似的表述:“至今,几乎还没有在层流状态下非牛顿流体流量测量的资料。除了用文丘利管测量泥浆和污水的流量或不需要进行雷诺数校正的场合,在许多情况下是采用电磁流量计,这主要是由于它的输出基本上是反映速度分布的平均值。”也就是说,电磁流量计可以测量层流状态下的非牛顿流体。

随着电子技术和计算机技术的快速发展,加速了电磁流量计技术的发展。20世纪90年代以后,励磁方式的不断改进代表着电磁流量计技术的不断进步。与早期的工频励磁相比,低频矩形波励磁,双频励磁,可编程控制励磁等新的励磁方式的电磁流量计,提高了传感器输出流量信号的信噪比,降低并稳定了仪表的零点。转换器应用先进的集成运算放大器大幅度降低了器件的噪声。采用数字的处理方法,较模拟电路的转换器能使电磁流量计的测量精确度大幅度提高。感应信号的权重函数理论的研究,一定程度地改善了管道内流速分布非轴对称性对流量准确测量的影响。因此,现代的电磁流量计才有可能达到±0.5%,甚至±0.2%的测量精确度,而且适用范围更宽。[13] 非牛顿流体的种类繁多,目前,我们比较熟悉的有据可查的常用电磁流量计测量的非牛顿流体有纸浆、矿浆、水煤浆、钻井用泥浆等[10](P166),我们习惯上称其为浆液,而把适用于测量浆液流量的

2 电磁流量计称为浆液型电磁流量计。这里需要说明的是,电磁流量计在这些行业并非全部用于浆液流量的测量,但测量浆液流量占有重要地位。下面我们将分别讨论电磁流量计在造纸、氧化铝和甲醇行业的应用。

15.1电磁流量计在造纸行业的应用

造纸行业已成为继汽车、电子之后的第三大支柱产业。据悉,在从国外引进的成套造纸设备中,对液体流量的测量大多采用了电磁流量计。国内的大中型造纸企业也已逐步完成了用电磁流量计替代传统的差压式流量计的更新过程,并积累了一定的实用经验,且不断对仪表提出新的使用要求。造纸行业对电磁流量计的需用量相当大,以年产量为35万吨的造纸厂为例,其电磁流量计的使用量可达到400台左右。另外,作为国策,严格环保法治势在必行,造纸企业全面污水处理也需要一定数量的电磁流量计。以下是具体使用情况。

图15.1是造纸生产流程图。

图15.1

4 1).备料制浆车间工艺流程

备料制浆过程需用电磁流量计大约在50~60台。口径根据工艺管道而定。

该车间的任务是把各种不同的原料分别制成浆料。电磁流量计在制浆过程中主要是测量水、碱、酸和打磨浆的流量。经过机械打或磨的浆料的温度一般可达80℃。备料制浆过程根据所用材料可分为如下两类:

(1).用木材或草料(如稻草、芦苇、麦秸等)制浆: 制奖前要先将木草料进行蒸煮。蒸煮液由水和碱[氢氧化钙Ca(OH)2或氢氧化钠NaOH]配制而成,呈碱性。所以,这里对碱和蒸煮后的打磨浆进行流量测量的电磁流量计应选用分体型结构;衬里多选用耐高温和腐蚀的聚四氟乙烯[PTFE(F4)]或其它氟塑料(资料显示,造纸行业使用的电磁流量计,85%以上选用的是F4衬里,效果满意);电极应选用耐腐蚀性强的哈氏合金C(Hc)或钛(Ti)等,切记不可选用钽电极,因为钽在碱中不耐腐蚀 。测量酸性浆液要求不高时,电极材料可选耐酸钢316SS。

(2).用废纸制浆: 将废纸打成浆后要进行洗涤漂白处理。当电磁流量计用于打浆后的加水流量测量时,大多用稍加处理的附近的江河水,虽水质较差,但无腐蚀性,可采用常规的橡胶衬里和不锈钢电极(如316SS)。而用于脱墨剂流量测量时,由于常用的脱墨剂有氢氧化钠(NaOH)、硅酸钠(Na2SIO3)、过氧化钠(Na2O2)或过氧化氢(即双氧水)(H2O2),

5 比较复杂,所以对电磁流量计衬里和电极材料的选用要慎重。衬里一 般都可选用F4或PFA;电极可参考以下文献:《电磁流量计》[14]一书中推荐,测量过氧化钠时,选用Hc较合理;上海横河电机有限公司2004年4月《电磁流量计选型设计资料》介绍,测量硅酸钠(100%) 时,选用钽较合理;测量过氧化氢(50%)时,选用钽或钛较适合;测量氢氧化钠时选用Hc。由于介质种类繁多,其腐蚀性又受温度、浓度、流速等复杂因素影响而变化,故以上对衬里和电极的选择仅供参考。用户应根据实际情况自己做出选择,必要时应做拟选材料的耐腐试验。

2).筛选漂白车间(即抄纸车间)工艺流程

筛选(即抄纸)和洗涤(即漂白)这两个工段是造纸厂使用电磁流量计最多的,本例可达250台左右。在浆液配比过程中的适用口径一般为DN50~DN15 该工艺流程可分为两部分: (1).配浆过程: 电磁流量计用于测量从各备料制浆车间流入抄纸车间各浆池和从各浆池流入配浆池的每个流量测量点的浆料的流量。此例共有以下五种浆料参与配浆过程:

A.化浆—由传统“化浆生产线”生产的纸浆; B.脱墨浆—由废纸脱墨工艺生产的纸浆; C.CTMP浆—用化学热磨法生产的纸浆; D.机浆—

6 E.损液奖—

这里,CTMP浆和机浆的温度高达50-80℃,衬里材料可选用F4或 PFA。

各生产厂家为得到不同质量的纸张,在浆液配比过程中采用不同的浆液配比浓度,但往往由于一种浆料的细微超差而导致成品不合格,从而造成经济损失。所以各生产厂对这一环节都非常重视,在每一根参加配比的管道中都装有电磁流量计测量流入配浆总管的瞬时和总量流量,同时还在配浆管的下端装有在线浓度计,以检测配浆效果。若一旦发现预定的浓度有偏差,就立即调节阀门的开度以调整相应的浆料流量。这里不仅要求电磁流量计精确度高,同时要求具有良好的重复性和动态响应性能。

(2).筛选过程: 在配浆后的筛选(习惯称抄纸)过程中,纸浆浓度常影响流量测量。经验表明,当浓度大于3%的纸浆用低频方波励磁频率(如25Hz)或双频励磁,可以改善测量输出的抖动现象。以DN300的电磁流量计测量浓度大于3.5%的瓦楞板纸为例,用常规的1/32工频(约为1.56Hz,1工频为50Hz)时,瞬时流量显示的抖动量高达10.7%;当选用频率可调的电磁流量计时,将其励磁频率改为1/2工频(即25Hz)时,跳动量减少到1.9%,效果相当明显。目前的“双频励磁方式是日本横河电机公司研究开发的一种高、低频矩形波调制波的励磁方式。所采用的励磁频率为:低频是6.25Hz,它有助于提高零点的稳定性;高频是75Hz,高频励磁大幅度降低了浆液对电极产生的极化电压(测

7 量固、液双相的浆液流体时,固体擦过电极表面所产生的浆液噪声,即一种直流极化电压),减弱了测量输出的抖动,提高了测量的响应速度。因此,双频励磁既有稳定的零点和高精度的测量的优点,又有很强的抗“浆液噪声”能力,反应速度快等优点,是低频矩形波励磁和高频励磁的结合。”

“双频励磁传感器存在一个低频系数和一个高频系数两个仪表系数,因此,转换器调整时,求得两个系数相对于一个仪表系数要麻烦一些。”“从上面的叙述可以看到,励磁方式的研究对于电磁流量计的应用与发展显得非常重要。随着技术的进步,也许不久的将来还会有更先进、更完美的励磁方式出现。”[ ] 在抄纸工序,由于配浆、抄纸过程中需要对冷却水、明矾和化石粉等添加剂,须作流量控制监测,因此,是造纸厂中使用电磁流量计数量最多的,本例用量约达200台左右。

为保证纸张的白度均匀细致,要添加不同的添加剂、分散剂和漂白剂。这些添液的流量小,腐蚀性强,所以衬里基本上都选用F4或PFA。由于造纸厂常用氧化性强的双氧水作漂白剂,而双氧水对金属材料的腐蚀性特别强,出于防腐考虑,往往选用铂铱合金(Pt)为电极材料,但实用情况表明,当过程压力小于0.3MPa(3公斤)时,Pt电极会同双痒水发生反应,而在电极表面形成一层气雾,称之为触媒反应。这时输出信号会产生很大波动。但选用钽(Ta)电极就没有上述问题。如果换用NaOH(碱)做漂白剂,就不能选用钽电极,因为碱液会使钽电极产生表面效应。实验数据表明,即使钽电极在测量一

8 般的水时,其零点的波动也要超过其它电极数十倍。

小口径电磁流量计安装时要特别注意同心度。本例中采用小口径DN10的电磁流量计测量上述添加剂,均能获得较理想的效果。在国外的造纸生产线上,这些场合也有部分选用科里奥利质量流量计的。

总之,电磁流量计在造纸行业的液体流量测量中占主导地位,衬里普遍选用F4,电极则根据液体性质而定。绝大多数的使用问题出现在初期的选型和安装不当。如电极或衬里材料选择失误;流体不满管;直管段长度不足;安装时传感器与管道(特别是小管道)的不同心度或密封垫圈进入流场等。这些问题常常是电磁流量计未能正常运行的主要因素。

15.2电磁流量计在氧化铝行业的应用

氧化铝的用途很广,如牙膏、医药、陶瓷、各种铝合金铝型材等。我国是产铝大国,具有大规模的氧化铝生产企业和基地。目前,氧化铝行业已成为国民经济生产总植(GTP)中发展最快的行业之一。但随着我国工业和城乡建设的快速发展,国产氧化铝仍供不应求,目前,国内需求量的30%需要进口,这给国内氧化铝生产行业的发展留下了相当大的空间。近年来,我国新建的氧化铝生产企业和扩建的氧化铝生产线如雨后春笋。现知,仅山东的新建企业就有滨州的魏桥铝电,设计生产能力为1000万吨/年(分五期完成),现已完成

一、二期共400万吨/年的产能;聊城的信发华宇已建成240万/吨的产能,又在广西建了一个新厂;龙口南山集团。改扩建项目如:中国铝业中州分公司投资12.92亿元的30万吨/年选矿拜尔法高新技术产业化示

9 范工程、山东分公司的60万吨/年拜尔法改扩建工程。又如,中铝河南分公司总投资十亿元,采用国际先进的“选矿拜而法生产氧化铝新工艺”项目等。

氧化铝行业不但是一个高耗能、高污染、高产出的行业,而且流程长,工序多。因此,在配料监控、节能降耗、治污减排、回收循环利用等各个环节,都需要使用大量的流量计。其中,电磁流量计约占其中的50%左右。下面讨论电磁流量计在氧化铝行业的应用,特别是在浆液流量测量方面的选型和使用。

目前,氧化铝的生产方法有三种:拜尔法、烧结法和混联法。其中,混联法是前两种方法的混联。所以,这里仅介绍电磁流量计在拜尔法和烧结法中的应用。

1).拜尔法

第五篇:PCB设计中的抗干扰措施与电磁兼容性研究.doc

印制电路板设计中的抗干扰措施与电磁兼容性研究

印制电路板(PCB)是电子产品中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接,是目前电子器材用于各类电子设备和系统的主要装配方式。鉴于PCB设计的好坏对抗干扰能力影响很大,因此,PCB的设计除必须遵守一般原则之外,还应符合抗干扰设计与电磁兼容性的要求。

一. 电路板设计的一般原则 1.布局

首先应考虑PCB尺寸大小。PCB尺寸过大,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。在确定PCB尺寸后,再确定元件的位置,一般来说,应把模拟信号、高速数字电路、噪声源(如继电器、大电流开关等)这三部分合理分开,使相互间的信号耦合为最小。最后,根据电路的功能单元,对电路的全部元器件进行布局。在确定元件的位置时要遵守以下原则: 按照电路的流程安排各个功能电路单元的位置,便于信号流通,并使信号尽可能保持一致的方向。

以每个功能电路的核心元件为中心进行布局。元器件应均匀、整齐紧凑地排列,尽量减少和缩短各元器件之间的引线和连接。

在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尺可能使元器件平行排列,以利于装焊及批量生产且美观。

位于电路板边缘的元器件,离电路板边缘一般不小于2mm。电路板的最佳形状为矩形,长宽比为3:2或4:3,其尺寸大于200x150mm时,应考虑电路板所受的机械强度。

尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。易受干扰的元器件不能相互挨得太近,输入和输出元件应尽量远离。

某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。带高电压的元器件应尽量布置在调试时手不易触及的地方。

重量超过15g的元器件应当用支架加以固定,然后焊接。那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。热敏元件应远离发热元件。

对于电位器、可调电感线圈、可变电容器、微动开关等可调元件的布局应考虑整机的结构要求。若是机内调节,应放在印制板上便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。

应留出印制板定位孔及固定支架所占用的位置。

2、布线

布线的原则如下:

输入、输出端用的导线应尽量避免相邻平行,最好加线间地线, 以免发生反馈耦合。

导线的最小宽度主要由导线与绝缘基板间的粘附强度和流过它们的电流值决定,当铜箔厚度为0.05mm、宽度为1~15mm时,通过2A的电流,温度不会高于3℃ 。因此,导线宽度为1.5mm便可满足要求。对于集成电路尤其是数字电路,通常选宽度为0.02~0.3mm的导线,当然,只要允许,还是尽可能用宽线,尤其是电源线和地线。导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。对于集成电路尤其是数字电路,只要工艺允许,可使间距小至5~8mm。

印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。此外,尽量避免使用大面积铜箔,否则,长时间受热时,易发生铜箔膨胀和脱落现象。必须用大面积铜箔时,最好用栅格状,这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。

二 电路板及电路抗干扰措施

印制电路板的抗干扰设计与具体电路有着密切的关系,以下从四个方面讨论PCB抗干扰设计的措施。

1、电源线设计

根据印制线路板电流的大小,尽量加粗电源线宽度,减少环路电阻。同时使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。

2、地线设计 印刷电路板上,电源线和地线最重要。克服电磁干扰,最主要的手段就是接地。对于双面板,地线布置特别讲究,通过采用单点接地法,电源和地是从电源的两端接到印刷线路板上来的,电源一个接点,地一个接点。印刷线路板上,要有多个返回地线,并都会聚到回电源的那个接点上,就是所谓单点接地。所谓模拟地、数字地、大功率器件地开分,是指布线分开,而最后都汇集到这个接地点上来。与印刷线路板以外的信号相连时,通常采用屏蔽电缆。对于高频和数字信号,屏蔽电缆两端都接地。低频模拟信号用的屏蔽电缆,一端接地为好。如能将接地和屏蔽正确结合起来使用,可解决大部分干扰问题。电子设备中地线结构大致有系统地、机壳地(屏蔽地)、数字地(逻辑地)和模拟地等。地线设计的原则是:

数字地与模拟地分开。若线路板上既有逻辑电路又有线性电路,应使它们尽量分开,分别与电源端地线相连,并尽可能加大线性电路的接地面积。低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。高频电路宜采用多点串联接地,地线应短而粗,高频元件周围尽量用栅格状大面积地箔。

接地线应尽量加粗。若接地线很细,则接地电位随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏。因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。如有可能,接地线宽度应在2~3mm 以上。

正确选择单点接地与多点接地。在低频电路中,信号的工作频率小于1MHz,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大, 因而应采用一点接地。当信号工作频率大于10MHz时,地线阻抗变得很大,此时应尽量降低地线阻抗,应采用就近多点接地。当工作频率在1~10MHz时,如果采用一点接地,其地线长度不应超过波长的1/20,否则应采用多点接地法。

将接地线构成闭环路。设计只由数字电路组成的印制电路板的地线系统时,将接地线做成闭环路可以明显的提高抗噪声能力。其原因在于:印制电路板上的很多集成电路元件,尤其遇到耗电多的元件时,因受接地线粗细的限制,会在地结上产生较大的电位差,引起抗噪声能力下降,若将接地构成环路,则会缩小电位差值,提高电子设备的抗噪声能力。

3、合理设置退耦电容

性能好的高频去耦电容可以去除高到1GHZ的高频成份。瓷片电容或多层陶瓷电容的高频特性较好。去耦电容有两个作用:一方面旁路除掉该器件的高频噪声。数字电路中典型的去耦电容为0.1uF,有5nH分布电感,它的并行共振频率大约在7MHz左右,对于10MHz以下的噪声有较好的去耦作用,对40MHz以上的噪声几乎不起作用。1uF、10uF电容,并行共振频率在20MHz以上,去除高频率噪声的效果要好一些。在电源进入印刷板的地方并一个1uF或10uF的去高频电容往往是有利的,即使是用电池供电的系统也需要这种电容。每10片左右的集成电路要加一片充放电电容,或称为蓄放电容,电容大小可选10uF。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感,最好使用胆电容或聚碳酸酯电容。去耦电容值的选取并不严格,可按C=1/f计算, 即10MHz取0.1uF。对微控制器构成的系统,取0.1~0.01uF之间都可以。退耦电容的一般配置原则是: 电源输入端跨接10~100uF的电解电容器。如有可能,接100uF以上的更好。 原则上每个集成电路芯片都应布置一个0.01uF的瓷片电容,如遇印制板空隙不够,可每4~8个芯片都应布置一个1~10uF的钽电容。

对于抗噪声能力弱、关断时电源变化大的器件,如RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退耦电容。

电容引线不能太长,尤其是高频旁路电容不能有引线。

4、特殊器件的处理

在印制板中有接触器、继电器、按钮等元件时,操作它们时均会产生较大火花放电,必须采用RC电路来吸收放电电流。一般R取1~2KΩ,C取2.2~47uF。

CMOS的输入阻抗很高,易受感应,因此在使用时对不用端要接地或接正电源。

选用外时钟频率低的微控制器可以有效降低噪声和提高系统的抗干扰能力。为减小信号传输中的畸变,信号在印刷板上传输,其延迟时间不应大于所用器件的标称延迟时间。

注意印刷线板与元器件的高频特性。在高频情况下,印刷线路板上的引线、过孔、电阻、电容、接插件的分布电感与电容等不可忽略。电阻对高频信号产生的反射,会对引线的分布电容起作用,当引线长度大于噪声频率相应波长的1/20时,就产生天线效应,噪声通过引线向外发射。

三、电磁兼容性设计

对于微控制器时钟频率与总线周期特别快、含有大功率与大电流驱动电路以及含有微弱模拟信号电路与高精度A/D变换电路的系统,应特别注意抗电磁干扰。

1、印刷电路板设计中的电磁兼容性措施

数字地与模拟地分开,地线加宽,以解决公共阻抗耦合问题。

在布局时若高速、中速和低速混用时,注意不同的布局区域,且模拟电路和数字逻辑要分离。

布线时专用零伏线、电源线的走线宽度≥1mm,电源线和地线尽可能靠近,整块印刷板上的电源与地要呈“井”字形分布,以便使分布线电流达到均衡。

要为模拟电路专门提供一根零伏线。

为减少线间串扰,必要时可增加印刷线条间距,有意安插一些零伏线作为线间隔离。

印刷电路的插头也要多安排一些零伏线作为线间隔离。

特别注意电流流通中的导线环路尺寸。

如有可能在控制线的入口处加接RC去耦,以便消除传输中可能出现的干扰因素。

线宽不要突变,导线不要突然拐角(≥90度)。

在印刷线路板上使用逻辑电路时,凡能不用高速逻辑电路的就不用,并在电源与地之间加去耦电容。

可用串电阻的办法,降低控制电路上沿跳变速率;尽量为继电器等提供某种形式的阻尼;使用满足系统要求的最低频率时钟且时钟产生器尽量靠近到用该时钟的器件;石英晶体振荡器外壳要接地;用地线将时钟区圈起来,时钟线尽量短;I/O驱动电路尽量靠近印刷板边,让其尽快离开印刷板;对进入印刷板的信号要加滤波,从高噪声区来的信号也要加滤波,同时用串终端电阻的办法,减小信号反射;集成电路上该接电源的端不要悬空,闲置不用的运放正输入端接地,负输入端接输出端印制板尽量使用45折线而不用90折线布线以减小高频信号对外的发射与耦合印制板按频率和电流开关特性分区,噪声元件与非噪声元件要距离远一些单面板和双面板用单点接电源和单点接地;时钟、总线、片选信号要远离I/O线和接插件;模拟电压输入线、参考电压端要尽量远离数字电路信号线,特别是时钟;对A/D类器件,数字部分与模拟部分不要交叉;时钟线垂直于I/O线比平行I/O线干扰小,时钟元件引脚远离I/O电缆;元件引脚尽量短,去耦电容引脚尽量短关键的线要尽量粗,并在两边加上保护地;高速信号线要短要直;对噪声敏感的线不要与大电流、高速开关线平行;石英晶体下面以及对噪声敏感的器件下面不要走线弱信号电路、低频电路周围不要形成电流环路;任何信号都不要形成环路,如不可避免,让环路区尽量小;每个电解电容边上都要加一个小的高频旁路电容用大容量的钽电容或聚酯电容而不用电解电容作电路充放电储能电容,使用管状电容时,外壳要接地。

2、配套于印刷电路板的开关电源的电磁兼容性

电源在向系统提供能源的同时,也将其噪声加到所供电的电源上。电路中微控制器的复位线、中断线以及其它,一些控制线最容易受外界噪声的干扰。电网上的强干扰通过电源进入电路,即使电池供电的系统,电池本身也有高频噪声。模拟电路中的模拟信号更经受不住来自源的干扰。

开关电源对电网传导的骚拢及开关电源的辐射骚扰的主要因素是非线性流和初级电路中功率晶体管外壳与散热器之间的耦合在电源输入端产生的传导共模噪声。抑制方法为:对开关电压波形进行“修整”:在晶体管与散热器之间加装屏蔽层的绝缘垫片,在市电输入电路中加接电源滤波器尽可能地减小环路面积在次线整流回路中使用软恢复二极管或在二极管上并联聚酯薄膜电容器;对晶体管开关波形进行“修整”。另外,由于二极管反向电流陡变及回路分布电感与二极管结电容等形成高频衰减振荡,而滤波电容的等效串联电感又削弱了滤波的作用,因此在输出改波中出现尖峰干扰,为此应加小电感和高频电容以减速小输出噪声。

3、传输线的电磁兼容性

传输电缆的形式较多,双绞丝在低于100KHz下使用非常有效,高频下因特性阻抗不均匀及由此造成的波形反射而受到限制;带屏蔽的双绞线,信号电流在两根内导线上流动,噪声电流在屏蔽层里流动,因此消除了公共阻抗的耦合,而任何干扰将同时感应到两根导线上,使噪声相消;非屏蔽双绞线抵御静电耦合的能力差些,但对防止磁场感应仍有很好作用,其屏蔽效果与单位长度的导线扭绞次数成正比同轴电缆有较均匀的特性阻抗和较低的损耗,从直流到甚高频都有较好特性。传输线最好的接线方式是信号与地线相间,稍次的方法是一根地、两根信号再一根地依次类推,或专用一块接地平板,将负载直接接地的方式是不合适的,这是因为两端接地的屏蔽层为磁感应的地环路电流提供了分流,使得磁场屏蔽性能下降。

至于电缆线的端接,在要求高的场合要为内导体提供360°的完整包裹,并用同轴接头来保证电场屏蔽的完整性。

4、静电的防护

静电放电可通过直接传导、电容耦合和电感耦合三种方式进入电子线路。直接对电路的静电放电经常会引起电路的损坏,对邻近物体的放电通过电容或电感耦合,会影响到电路工作的稳定性。防护方法:建立完善的屏蔽结构,带有接地的金属屏蔽壳体可将放电电流释放到地金属外壳接地可限制外壳电位的升高,造成内部电路与外壳之间的放电;内部电路如果要与金属外壳相连时,要用单点接地,防止放电电流 流过内部电路;在电缆入口处增加保护器件;在印刷板入口处增加保护环(环与接地端相连)。