集成电路制造工艺之

2022-08-14

第一篇:集成电路制造工艺之

集成电路制造工艺实训报告

专业班级学号姓名地点老师签名

2011年12月22日

第1页

三、光刻Ⅰ—光刻扩硼窗口

工艺目的:

通过光刻工艺,完成掩膜板上的图形转移。(第一次形成基区图形,第二次形成发射区图形)

工艺原理:

通过光刻先把掩膜板上的图形转移到光刻胶上,再转移到硅片上。(第一次基区光刻,第二次发射区光刻)

工艺器件:

SC—IB型匀胶机、DHG—9023型电热恒温干燥箱、URE—2000/17型紫外光刻机、镊子、显影设备。

工艺步骤:

1、甩胶:把硅片放到涂胶机上用滴管吸取光刻胶涂到硅片上,打开抽真空开关

把硅片吸附到匀胶机上,再打开甩胶开关并以700r/min左右的转速开始甩胶约2分钟。等匀胶机停止工作,按下抽真空开关取下硅片。

2、前烘:把硅片放到100℃电热恒温干燥箱里前烘15分钟。

3、曝光:取出硅片冷却,再把硅片放到光刻机上进行紫外线曝光20秒钟。(本

实验室采用的是接近式曝光,在硅片和掩膜板之间有10um—25um的间隙,掩膜板有金黄色避光层的一面应该朝下,硅片上的主切角与掩膜板的X轴对准,以方便二次曝光)

原理:此次实验室采用的是负性光刻胶,其受紫外光照射的区域会交联硬化,

变得难溶于显影液溶剂中,显影时这部分光刻胶被保留,在光刻胶上形

成一种负相的掩膜板图形。

4、显影:在1号显影液里面显影4分钟,再放到2号显影液里面4分钟,用显

影液溶解掉不需要的光刻胶,将掩膜板上的图形转移到光刻胶上。

5、定影:是光刻胶变得更加坚固。

6、坚膜:把显影后的硅片放到130℃的电热恒温干燥箱里后烘15分钟即可。冷

却后用电子显微镜观看显影后的图形。

7、腐蚀:把镜检后的硅片放到花篮里,再放到HF酸里刻蚀5分钟,然后放到去

离子水冲洗连通器2号槽里面冲洗5分钟,再放到1号槽里面冲洗5分钟。 原理:刻蚀就是将涂胶前所积淀的薄膜中没有被光刻胶覆盖和保护的部分除去,

由于Si、光刻胶具有亲水性,SiO2具有疏水性,所以观察芯片背面是否

沾水就能判断刻蚀的程度。

8、去胶:把刻蚀好的硅片放入到去胶液里面15—20分钟。(去胶液:H2SO4:

H2O2:H2O(去离子水)=3:1:任意)

光刻Ⅱ—光刻扩磷窗口

发射区光刻:同操作三,但在曝光前需要依片子和光刻板上的图形对准标记对版。 光刻Ⅲ—光刻引线孔

同操作六,注意对版。

光刻Ⅳ—光刻电极图形

工艺原理:按照电路连线要求在淀积的铝层上光刻出铝条,芯片中的各个元件便

被连接成为具有某种功能的电路。

心得体会

本周实训让我更加了解集成电路,哪怕前面一个小小的失误也会影响后面的的制作,细节绝对成败,因此我们不能马虎的对待.现在只是实训.以后工作了应该更加仔细认真.实训中我们小组互相帮助,分工合作让我们明白了团队力量的强大.每次实训的不断练习,让我对操作步骤更加了解,巩固了以前的知识.

第二篇:集成电路工艺个人总结

曹飞 个人版总结

引言

第一只晶体管 •第一只晶体管, AT&T Bell Lab, 1947 •第一片单晶锗, 1952 •第一片单晶硅, 1954 (25mm,1英寸) •第一只集成电路(IC), TI, 1958 •第一只IC商品, Fairchild, 1961 摩尔定律晶体管最小尺寸的极限 •价格保持不变的情况下晶体管数每12月翻一番,1980s后下降为每18月翻一番;

•最小特征尺寸每3年减小70% •价格每2年下降50%;

IC的极限

•硅原子直径: 2.35 Å;

•形成一个器件至少需要20个原子;

•估计晶体管最小尺寸极限大约为50 Å或0.005um,或5nm。

电子级多晶硅的纯度

一般要求含si>99.9999以上,提高纯度达到99.9999999—99.999999999%(9-11个9)。其导电性介于10-4-1010  /cm。电子级高纯多晶硅以9N以上为宜。

1980s以前半导体行业的模式

1980s以前:大多数半导体公司自己设计、制造和测试IC芯片,如 Intel,IBM

1990s以后半导体行业的模式

F&F模式,即Foundry(代工)+Fabless(无生产线芯片设计), 什么是Foundry

有晶圆生产线,但没有设计部门;接受客户订单,为客户制造芯片;

IC流程图:

接受设计订单→芯片设计→EDA编辑版图→将版图交给掩膜版制造商→制造晶圆→芯片测试→芯片封装

硅片制备与高温工艺单晶生长:直拉法 区熔法 高温工艺:氧化,扩散,退火。 Si集成电路芯片元素组成

■半导体(衬底与有源区):单晶Si ■杂质(N型和P型):P (As)、B ■导体(电极及引线):Al、Wu(Cu 、Ti)、poly-Si ■绝缘体(栅介质、多层互连介质):SiO

2、Si3N4 硅的重要性 ■储量丰富,便宜;(27.6%)

■SiO2性质很稳定、良好介质,易于热氧化生长;

■较大的禁带宽度(1.12eV),较宽工作温度范围

硅提纯 I的工艺步骤、化学反应式及纯度

从石英砂到硅锭

■石英砂(SiO2)→冶金级硅(MGS)

■HCl与MGS粉反应形成TCS■(trichlorosilane:氯硅烷) ■利用汽化和冷凝提纯TCS ■TCS与H2反应形成多晶硅(EGS) ■熔融EGS和拉单晶硅锭 从硅锭到硅片

单晶硅锭→整型→切片→磨片倒角→刻蚀→抛光→清洗→检查→包装 化学反应式

硅提纯I

多晶硅淀积

直拉法的拉晶过程

拉晶过程

①熔硅②引晶(下种)③收颈④放肩

直拉法的拉晶过程中收颈的作用 目的:抑制位错从籽晶向晶体延伸

直拉法与区熔法的对比

直拉法,更为常用(占75%以上) ⑴便宜⑵更大的圆片尺寸(300mm已生产)⑶剩余原材料可重复使用⑷位错密度:0~104cm2 区熔法

⑴高纯度的硅单晶(不使用坩锅)(电阻率2000Ω-mm)⑵成本高,可生产圆片尺寸较小(150mm)⑶主要用于功率器件⑷位错密度:103~105cm2 定位边或定位槽的作用 ①识别晶向、导电类型及划片方向 ②硅片(晶锭)机械加工定位的参考面;

③硅片装架的接触位置

外延的定义:外延、外延层、外延片、同质外延、异质外延

外延层:单晶衬底上单晶薄膜层 外延:同质外延和异质外延

同质外延:衬底与外延层为相同晶体,晶格完全匹配 异质外延:衬底与外延层为不同晶体,晶格不匹配

双极晶体管(电路)和CMOS器件(电路)中外延层的应用

双极晶体管(电路)中外延层的应用

高阻的外延层可提高集电结的击穿电压

■低阻的衬底(或埋层)可降低集电极的串联电阻

CMOS器件(电路)中外延层的应用

■ 减小pnpn寄生闸流管效应降低漏电流

Si外延的源材料

■Si源气体:SiH4(硅烷), SiH2Cl2(二氯硅烷),

SiHCl3(三氯硅烷), SiCl4(四氯硅烷) ■ 掺杂剂 N型掺杂剂:PH3, AsH3 P型掺杂剂:B2H6 分子束外延(MBE)的特点 高温工艺设备小结

■高温工艺通常使用炉管反应室;

■反应炉通常由控制系统、气体输运系统、反应腔、装卸片系统和尾气处理系统构成

■立式炉管使用最广泛,因为其占地面积小、污染控制好、维护量小 ■温度控制的精确性和均匀性对于高温工艺的成功至关重要

氧化膜在IC中的应用 ■掺杂阻挡层■表面钝化(保护)■隔离层■栅氧化层■MOS电容的介质材料

各种氧化层在工艺中的应用、厚度及工艺 掺杂阻挡氧化层应用

■Much lower B and P diffusion rates in SiO2than that in S

■SiO2can be used as diffusion mask

表面钝化(保护)氧化层应用

■Pad Oxide衬垫(缓冲)氧化层, Screen Oxide屏蔽氧化层 Sacrificial Oxide牺牲氧化层, Barrier Oxide阻挡氧化层 ■Normally thin oxide layer (~150Å) to protect silicon defects from contamination and over-stress

器件隔离氧化层应用

■Electronic isolation of neighboring devices ■Blanket field oxide ■Local oxidation of silicon (LOCOS) ■Thick oxide, usually 3,000 to 10,000 Å

栅氧化层应用

■Gate oxide: thinnest and most critical layer ■Capacitor dielectric

1号液和2号液的配方及作用 ■SC-1-NH4OH:H2O2:H2O with 1:1:5 to 1:2:7 ratio at 70 to 80℃to remove organic contaminants.(1号液) ■SC-2--HCl:H2O2:H2Owith 1:1:6 to 1:2:8 ratio at 70 to 80 ℃to remove inorganic contaminates.(2号液)

颗粒、有机粘污、无机粘污及本征氧化层的清洗 Pre-oxidation(预氧化) Wafer Clean Organic(有机)Removal ■Strong oxidants remove organic residues ■H2SO4:H2O2or NH3OH:H2O2followed by DI H2O rinse. ■ High pressure scrub or immersion in heated dunk tank followed by rinse, spin dry and/or dry bake (100 to 125 °C). Pre-oxidation Wafer Clean Inorganic(无机)Removal ■HCl:H2O ■Immersion (浸入)in dunk tank followed by rinse, spin dry and/or dry bake (100 to 125℃) Pre-oxidation Wafer Clean Native Oxide Removal(本征氧化层)

■HF:H2O ■Immersion(浸入)in dunk tank or single wafer vapor etcher followed by rinse, spin dry and/or dry bake (100 to 125℃)

SiO2生长的迪尔-格罗夫模型

干氧氧化和湿氧氧化的特点与应用 干(氧)氧化

■氧化剂:干燥的O2■Si+O2→SiO2■O来源于提供的氧气;Si来源于衬底硅圆片■O2通过表面已有的氧化层向内扩散并与Si反应生长SiO2■氧化膜越厚,生长速率越低■干氧化速率最低

湿(氧)氧化

■氧化剂:O2携带H2O■Si+O2→SiO2■Si+ 2H2O →SiO2+ 2H2 ■湿氧化的生长速率介于水汽氧化与干氧化之间■实际氧化工艺:干氧+湿氧+干氧

氧化工艺应用 干氧化,薄氧化层(<1000A)

-■MOS栅氧化层(30~120A)-■衬垫氧化层(100~200A),--■屏蔽氧化层(~200A),■牺牲氧化层(<1000A),等等

湿氧化,厚氧化层

■场氧化层(3000~5000A)■扩散掩膜氧化层(400~1200A)

掺氯氧化的作用

■Cl 可以减少氧化层中的可动离子(如Na+)■MOS栅极氧化中广泛采用 ■氧化速率提高(1~5)%

影响氧化速率的因素

■温度■湿氧化或干氧化■厚度■压力■硅片晶向(<100>或<111>)■硅中杂质

氧化速率与温度

■氧化速率对温度很敏感,指数规律■温度升高会引起更大的氧化速率升高

氧化速率与圆片晶向

■<111>表面的氧化速率高于<100>表面■原因:<111>表面的Si原子密度高

氧化速率与杂质浓度

■掺杂浓度越高,氧化层生长速率越高

Si-SiO2界面特性替位式扩散、间隙式扩散、扩散系数

在Si-SiO2界面有四种不同类型的电荷:(1)可动离子电荷(2)氧化层固定电荷(3)界面陷阱电荷(4)氧化层陷阱电荷

杂质再硅晶体中的主要扩散机构有:间隙式扩散、替位式扩散。 替位式扩散:杂质从一个晶格位置运动到另一个晶格位置上称为替位式扩散

间隙式扩散:杂质从一个间隙位置到另一个间隙位置上的运动称为间隙式扩散

两步扩散工艺

两步法扩散分预淀积和再分布两步进行,第一步称为预扩散或预淀积,在较低的温度下,采用恒定表面浓度扩散方式在硅片便面扩散一薄层杂质原子,目的在于确定进入硅片的杂质总量。第二步称为主扩散或再分布或推进扩散,在较高的温度下,采用很定杂质总量扩散方式,让淀积在表面的杂质继续往硅片中扩散,目的在于控制扩散深度和表面浓度。

扩散的局限性与应用

扩散技术的主要缺陷

■扩散是各向同性的,掩膜下方也会有杂质横向扩散 ■不能独立控制结深和掺杂浓度 扩散应用

■主要用在阱注入后的推进工艺

离子注入后为什么要退火 ■高能离子损伤晶体结构■非晶硅有很高的电阻率

■需要外部能量如热使其恢复单晶结构■只有在单晶结构中杂质才能被激活

RTP(快速热退火)的优点 ■快速升温(75 to 150 °C/sec)■更高温度(up to 1200 °C) ■过程快速■使杂质扩散最小化■热预算的更好控制(节约能源) ■更好的圆片间均匀性控制 薄膜淀积

真空蒸发法蒸发源加热方式

■电阻加热■电子束加热■激光加热■高频感应加热

溅射的工作原理与特点

原理;具有一定能量的入射离子对固体表面轰击时,入射离子与固体表面原子碰撞发生能量和动量的转移,将固体表面的原子溅射出来 直流溅射特点:只适于金属靶材。 磁控溅射特点:淀积速率最高。

RF溅射特点:适于各种金属与非金属靶材。

PVD 与 CVD对比 ■CVD:衬底表面发生化学反应 ■PVD:衬底表面不发生化学反应

■CVD: 更好的台阶覆盖性(50% to ~100%) 和空隙填充能力 ■PVD: 台阶覆盖性差(~ 15%) 和空隙填充能力差 ■PVD 源: 固态材料 ■CVD 源: 气体或蒸汽

CVD氧化硅与热生长氧化硅对比 ■热生长氧化硅

•O来源于气源,Si来源于衬底•氧化物生长消耗硅衬底•高质量 ■CVD 氧化硅

•O和Si都来自气态源•淀积在衬底表面•生长温度低(如PECVD)•生长速率高

CVD介质薄膜的应用 ■浅槽隔离(STI):undopedsilicon dioxide glass, USG■侧墙隔离:USG ■金属前介质(PMD):PSG or BPSG■金属层间介质(IMD/ILD):USG or FSG■钝化介质(PD):Oxide/Nitride CVD的基本过程

① 传输②吸附③化学反应④淀积⑤脱吸⑥逸出

CVD生长的两种极限:表面反应控制与质量输运(传输)控制

表面反应控制型

■化学反应速率不能满足反应剂扩散和吸附的速率,反应剂堆积在衬底表面等待反应;■淀积速率=反应速率■淀积速率对温度很敏感 质量输运控制型

■表面化学反应速率足够高,当反应剂被吸附在衬底表面时会立即反应■淀积速率=D dn/dx■淀积速率对温度不敏感■淀积速率主要受到气体流速的控制

CVD 的三种类型及各自的应用

■APCVD 常压化学气相淀积■LPCVD 低压化学气相淀积 ■PECVD 等离子体增强化学气相淀积

CVD淀积速率G与温度T的关系

■低温下,hg>>ks,反应控制过程,故G与T呈指数关系; ■高温下,hg<

离子注入

离子注入与热扩散的对比

离子注入的两种阻挡机制

核碰撞和电子碰撞

避免沟道效应的方法 ■倾斜硅片, 7°最常用■屏蔽氧化层(无定形)■注入前预先无定型处理

离子注入机的原理

离子注入工艺的应用及技术趋势

离子注入工艺

■CMOS工艺应用■CMOS离子注入的工艺要求■离子注入工艺的评价。

技术趋势

■超浅结(USJ)■绝缘体上硅(SOI)■等离子体沉浸离子注入(PIII) SOI的优势

■芯片速度更快,耗电更少■电路密度提高 ■SOI尤其在RF与SoC方面表现出色

SOI圆片的制造:智能剥离与注氧隔离 离子注入特点:

⑴注入温度低⑵掺杂数目受控⑶横向扩散小⑷不受固溶度限制⑸注入深度随离子能量增加而增加⑹适合化合物掺杂 光刻与刻蚀工艺(曝光、刻蚀)

光刻的需要及光刻三要素

■高分辨率■光刻胶高光敏性■精确对准

正胶与负胶的比较

光刻工艺的10个步骤 (1) 硅片清洗 (2)预烘和底膜涂覆(3)涂光刻胶(4)前烘(5)对准(6)曝光(7)后烘(8)显影(9)坚膜(10)图形检测

前烘、后烘及坚膜工艺目的(作用)的比较 前烘作用: 促进胶膜内溶剂充分挥发,使胶膜干燥;

增加胶膜与SiO2 (Al膜等)的粘附性及耐磨性

后烘作用:平衡驻波效应,提高分辨率。 坚膜的作用

■蒸发PR中所有有机溶剂■提高刻蚀和注入的抵抗力■提高光刻胶和表面的黏附性■聚合和使得PR更加稳定■PR流动填充针孔 4种曝光机

■接触式曝光机■接近式曝光机■投影式曝光机■步进式曝光机

分辨率与波长及NA的关系 (最小线宽)R由曝光系统的光波长λ和数值孔径NA决定,R=K1λ/NA

K1为系统常数, λ光波长, NA = 2r0/D; ■NA: 凸镜收集衍射光的能力

如何提高分辨率? ■提高NA

更大的凸镜, 可能很昂贵而不实际 减小DOF(焦深),会引起制造困难 ■减小光波长 开发新光源, PR和设备

波长减小的极限:UV到DUV, 到EUV, 到X-Ray ■减小K1 相移掩膜

移相掩模的原理与应用 移相掩模是一种双层设计结构,通过利用干涉技术抵消某些衍射效应,可使光刻分辨率的改进达到25%~100% 两种紫外线和三种深紫外线的名称、波长及对应的最小特征尺寸 ■汞灯i-line, 365 nm:–常用在0.35 μm光刻

■DUV KrF受激准分子激光器, 248 nm:应用0.25 μm, 0.18 μm and 0.13 μm光刻 ■ArF受激准分子激光器,193 nm:–应用: < 0.13 μm

■F2受激准分子激光器:157 nm:–仍处于研发阶段, < 0.10 μm应用

■157 nm F2激光器光刻

:使用相移掩膜, 即使0.035 μm 都是可以的

下一代光刻

■超紫外■X射线■电子束

干法刻蚀与湿法刻蚀的对比 湿法刻蚀的优点

■高选择性■设备成本较低■批处理, 高产量

湿法刻蚀的缺点

■各向同性■不能刻蚀3μm以下图形■化学品使用量高■化学品危险

干法刻蚀优点:

■各向异性腐蚀强;■分辨率高;■刻蚀3μm以下线条

湿法刻蚀SiO

2、Si、Poly-Si及Si3N4的配方及反应式

湿法刻蚀SiO2 常用配方(KPR胶):HF: NH4F: H2O=3ml:6g:10ml

(HF溶液浓度为48%) SiO2+ 6HF →H2SiF6 + 2H2O

湿法刻蚀Si、Poly-Si HNO3-HF-H2O(HAC)混合液

湿法刻蚀Silicon Nitride

热(150 to 200 °C) 磷酸H3PO4溶液

干法刻蚀的原理与种类

① 等离子体刻蚀:化学性刻蚀②溅射刻蚀:纯物理刻蚀③反应离子刻蚀(RIE):结合①、②

干法刻蚀SiO

2、Si、Poly-Si及Si3N4的腐蚀剂

刻蚀气体:CF4 、BCl

3、CCl

4、CHCl

3、SF6

金属化与多层互连

金属化的应用、三种最常用的金属及三种不同的金属化方法

应用

■栅电极材料■金半接触电极材料■互连材料

常用的金属性材料

■掺杂的poly-Si■金属硅化物■金属合金 金属化方法

多晶硅-重掺杂,LPCVD淀积 金属硅化物-淀积 合金=淀积(PVD,CVD) 集成电路对金属化的基本要求

1. 形成低阻欧姆接触;2. 提供低阻互连线;3. 抗电迁移;4. 良好的附着性;5. 耐腐蚀;6. 易于淀积和刻蚀;7. 易键合;8. 层与层之间绝缘要好

90年代CMOS标准金属化:栅材料,接触孔(通孔)填充材料,阻挡层(势垒层)、黏附层、焊接层、及防反射层材料,互连材料,金半接触电极材料及工艺

Al-Si接触的尖楔现象、影响及抑制 Al/Si接触的尖楔现象:Si在Al中的溶解度及快速扩散 影响:PN结穿刺 –Al刺穿过掺杂PN结,使源/漏与衬底短路 抑制:400 ℃热退火在Si-Al界面形成Si-Al合金

Al的电迁移现象、影响及抑制 电迁移:大电流密度下发生质量(离子/晶粒)输运 现象:在阳极端堆积形成小丘或须晶,造成电极间短路;

在阴极端形成空洞,导致电极开路

影响;

■电迁移使金属线变窄变薄■残留引线中电流密度更高■电迁移影响IC的可靠性

电迁移抑制

■少量铜与铝形成的合金将大大提供Al对电迁移的抵抗,铜作为Al晶粒间的粘合剂,防止Al晶粒因电子轰击而迁移 ■Al-Cu (0.5%) 最常用■使用Al-Si-Cu 合金

TiN的作用 TiN:阻挡层,防止W扩散

TiN:粘合层,帮助W与SiO2表面粘合在一起

TiN:防反射涂层ARC(Anti-reflection coating),防止反射提高光刻分辨率

Cu淀积的大马士革镶嵌工艺

① 在低K介质层上刻蚀出Cu互连线用的沟槽; ② ②CVD淀积一层薄的金属势垒层:防止Cu的扩散 ③ ③溅射淀积Cu的籽晶层:电镀或化学镀Cu需要 ④ ④沟槽和通孔淀积Cu:电镀或化学镀; ⑤400℃下退火; ⑤ Cu的CMP。

工艺集成

MOS IC与双极IC的隔离

MOS集成电路的隔离:LOCOS隔离工艺;侧墙掩蔽的隔离工艺;浅槽隔离等. 双极集成电路的隔离:pn结隔离工艺;深槽隔离工艺. 防止寄生场效应晶体管开启及提高寄生晶体管阈值电压的工艺方法 防止寄生场效应晶体管开启的方法

提高寄生场效应晶体管的阈值电压使寄生场效应晶体管的阈值电压高于集成电路的工作电压

4.提高寄生晶体管阈值电压的方法

1)、增加场区SiO2的厚度;(但是过厚的氧化层将产生过高的台阶,从而引起台阶覆盖的问题)

2)、增大氧化层下沟道的掺杂浓度,即形成沟道阻挡层

局部氧化(LOCOS)、侧墙掩蔽的隔离(SWAMI)及浅槽隔离(STI,Shallow Trench Isolation)工艺的特点、工艺流程及示意图 局部氧化工艺

优点:

1.可以减小表面的台阶高度;2.和高浓度杂质注入是一次光刻完成的 缺点:

1、鸟嘴侵蚀有源区;

2、不利于后序工艺中的平坦化;

3、杂质重新分布。

P阱、N阱工艺特点

P阱工艺:易实现nMOS和pMOS的性能匹配,适于静态逻辑电路 n阱工艺:易获得高性能的nMOS,适于微处理器、DRAM 熟悉双阱CMOS IC工艺流程 1)硅片准备2)阱的制备3)场区隔离:4)CMOS器件形成5)多层金属互联6)后部封装工艺

熟悉标准埋层双极集成电路工艺流程 标准埋层双极集成电路工艺流程

1)、衬底准备2)、埋层的制备3)、外延层生长4)、隔离区的形成(第二次光刻)5)、收集极接触的制备(第三次光刻)6)、基区的形成(第四次光刻)7)、发射区的形成(第五次光刻)8)、金属接触和互联(第

六、七次光刻)9)、后续封装工艺

CMOS工艺流程

了解1960s、1970s和1980s集成电路工艺的特点

熟悉1990sCMOS工艺的特点:特征尺寸、衬底、隔离、光刻、刻蚀、退火、W塞及平整化 1990’s CMOS Technology Photolithography – G-line, I-line (365 nm), and DUV 248 nm – Positive photoresist – Steppers replaced projection printer – Track-stepper integrated systems • Plasma etches for patterned etch • Wet etches for blanket film stripping • Vertical furnaces

– smaller footprints, better contamination control. • RTP systems

– post-implantation annealing – silicide formation, – faster, better process and thermal budget control. • DC magnetron sputtering replaced evaporation • Multi-layer metal interconnection • W CVD and CMP (or etch back) to form plugs • Ti and TiN barrier/adhesion layer for W • Ti welding layer for Al-Cu to reduce contact resistance • TiN ARC • BPSG was popularly used as PMD. • DCVD: PE-TEOS and O3-TEOS – STI, sidewall spacer, PMD, and IMD • DCVD: PE-silane – PMD barrier nitride, dielectric ARC, and PD nitride • Tungsten CMP to form plug

• Dielectric CMP for planarization • Cluster tools became very popular • Single wafer processing systems improve wafer-to-wafer uniformity control • Batch systems is still commonly employed in many non-critical processes for their high throughput.

第三篇:印制电路板制造业清洁生产标准理解.

45 Printed Circuit Information 印制电路信息2009 No.3……… 印制电路板制造业清洁生产标准理解 龚永林

CPCA副秘书长

文章叙述印制电路板制造业清洁生产标准的作用及对标准中有关指标要求和考核方法的理解。

关键词

清洁生产标准;印制板制造业;理解

中图分类号:TN41,X65

文献标识码:A

文章编号:1009-0096(2009)3-0045-05

Come to Understand Cleaner Production Standard ------- PCB Manufacturing GONG Yong-Lin Abstract The paper writing that the function of cleaner production standard for PCB,and understand to targetand check method for the standard. Key words cleaner production standard; PCB manufacturing; understanding 本行业期待的《清洁生产标准 印制电路板制造

业》(HJ450-2008)标准,由政府环境保护部在 2008年11月正式发布,定于2009年2月1日起实施。 标准的贯彻实施首先需要学习与理解,在此谈一些

本人的理解与看法。1

认识清洁生产的重要意义 1.1

清洁生产的定义

HJ450-2008标准中定义:清洁生产是指不断采 取改进设计、使用清洁的能源和原料、采用先进的 工艺技术与设备、改善管理、综合利用等措施,从 源头削减污染,提高资源利用效率,减少或者避免 生产、服务和产品使用过程中污染物的产生和排 放,以减轻或者消除对人类健康和环境的危害。 (引自《清洁生产促进法》)

由定义可见,清洁生产是一个系统工程,一方面它提倡通过工艺改造、设备更新、废弃物回收利用等途径,实现“节能、降耗、减污、增效”,从而降低生产成本,提高企业的综合效益,另一方面它强调提高企业的管理水平,提高所有员工在经济观念、环境意识、参与管理意识、技术水平、

职业道德等方面的素质。1.2

清洁生产的意义(1)开展清洁生产是减轻末端治理的负担,控制环境污染的有效手段。末端治理的手段,为保护环境起到了重要的作用。然而末端治理模式有种种弊端:治理设施投资大、运行费用高;存在污染物转移等问题,不能彻底解决环境污染;未涉及资源的有效利用,资源浪费大。清洁生产通过全过程控制,减少甚至消除污染物的产生和排放,大大减轻了企业的负担。质量与标准Quality & Standard

47 Printed Circuit Information 印制电路信息2009 No.3………

……………………………………………

……

国内同行业清洁生产先进水平;三级要求:基本达

到国内同行业清洁生产水平。 同时所有企业的污染物通过治理措施后必须达到相关排放标准。

HJ450-2008标准中,三个等级指标要求设定考虑 了国内外的现有技术水准和管理水平,广泛征求行业 内企业意见而定。指标数值确定是相对而言的,一 级指标数值并不是国际上印制电路板企业最低值,而 是国际先进的平均估计值,国内已有少数企业达到此 水平了。二级指标数值是国内印制电路板企业先进的 平均估计值,只要有一定的清洁生产措施是可以达到 的。三级指标数值是针对现状中生产技术水平偏低的 企业,经改进提高的是能达到的。

目前大批量生产印制板的企业规模和技术水平

已经与国外先进水平相当,因此许多一级与二级的 指标要求是相同的。

在标准制定过程中得到约50家PCB企业数据, 包括了单面、双面、多层、HDI和挠性各类印制 电路板产品,包括了年销售额数十亿元、亿元和千 万元的大、中、小规模不同企业,包括了外资与 港台、国有股份制、民营等不同所有制及不同技术 水平的企业。所采集数据是具有代表性,确定的三

级指标是三个水平的反映。3.3

清洁生产的五类指标行业清洁生产标准要求应从生产工艺与装备、资源能源利用、产品、废物回收处理、污染物和环境管理等六个方面来考虑。对印制板制造行业其产品(印制板)是由客户设计,许多指标并非能由制造方控制,因此未列入HJ450-2008标准中。(1)生产工艺与装备要求的确定。印制板制造工艺目前主要是以覆铜板为主要材料,采取化学蚀刻法(减去法)技术,清洁生产标准要求依此为基础。其它新的工艺方法,如半加成法和加成法工艺,应该比减去法更清洁、环保,是清洁生产的发展方向。印制板制造行业生产工艺基本相同的,但各企业的生产设备差异很大。多数大型企业装备较先进,自动化程度高,过程封闭性强和环境清洁度高,属于国际或国内先进水平。而中小型企业基本以半自动或手工作业设备为主,可能清洁生产条件差些。印制板制造过程按工艺大类分机械加工、线路与阻焊图形形成、板面清洗、蚀刻、电镀与化学镀,针对各工序特点分别提出要求。这类指标只能定性要求,希望向先进的工艺技术和装备转变。(2)资源能源利用指标的确定。印制板生产资源能源利用指标主要突出水、电和覆铜板三项。其它辅助类化学品材料不再另列。有关资源能源利用的单耗指标,是以生产每平方米(m2)产品为单位计,而不以万元产值计。印制板的价格是随市场需求与经营成本变动而经常变化的,而印制板行业习惯

上以平方米统计产量,每平方米产量与消耗水、电及原材料量有着相应关系,便于统计及监测。由于印制板种类不同,生产过程有差异,因此对单面、双面、多层、HDI和挠性各类印制电路板的要求指标作了区别。另外生产批量大小也会影响资源单耗,给予系数补偿。耗用水、电量指标数据包括印制板的直接生产用水、电与间接生产用水、电,但不包括生活(食堂、宿舍)和工厂建设(改造、扩建时)等部分。覆铜板附有金属铜,是印制板的主要原材料,因此要规定覆铜板消耗指标。本标准所确定覆铜板消耗指标是以投入产出比来统计。覆铜板消耗包括了工艺损耗(产品外围之工艺区、开料产生之边角料)和废品损耗(报废品)。

(3)污染物产生指标的确定。

污染物产生指标是直接与清洁生产、环境保护 的成效有关。印制板生产过程有废水、废气、噪 声和废固体物产生,本标准重点抓废水中铜和COD 指标。有关废水中铜和COD数据确定来源于行业调 查及《第一次全国污染源普查 电子行业产排污系数 手册》中印制板制造行业产排污系数。 ①废水产生量。所列废水产生量指在废水处理 后的排放量,其基础是新鲜水的用量。虽然生产 过程中有重复用水,但不损耗总水量。从水平衡 来看,废水产生量(排放量)相当于新鲜水的用 量,只有蒸发,或者清洗场地等其它使用引起水 量减少。

②废水末端处理前污染物产生量。废水末端处 理前指标,是反映污染物的源头情况。印制板废水 是生产过程清洗水,包括含金属废水、含有机物废 水。废水污染物控制指标重点是铜、COD含量。 铜和COD污染物控制指标在末端处理前很难确 定。如产生含铜废水的工序有板面清洗、蚀刻、化 学镀铜、电镀铜等多处,并且各处的废水中含铜量

49 Printed Circuit Information 印制电路信息2009 No.3……………………………………………………

……

(废板、废溶液、粉尘、泥渣)中铜含有量,再与实际回收的铜量作比较。铜回收可以是本企业自行进行,或交专业回收单位处理,回收的铜量都计算在内。

(2)定性指标是原则的基本要求,考核需要PCB行业技术专门人员在现场察看,并需查看相关管理文件与记录。4.3

标准考核分析HJ450-20

08标准制定过程中,对数十家印制板生产企业数据分析,一些企业的某些指标能达到一级,而有些指标只有二级水平;同样,有些企业的某些指标能达到二级,而有些指标只有三级水平。标准要求企业的各项指标都达到一级时才称得上一级清洁生产企业,或全部指标在二级水平以上时才称得上二级清洁生产企业。因此清洁生产要求企业全面、全过程地开展,不能“顾此及彼”。标准正式实施前现状估计,全行业约仅50%的印制板制造企业是可以达到本标准的三级及以上清洁生产要求。有很大一部分企业要达到本标准的清洁生产要求,是需要采取改进、提高措施的。5

清洁生产标准实施与其它规范关系(1)清洁生产标准实施主管部门。《清洁生产促进法》规定:国务院经贸主管部门负责组织、协调清洁生产促进工作。国务院环保和质监等主管部门,负责有关的清洁生产促进工作。HJ450-2008标准规定:清洁生产标准由各级人民政府环境保护行政主管部门负责监督实施。清洁生产的政府主管负责是经贸部门,清洁生产标准是政府环保部门监督实施,实施的主体是印制板制造企业。行业协会(CPCA)应该宣传、推动清洁生产标准的实施,既可以组织专家帮助、指导企业开展清洁生产;又可以协助政府环保部门监督、审核企业清洁生产标准执行。(2)清洁生产审核是实施清洁生产标准的有效途径。《清洁生产促进法》规定:企业应当对生产过程中的资源消耗以及废物的产生情况进行监测,并根据需要对生产实施清洁生产审核。使用有毒、有害原料进行生产或者排放有毒、有害物质的企业,应当定期实施清洁生产审核,并将审核结果报告所在地政府环保部门和经济贸易部门。HJ450-2008标准是对印制板制造企业清洁生产审核的依据之一,本标准的实施也需要与清洁生产审核相结合。而开展清洁生产审核若仅有行业清洁生产标准是不够的,需要进行清洁生产审核的指南或规范,细化本标准中指标的考核方法,使本标准切实执行。CPCA已经向政府主管部门申请制定“印制电路工业清洁生产评价指标体系”和“印制电路工业清洁生产审核指南”等标准,这时印制板制造企业清洁生产审核才完全规范化。

现在有印制板制造企业已通过或正在进行清洁生产审核,它们的清洁生产依据(衡量标准)是工业生产的基本要求或套用电镀行业要求,缺乏印制板制造业特

点。而清洁生产审核所请“清洁生产审核中心”的专家不懂、不了解印制板制造过程,照样签名认可。

(3)行业清洁生产标准与污染物排放标准。最近政府主管部门正在制定GB《电子行业污染排放标准——电子元件》(含印制板)标准,这将不再执行原有的GB8978-1996《污水综合排放标准》。该标准是规定废水、废气处理后排出的允许指标,HJ450-2008行业清洁生产标准所规定的污染物产生量是末端处理前的指标,切莫把两者混淆。

(4)清洁生产与ISO14000环境管理体系的关系。清洁生产是一种创造性的、高层次的,包含性极大的环境战略措施。采取一系列技术改进措施与管理强化措施,全方位改善企业的环境面貌,也给企业带来直接的经济效益。

ISO14000环境管理体系是企业向外界表明自己的承诺和良好的环境形象,减少环境污染,选择的一个管理性措施。

从技术内涵看企业清洁生产比较广泛,从无毒原料替代,工艺与设备改进,企业管理与员工素质等方面进行全程核查,提出经济可行的方案,以不断实行节能、降耗、减污、提质、增效为目标的持续清洁生产。而ISO14000环境管理体系的技术内涵一般表现在环境因素的管理方面,其核心就是建立符合国际标准的环境管理体系。

通过ISO14000认证的企业也不能认为符合清洁生产标准了,实施清洁生产标准需要贯彻ISO14000标准,两者可以相互依托并轨实施,但不能替代。

HJ450-2008标准由2009年2月1日起实施,在实施过程中会加深理解和认识。按照标准规定:“本标准由环境保护部解释”

第四篇:绿茶制造工艺

绿茶,又称不发酵茶。以适宜茶树新梢为原料,经过绿茶制造工艺而制成的茶叶。其干茶色泽和冲泡后的茶汤、叶底以绿色为主调,故名绿茶。绿茶中保留的天然物质,对防辐射、防癌、抗癌、消炎、杀菌等有很好的效果,其功效在众茶叶类中是尤为突出的。中国绿茶生产量多面广,在全国18个产茶省区中,几乎都有绿茶生产,但主要产于浙、皖、赣3省,其次是湘、川、台等省。你是否对绿茶为何会有如此神奇功效所好奇?绿茶又是如何制作的?绿茶制造工艺的具体步骤是什么?下面由小编为你解答:

绿茶按制法可分为四大类,即炒青绿茶、烘青绿茶、蒸青绿茶和晒青绿茶。这四大类绿茶,中国都有生产,尤以炒青绿茶为多。

中国炒青绿茶,按产品形态分有长炒青(如眉茶)、圆炒青(如珠茶)、扁炒青(如龙井、旗枪)等。数量以长炒青为多,经精制整形后称为眉茶。它是中国重要的外销绿茶品种,在国际市场上素负盛誉。绿茶分烘青、炒青两种。烘青绿茶制造工艺有3道:杀青、揉捻十干燥。炒青绿茶初制工序有:鲜叶→杀青→样捻→炒干。干燥方法和烘青绿茶相异,不是烘干;而是炒干。炒干是形成炒青绿茶特有的形状、色泽、香味的关键工序,闽东各县茶叶生产炒干形式有全炒干和半烘炒两种。所使用的炒于机有锅式炒于机与滚简炒于机两种。

杀青手工杀青,即用普通铁锅为炒锅,进行手炒。杀青锅杀青,待锅加热至锅底微红,锅温达200—240t左右时,投人鲜叶15—2公斤,采取‘闷、抖、扬’相结合的翻炒方法.钞至适度手摇杀青机杀育效率比手工高3—5倍。每锅投叶量为5公斤左右,转速每分钟18—20转,炒8—9分钟,采取“闷炒’、“先闷后抖扬”的方法炒至适度。两锅连续杀青机杀青,其操作程序为:待前锅烧至微红,锅温达260—280t时,投人鲜叶6公斤左右,然后加盖闷妙,待锅盖缝冒出水汽时,开盖扬炒。炒3—4分钟,开动锅闸门,让茶叶自动进人第二锅(锅温掌握在100℃左右)。第二锅炒至适度即可出茶。滚筒杀青机杀青,其操作程序为:炒灶生火后,开动通风机、启动滚筒,使燃料锅火温达90—100t时,开始投叶杀青至出青,只需1—2分钟。工效比二锅连续杀青机提高2倍。杀青毕,卸出柴炭,待滚简冷却后即停机,随后将杀青叶摊凉付揉。

揉捻机器揉捻要求嫩叶温揉,粗叶热揉,装叶适当,转速宜快,加压适宜,分次揉捻,分次解块。其操作程序为:不加压一轻压一重压一解块一出茶。揉捻时间一般25~35分钟。绿茶制造工艺中人工操捻方法与制作红茶相同。

第五篇:模具制造工艺

一 模具制造的基本要求?

1. 制造精度高

2.使用寿命长

3. 制造周期短

4. 模具成本低

模具制造的工艺路线?

首先 ,根据制品零件图样或实物进行估算,然后进行模具设计,零件加工,装配调整,试模,直到生产符合要求的制品。

1. 分析估算

2. 模具设计

3. 模具制图

4. 零件加工

5. 装配调整

6. 试模

仿形加工:仿形加工以事先制成的靠模为依据,加工时触头对靠模表面施加一定的压力,并沿其表面上移动,通过仿形机构,使刀具作同步仿形工作,从而在模具零件上加工出与靠模相同的型面。

仿形加工有仿形车削,仿形刨削,仿形铣削和仿形磨削等。

仿形加工机构不同方式:机械式,液压式,电控式,电液式和光电式等。

坐标镗床加工?

坐标镗床是一种高精度孔加工的精密机床,主要用于加工零件各面上有精确孔距要求的孔。 坐标镗床的主要附件?

1 万能转台

2 光学中心测定器

3 镗孔夹头和镗刀

4 弹簧中心冲

坐标磨床加工?

坐标磨床和坐标镗床相似,也是利用准确的坐标定位实现孔的精密加工的,但它不是用钻头或镗刀,而是用高速旋转的砂轮对已淬火的工件的内孔进行磨削加工。

成型磨削的方法有两种?

1 成形砂轮磨削法 利用修整砂轮工具,将砂轮修整成与工件型面完全吻合的相反型面,然后用此砂轮磨削工件。

2 家具磨削法 将工件按一定的条件装夹在专用的夹具上,在加工过程中通过夹具的调节使工件固定或不断改变位置,从而获得所需的形状。

与普通机床相比,数控机床的主要优点?

1 自动化程度高

2 加工精度高,产品质量稳定

3 适应性强

数控机床的分类?

1 按控制刀具相对工件移动轨迹 可分为点位移控制系统,直线控制系统和连续控制系统 2 按数控装置和机床的关系 可分为内插补控制系统和外插补系统

3 按被调量有无检测及反馈 可分为开环控制系统,闭环控制系统,半闭环控制系统。

数控机床的伺服系统

伺服系统是计算机和机床的联系环节,是数控机床的一个重要组成部分。

私服系统的作用:根据一定的指令信息加以放大,从而不仅能控制执行件的速度,而且能精确控制其位置和一系列位置所形成的轨迹。

数控机床的伺服系统有开环系统和闭环系统。

模具的特种加工与机械加工有本质的不同,它不要求模具材料比工件材料更硬,也不需要在加工过程中施加明显的机械力,而是直接利用电能,化学能,光能和声能对工件进行加工,已达到

上一篇:合作协议书合同范本下一篇:检察长先进事迹材料