计算机联锁控制系统车站设计

2022-09-10

井亭站离北京站739公里, 离上海站724公里, 现为五等站。井亭站站场为半自动闭塞单线4股道站场。设计只针对集中联锁区。上下行咽喉共布置信号机24架, 道岔13个。本次设计的计算机联锁控制系统采用由北京交通大学研制的J D-1 A型车站信号控制系统。系统包括人机对话层, 联锁运算层, 执行层, 体系结构如图1所示。本次工程设计主要完成了执行层的硬件设计工作。

1 设计站场平面图

1.1 设计的井亭站信号平面布置图包括以下内容

(1) 信号楼及其设置位置, 联锁区的全部线路以及与联锁区有密切联系的非联锁区线路; (2) 联锁区内的全部道岔, 并标明每组道岔岔尖距信号楼中心的距离; (3) 信号机的布置及每架信号机至信号楼中心的距离; (4) 分割轨道区段的全部轨道绝缘节; (5) 标明道口宽度及其距信号楼的距离; (6) 正线, 站线线路间距; (7) 信号楼外墙至最近线路中心的距离; (8) 咽喉区内, 与信号机有关的及侵入限界的绝缘节处的警冲标位置; (9) 对集中道岔、股道、色灯信号机及道岔和无道岔轨道电路区段均标出编号和名称; (1 0) 车站线路上以箭头表示其接车方向; (1 1) 附有道岔类型及股道有效长度的统计表。

1.2 确定联锁区范围

确定计算机联锁工程设计的范围需要先确定联锁区的范围。凡列车进路以及与列车进路有联系的调车进路上的道岔都应划入联锁区内。

1.3 确定道岔定位位置并编号

(1) 确定道岔定位位置的原则如下: (1) 单线区段车站正线上的进站道岔, 以由车站两端向不同线路开通的位置为定位。 (2) 双线区段车站正线上的进站道岔, 以向各该正线开通的位置为定位。 (3) 所有区间及站内正线上的其它道岔, 除引向安全线和避难线外, 均向各该正线开通的位置为定位。 (4) 引向安全线, 避难线的道岔, 为向各该安全线和避难线开通的位置为定位。 (5) 侧线上的道岔除引向安全线和避难线者外, 为向列车进路开通的位置或靠近站舍进路开通的位置为定位。 (6) 在确定道岔定位位置时, 可以划成双动道岔的, 应尽量划成双动道岔。

(2) 道岔的编号方法 (1) 在下行列车进站的一端, 从外向内顺序编为单号。在上行列车进站的一端, 从外向内顺序编为单号。并以站的中心线作为划分单双数编号的分界线。 (2) 位于同一坐标的道岔先编靠近信号楼的道岔。 (3) 双动道岔要连续编号。

1.4 布置信号机并命名

(1) 进站信号机, 为了对由区间驶向车站内方的接车进路进行防护, 在每一方向的进站口道岔外方, 列车运行前进方向的线路左侧, 均应设置进站信号机。进站信号机应设于距进站道岔尖轨尖端 (顺向为警冲标) 不少于5 0米的地点。鉴于井亭站是半自动闭塞区段, 进站信号机与正线同方向出站信号机的距离不得小于列车的制动距离800米。

(2) 预告信号机, 对主体信号机起预告作用, 一般安装在非自动闭塞区段进站信号机前方, 与主体信号机间距不得少于8 0 0米。

(3) 出站信号机, 为了禁止或准许列车由车站开往区间, 在车站的正线和到发线上均应设出站信号机。在不侵入限界的条件下, 主要应从最大限度地利用股道有效长度考虑。

(4) 调车信号机, 是为在联锁区内进行调车作业而设置的。下面结合调车作业中信号机的作用, 说明设置时考虑的情况: (1) 在尽头线, 机待线, 牵出线及编组线向集中区处都设置调车信号机进行防护。 (2) 咽喉区对向道岔岔尖前应设置调车信号机, 满足调车折返转线作业。 (3) 为满足平行作业, 设置起阻挡作用的调车信号机。 (4) 在向股道进行调车作业时, 为减少走行距离, 使车列中途折返, 设置调车信号机。 (5) 在不设专用牵出线的中间车站或小型区段站上, 在进站信号机内方设一无岔区段和供调车折返作用的调车信号机。 (6) 信号机上装设调车灯光显示。

1.5 划分轨道电路区段并命名

(1) 轨道电路区段的划分方法: (1) 凡是有信号机的地方都要用钢轨绝缘将其内外方划分成不同的轨道电路区段。 (2) 牵出线, 机待线, 尽头线, 专用线等处的调车信号机外方应设一段不小于2 5 m长度的轨道电路, 作为接近区段。 (3) 凡是能构成平行进路的地点, 都应设置钢轨绝缘把它们隔开。 (4) 每个道岔区段一般不超过三组单开道岔或者两组交分道岔。

(2) 轨道区段的命名: (1) 单线铁路股道的编号方法是:从靠近站舍起向远离站舍方向顺序编号, 正线用罗马数字, 站线用阿拉伯数字, 依次编号为1G, IIG, 3G, 4G。 (2) 道岔轨道区段D G前冠以道岔编号。 (3) 无岔区段用两端相邻道岔编号以分数形式表示。 (4) 接发车口处因设置调车信号机而形成的线路区段, 根据股道的编号再加以A或B表示。 (5) 货物线, 专用线等区段的编号, 阿拉伯数字应写在中间。

1.6 编制联锁表

联锁表是说明车站信号设备之间联锁关系的图表。车站信号平面布置图是编制联锁表的依据。本次设计的联锁表列出了上下行咽喉的列车进路, 以及下行咽喉的基本调车进路。 (1) 方向栏:填写进路性质及运行方向和进路的始端信号机名称。 (2) 进路号码栏:按全站列车进路和调车进路顺序编号。 (3) 进路栏:逐条列出联锁范围内的全部列车和调车的基本进路。 (4) 按钮栏:顺序填写排列进路时应按下的按钮名称。 (5) 确定运行方向道岔栏:应填写区别开通进路中起关键作用的对向道岔位置。 (6) 道岔栏:顺序填写所排进路中的全部道岔以及有关防护和带动道岔的编号和位置。 (7) 敌对信号栏:填写所排列进路的全部敌对信号, 填写敌对信号时有条件敌对和无条件敌对之分。 (8) 轨道区段栏:填写排列进路时应检查的轨道区段名称。超限绝缘处应注意检查。 (9) 信号机栏:填写排列进路时应写已开放信号机的名称和显示。 (10) 其他联锁栏:单线半自动闭塞区段只有在办理完闭塞手续取得发车权后才能开放出站信号。

1.7 设计室外设备的继电接口电路

(1) 进站信号机点灯电路, 本站场中的进站信号机有五个灯泡, 从上到下依次为:黄 (U) , 绿 (L) , 红 (H) , 黄 (2U) , 月白 (YB) 。点灯电路中共用到7个继电器:列车信号继电器, 正线信号继电器, 通过信号继电器, 引导信号继电器, 绿黄信号继电器, 第二灯丝继电器, 灯丝继电器。

(2) 出站兼调车信号机点灯电路, 由于本站是半自动闭塞两方向出站, 因此出站信号机采用四灯位显示, 从上到下依次是绿 (L) , 红 (H) , 绿 (2L) , 月白 (YB) 。信号机点灯时的意义及逻辑关系如下: (1) 点一个绿灯:L X J↑+Z X J↑。 (2) 点两个绿灯:L X J↑+ZXJ↓。 (3) 点一个红灯:LXJ↓+DXJ↓。 (4) 点一个白灯:L X J↓+D X J↑。

(3) 调车信号机点灯电路, 在通常状态下, 调车信号继电器D X J落下, 点亮蓝灯。当D X J励磁后点亮月白灯。

(4) 四线制直流单动道岔控制电路, 本次设计的道岔均采用Z D 6型电动转辙机。道岔继电接口电路采用四线制道岔控制电路, 它可以分为道岔启动电路和道岔接口电路两部分。

(5) 交流连续式轨道电路。轨道电路是把一段铁路线路的两根钢轨作为导线, 其间的轨缝用接续线连接起来, 两端的轨缝装上绝缘物, 一端送电, 一端受电形成的电路。轨道电路用来检查轨道区段内有无车辆占用, 并监督钢轨线路是否良好。轨道电路区段无车时, 电流流经轨道继电器GJ的线圈, 构成闭合回路, 使GJ励磁吸起, 表示轨道电路设备完好, 没有被列车占用, 允许列车进入该区段。

1.8 设计驱动采集信息表

(1) 驱采设备硬件配置。本次设计的计算机联锁控制系统采集板采用V D I B-3 2位采集板, 驱动板采用V D O B-3 2位采驱动板, 双机热备冗余机制, 双机采集 (A C和BC) , 双机驱动 (AQ和B Q) 。

(2) 采集板驱动板的功能, 采集板采集继电器组合架上继电器的接点信息, 提供联锁运算所需要的数据, 通过采集层的电源板送到联锁下位机。驱动板将联锁下位机运算的结果通过该层的电源板, 送到驱动层输出, 直接驱动继电器的线圈。

1.9 设备的配线

(1) 室外分线盘的配线, 本设计的分线盘采用6柱端子板。分线盘构架上安装1 0个端子框, 其中零层为电源端子层, 其余9层为6柱端子板层, 每层可设13块6柱端子板。室外电缆引入后, 经过电缆柜, 固定在分线盘的电缆架上, 将电缆芯线按配线图接到分线盘端子上。组合架侧面端子, 电源屏端子引来的线经走线架按配线图与分线盘相应的端子连接, 从而使室内外电路连通。

(2) 组合架侧面端子的配线, 本次设计中两块侧面端子板的6列端子的用途如下:0 1和02列分别接A机和B机的采集板, 03和04列分别接A机和B机的驱动板, 0 5列给组合与分线盘之间的连线用, 0 6列作电源端子。

(3) 组合内部配线, 下面以道岔组合D Z的内部配线为例说明:配线表左边先列出了组合内部的1 0个继电器插座板, 在插座板的上方写上其编号

1.10 设计室内设备的布置

(1) 室内设备的平面布置, 设计的信号楼为一层结构, 有6个房间。各个房间布置的设备如下:1号房间为值班员休息室。2号房间为控制室。在控制室设置一弧形落地窗。窗前放置控制用的电脑 (上位机) 。3号房间放置4个组合架, 并放置室内分线盘。4号房间为设备维修室, 放置了一些修复计算机联锁常见故障所需的工具。5号房间放置联锁机A机和B机, 用来实现联锁功能。6号房间放置电源屏。

(2) 室内设备之间的连接, 室外设备的各条控制线先连接至室外分线盘, 然后再由室外分线盘连接至组合架侧面端子的0 5列上。侧面端子上的各条配线经过室内分线盘, 连接至联锁机内的驱采电路板。驱采电路板对组合架上的继电器状态进行采集, 并驱动继电器的工作。

2 结语

计算机联锁控制系统与传统的继电集中联锁控制系统相比, 不仅具有优越的安全性和可靠性, 而且拓展了继电联锁功能。利用计算机的强有力处理能力和快速运算特点可以进一步开发和扩展新功能。综合经济指标也比继电联锁系统便宜。微机联锁系统是车站联锁系统的发展方向。计算机联锁控制系统是一个大的系统, 包括软件系统, 硬件系统等等各个方面。本次工程设计主要完成了计算机联锁控制系统的执行层的设计工作, 对于联锁软件的设计方面则没有涉及, 系统的安全性可靠性也没有进行分析。

摘要:本文以井亭车站为设计对象, 论述了计算机联锁控制系统的工程设计方法:首先选择计算机联锁的制式, 然后根据给定的站场图布置室外设备并编号, 并选择了一些典型进路编制了联锁表。然后设计与计算机联锁相结合的各种继电接口电路, 并编排了组合排列表以及计算机联锁电子系统与继电接口设备的采集与驱动对应表。在以上设计的基础上进行组合内部配线, 组合侧面端子配线, 以及组合架到室外分线盘的配线。

关键词:铁路信号,计算机联锁,继电器,组合,配线

上一篇:论师范专科学校学生基本专业技能体系的构建下一篇:浅谈购物网站的感知设计与用户体验