电动机电机启动论文

2022-04-18

[关键词]电动机启动故障一、一般原因1.电机绕组的首末端不能颠倒,U1V1W1是同名端,U2V2W2是同名端,星形接法的星点必须是同名端,三相电源必须接入同名端。如果其中一相接反,电机出现一个反向磁场,这个磁场会抵消另外两个正向磁场的一部分,使磁场不能旋转而没有启动转矩。下面是小编精心推荐的《电动机电机启动论文(精选3篇)》,欢迎阅读,希望大家能够喜欢。

电动机电机启动论文 篇1:

浅析电动机电机启动常见故障

【摘要】::电动机在我区的使用很广泛,它遍及各行各业的各个角落,在生产、生活过程中发挥着极其重要的作用。但由于大部分电机使用年限较长,电机烧毁的事故常有发生,而且呈上升趋势,严重影响着生产、生活的安全、可靠、长周期运行。现针对电机烧毁原因及相应对策做一分析和研究。

【关键词】:电动机 电机启动 故障

1 、电机绕组局部烧毁的原因及对策

1.1 由于电机本身密封不良,加之跑冒滴漏,使电机内部进水或进入其它带有腐蚀性液体或气体,电机绕组绝缘受到浸蚀,最严重部位或绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。

相应对策:①尽量消除工艺和设备的跑冒滴漏现象;②检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;③对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。

1.2 由于轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路或对地“放炮”。严重时会使定子铁心倒槽、错位、转轴磨损、端盖报废等。轴承损坏一般由下列原因造成:①轴承装配不当,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在。②轴承腔内未清洗干净或所加油脂不干净。例如轴承保持架内的微小刚性物质未彻底清理干净,运行时轴承滚道受损引起温升过高烧毁轴承。③轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁。④由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁。⑤由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁。⑥由于不同型号油脂混用造成轴承损坏。⑦轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等。⑧备机长期不运行,油脂变质,轴承生锈而又未进行中修。

相应对策:①卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。②安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。③尽量避免不必要的转轴机加工及电机端盖嵌套工作。④组装电机时一定要保证定、转子铁心对中,不得错位。⑤电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。⑥禁止多种润滑油脂混用。⑦安装轴承前先要对轴承进行全面仔细的完好性检查。⑧对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。

1.3 由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。

相应对策:电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前电机回装前要对绕组的完好性进行认真仔细的检查确诊。

1.4 由于长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。

相应对策:①尽量避免电动机过载运行。②保证电动机洁净并通风散热良好。③避免电动机频繁启动,必要时需对电机转子做动平衡试验。

1.5 电机绕组绝缘受振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

相应对策:①尽可能避免频繁启动,特别是高压电机。②保证被拖动设备和电机的振动值在规定范围内。

2 三相异步电动机一相或两相绕组烧毁(或过热)的原因及对策

如果出现电动机一相或两相绕组烧坏(或过热),一般都是因为缺相运行所致。当电机不论何种原因缺相后,电动机虽然尚能继续运行,但转速下降,滑差变大,其中B、C两相变为串联关系后与A相并联,在负荷不变的情况下,A相电流过大,长时间运行,该相绕组必然过热而烧毁。

为三相异步电动机绕组为Y接法的情况:电源缺相后,电动机尚可继续运行,但同样转速明显下降,转差变大,磁场切割导体的速率加大,这时B相绕组被开路,A、C两相绕组变为串联关系且通过电流过大,长时间运行,将导致两相绕组同时烧坏。

特殊情况下,如果停止的电动机缺一相电源合闸时,一般只会发生嗡嗡声而不能启动,这是因为电动机通入对称的三相交流电会在定子铁心中产生圆形旋转磁场,但当缺一相电源后,定子铁心中产生的是单相脉动磁场,它不能使电动机产生启动转矩。因此,电源缺相时电动机不能启动。但在运行中,电动机气隙中产生的是三相谐波成分较高的椭圆形旋转磁场,所以,正在运行中的电动机缺相后仍能运转,只是磁场发生畸变,有害电流成分急剧增大,最终导致绕组烧坏。

相应对策:无论电动机是在静态还是动态,缺相运行带来的直接危害就是电机一相或两相绕组过热甚至烧坏。与此同时,由于动力电缆的过流运行加速了绝缘老化。特别是在静态时,缺相会在电机绕组中产生几倍于额定电流的堵转电流。其绕组烧坏的速度比运行中突然缺相更快更严重。所以在我们对电机进行日常维护和检修的同时,必须对电机相应的MCC功能单元进行全面的检修和试验。尤其是要认真检查负荷开关、动力线路、静动触点的可靠性。杜绝缺相运行。

总之,无论是从事电气的工作人员或是人员,都要从实际出发,切实落实好设备的维护与维修,以保证生产的正常运行,促进我区的建设顺利发展。

作者:符连生

电动机电机启动论文 篇2:

电动机电机启动故障简析

[关键词] 电动机 启动 故障

一、一般原因

1.电机绕组的首末端不能颠倒,U1 V1 W1是同名端,U2 V2 W2是同名端,星形接法的星点必须是同名端,三相电源必须接入同名端。如果其中一相接反,电机出现一个反向磁场,这个磁场会抵消另外两个正向磁场的一部分,使磁场不能旋转而没有启动转矩。2.铁芯会进入磁饱和状态并迅速发热导致烧毁。还有5.5KW(380V)电机正常应该是三角接法,U1和V2连接、V1和W2连接、W1和U2连接,把三个连接点分别接到三相电源。

二、使用故障原因和应对策略

1.故障原因:一是由于电机密封不良以及环原因,使电机内部进水、腐蚀性液体或气体,电机绕组绝缘受到浸蚀,使绝缘最薄弱点发生一点对地、相间短路或匝间短路现象,从而导致电机绕组局部烧坏。二是轴承损坏,轴弯曲等原因致使定、转子磨擦(俗称扫膛)引起铁心温度急剧上升,烧毁槽绝缘、匝间绝缘,从面造成绕组匝间短路,使定子铁心倒槽、错位、转轴磨损、端盖报废。主要是:轴承装配不好,如冷装时不均匀敲击轴承内圈使轴受到磨损,导致轴承内圈与轴承配合失去过盈量或过盈量变小,出现跑内圈现象,装电机端盖时不均匀敲击导致端盖轴承室与轴承外圈配合过松出现跑外圈现象。无论跑内圈还是跑外圈均会引起轴承运行温升急剧上升以致烧毁,特别是跑内圈故障会造成转轴严重磨损和弯曲。但间断性跑外圈一般情况下不会造成轴承温度急剧上升,只要轴承完好,允许间断性跑外圈现象存在;轴承腔内未清洗干净或所加油脂不干净;轴承重新更换加工,电机端盖嵌套后过盈量大或椭圆度超标引起轴承滚珠游隙过小或不均匀导致轴承运行时磨擦力增加,温度急剧上升直至烧毁;由于定、转子铁心轴向错位或重新对转轴机加工后精度不够,致使轴承内、外圈不在一个切面上而引起轴承运行“吃别劲”后温升高直至烧毁;由于电机本体运行温升过高,且轴承补充加油脂不及时造成轴承缺油甚至烧毁;由于不同型号油脂混用造成轴承损坏;轴承本身存在制造质量问题,例如滚道锈斑、转动不灵活、游隙超标、保持架变形等;备机长期不运行,油脂变质,轴承生锈而又未进行中修。三是由于绕组端部较长或局部受到损伤与端盖或其它附件相磨擦,导致绕组局部烧坏。四是长时间过载或过热运行,绕组绝缘老化加速,绝缘最薄弱点碳化引起匝间短路、相间短路或对地短路等现象使绕组局部烧毁。五是电机绕组绝缘受机械振动(如启动时大电流冲击,所拖动设备振动,电机转子不平衡等)作用,使绕组出现匝间松驰、绝缘裂纹等不良现象,破坏效应不断积累,热胀冷缩使绕组受到磨擦,从而加速了绝缘老化,最终导致最先碳化的绝缘破坏直至烧毁绕组。

2.相应对策:一是尽量消除工艺和机械设备的跑冒滴漏现象;检修时注意搞好电机的每个部位的密封,例如在各法兰涂少量704密封胶,在螺栓上涂抹油脂,必要时在接线盒等处加装防滴溅盒,如电机暴漏在易侵入液体和污物的地方应做保护罩;对在此环境中运行的电机要缩短小修和中修周期,严重时要及时进行中修。二是卸装轴承时,一般要对轴承加热至80℃~100℃,如采用轴承加热器,变压器油煮等,只有这样,才能保证轴承的装配质量。安装轴承前必须对其进行认真仔细的清洗,轴承腔内不能留有任何杂质,填加油脂时必须保证洁净。尽量避免不必要的转轴机加工及电机端盖嵌套工作。组装电机时一定要保证定、转子铁心对中,不得错位。电机外壳洁净见本色,通风必须有保证,冷却装置不能有积垢,风叶要保持完好。禁止多种润滑油脂混用。安装轴承前先要对轴承进行全面仔细的完好性检查。对于长期不用的电机,使用前必须进行必要的解体检查,更新轴承油脂。三是电机在更新绕组时,必须按原数据嵌线。检修电机时任何刚性物体不准碰及绕组,电机转子抽芯时必须将转子抬起,杜绝定、转子铁芯相互磨擦。动用明火时必须将绕组与明火隔离并保证有一定距离。电机回装前要对绕组的完好性进行认真仔细的检查确诊。四是尽量避免电动机过载运行。保证电动机洁净并通风散热良好。避免电动机频繁启动,必要时需对电机转子做动平衡试验。

五是尽可能避免频繁启动,特别是高压电机。保证被拖动设备和电机的振动值在规定范围内。

总之,无论是从事电气的工作人员或是管理人员,都要从实际出发,切实落实好设备的维护与维修,以保证生产的正常运行。■

作者:邵慧彬

电动机电机启动论文 篇3:

三相鼠笼式异步电动机启动方式分析

三相鼠笼式异步电动机,以其结构简单、运行可靠、维修方便、惯性小、价格低廉而且坚固耐用、机械特性较硬等优点,在工、农业生产中得到广泛应用,普及率是其他种类电动机无法比拟的,是现阶段机械加工的重要动力源。但由于这类电机启动电流大,对电网的影响和生产机械的冲击力都很大,因而合理的启动方式,对三相鼠笼式异步电动机尤为重要,下面就三种启动方法逐一分析。

一、直接启动

直接启动,就是将处于静止状态的电动机直接加上额定电压,使电动机在额定电压作用下直接完成启动过程。直接启动转矩大、时间短、控制方式简单,设备投资少,因此在中小型电动机的控制上得到广泛的应用。但直接启动方法也受到客观条件限制,主要表现在三个方面:

1.启动电流大

启动电流一般是额定电流的4~7倍,部分电机启动电流实测甚至高达8~12倍额定电流。过大的启动电流将造成电网电压明显下降,影响同一电网其他电气设备的正常运行,严重时将使部分设备因电压过低而退出运行,甚至使电力线路欠压保护动作,造成设备的有害跳闸。同时过大的启动电流会使电机绕组发热,从而加速绝缘老化,影响电机使用寿命。

2.启动转矩大

过大的启动转矩往往造成电机转子笼条、端环断裂和定子端部绕组绝缘磨损,导致击穿烧机;另外启动过程中的压力突变往往造成泵系统管道、阀门的损伤,传动转轴扭曲,联轴节、传动齿轮损伤,影响传动精度,甚至影响正常工作。

3.要求供电变压器容量较大

为满足电机启动要求,必须扩大输、配线路容量,增加设备投资。

因此是否能直接启动应满足以下条件:一是生产机械是否允许拖动电机直接启动,这是先决条件;二是电动机的容量应不大于供电变压器容量的10%~15%;三是启动过程中的电压降ΔU应不大于额定电压的15%。

二、降压启动

降压启动就是在电动机启动时人为地降低电机端电压进行启动。传统的方法有星形/三角形启动、定子绕组串电阻(电抗器)启动、自耦变压器降压启动及延边三角形降压启动。

星形/三角形启动器是降压启动中结构最简单、成本最低的一种,然而它的使用受到限制,只适用于正常运行时定绕组采用三角形接法的电动机,启动时采用星形接法,启动完毕后再切换成三角形。启动过程有两次电流冲击,设备故障率高,需要经常维护,不宜用于频繁启动设备上,而且由于启动电压为运行电压的1/,故启动转矩为额定转矩的1/3,只能用在空载或轻载启动设备。在电动机轻载或空载运行时,也可利用该启动设备作降压运行,以提高电动机的功率因数和效率。

自耦变压器降压启动是利用三相自耦变压器改变供电电压的启动方法,可以通过变压器抽头改变启动电压(一般有65%和80%两挡抽头),选择不同的电压比,相对应不同启动转矩的负载,在电动机启动后再将其切除。其优点是启动电压可以选择,以适应不同负载的要求;缺点是体积大、质量大,电压阶跃性变化有冲击,不能连续启动,且要消耗较多有色金属,故障率高,维修费用高。

电阻(电抗)器启动,是在电动机启动时,把电阻(电抗)器串联于电源与电动机定子绕组之间,随电动机转速提高,逐级减小电阻(电抗),从而达到理想的启动效果,这种启动方法比星形/三角形启动性能好,比自耦变压器降压启动设备价格低。然而它同样有一些性能、使用上的限制,包括:

1.启动特性很难优化

原因是生产启动器时电阻(电抗)值是确定的,使用中很难改变,虽然可以通过转换分接头来进行分级启动,但分级多时,势必增加控制系统的复杂性,而制造成本、故障率也将随之提高,所以一般控制器均在2~5级间;这样加在电动机定子绕组上的电压、电流等主要参数在分级启动时仍有很大的波动。

2.频繁、重载启动特性不好

原因是在启动过程中电阻值会随着电阻的温度变化而变化,从停止到再启动过程需要长时间冷却。

3.负载大小经常变化的生产机械,启动器不能提供理想的启动效果

延边三角形降压启动,启动过程虽然电压可选择,启动设备也简单,可以连续多次启动,但只适用于特种型号电动机,电机价格较同容量普通型号电动机价格高。

值得指出的是:尽管各种降压启动方法各有其优缺点,但它们有一个共同的优点,就是没有谐波污染。

三、软启动

所谓“软启动”,就是按照预先设定的模式控制启动过程中电压,由一个较低的值平滑地上升到全压,使电机轴上的转矩匀速增加,从而达到启动特性变软。现阶段常用软启动有磁控软启动器和电子式软启动器。

磁控软启动器是利用控磁限幅调压原理,平滑改变启动过程电机定子绕组电压,实现电机无冲击平稳启动,这种方法同时可实现软停车。其特点是结构简单,便于维护,价格低,但其起控电压在200V左右,用户不可调整,也会有电流冲击,体积较大。

随着电力电子技术的发展,利用晶闸管斩波技术生产的新型电子式软启动器越来越得到广泛应用。电子式软启动器的主回路一般都采用晶闸管调压电路,调压电路由六只晶闸管两两反向并联组成,串联于电动机的三相供电线路上;当启动器接收到启动指令后,输出晶闸管的触发信号,通过控制晶闸管的导通角,使启动器按所设计的模式调节输出电压,以控制电动机的启动过程。当启动完成后,一般启动器将旁路接触器吸合,短路掉所有晶闸管,使电机直接投入电网运行,以避免不必要的电能损耗。

目前电子软启动器有以下几种启动方式:

1.限流软启动

顾名思义就是在电动机的启动过程中限制其启动电流不超过一个设定值。主要用于轻载启动,其输出电压从零开始迅速增大,直到其输出电流达到预定值,然后保持电机电流小于等于预定值的条件下逐渐升高电压,直到额定电压,使电动机转速平滑升高到额定转速。这种启动方式的优点是启动电流小,且可按需调整,其缺点是在启动时难以知道启动压降,不能充分利用压降空间,损失启动转矩,启动时间相对较长。

2.电压斜坡启动

输出电压由小到大斜坡线性上升,将传统的降压启动变有级为无级,主要用在重载启动。它的缺点是启动转矩小,且转矩特性上升快,对电机不利。改进的方法是采用双斜坡启动,输出电压先迅速上升到某值,该电压对应电机启动所需最小转矩所对应的电压值,然后按设定的速度逐渐升压到额定电压,初始电压及电压上升率可根据负载特性调整。这种方式的特点是启动电流相对大,启动时间短,更适用于重载启动的电机。

3.电压控制启动

这种启动方法是控制晶闸管导通角的大小,使输出电压平滑上升,在保证启动压降的前提下使电动机获得最大启动转矩,启动时间短,是最优的轻载软启动方式。

总之电子式软启动器结构简单,较传统的降压启动器具有无触点、无噪声、质量轻、体积小、启动电流及启动时间可控制,启动过程平滑等优点,并且维护工作量小,节能效果显著。

综上所述,软启动更适用于生产设备精密、不允许有冲击的生产设备。严格地讲,启动转矩要求小于额定转矩50%的拖动系统,才适合使用软启动器解决启动冲击问题,对于需重载或满载启动的设备,若采用软启动,不但达不到减小启动电流的目的,反而会增加成本;若操作不当,还有可能烧毁启动器。要满足需重载、满载设备的启动要求,更科学合理的方法是选择绕线式异步电动机或直流电动机。

(作者单位:河南省周口市技工学校)

作者:李 丽

上一篇:出资者财务控制论文下一篇:新时期急诊护理论文