大体积混凝土裂缝分析

2022-11-03

第一篇:大体积混凝土裂缝分析

大体积混凝土裂缝产生的原因分析与防控措施

论文 关键词:大体积混凝土;裂缝;原因;防控措施

论文摘要:大体积混凝土结构物施工技术难度大,容易引发许多影响使用安全的质量隐患。本文从混凝土内部温度分布情况及其变化 规律 着手,分析了大体积混凝土施工过程中裂缝产生的原因,并提出相应的防控措施。

混凝土内部温度取决于混凝土本身所贮备的热能。在绝热条件下,混凝土内部最高温度为浇筑温度与水泥水化热温度总和。实际施工过程中,由于混凝土内部温度与外界环境温度之间存在温差,并且混凝土四周并不能充分散热,所以新浇筑的混凝土与周围环境之间便会发生热能交换。混凝土

1 模板、外界环境和养护条件等因素都会不断改变混凝土内部所贮备的热能,并促使混凝土内部温度逐渐发生变化,表现为“由低到高,再由高到低”的变化过程,混凝土内部最高温度实际上是入模浇筑温度、水泥水化热引起的绝热升温和混凝土浇筑后的散热温度三者的叠加。

1大体积混凝土裂缝的产生原因

混凝土中产生裂缝有多种原因,主要是温度和湿度的变化,混凝土的脆性和不均匀性,以及结构不合理,原材料不合格(如碱骨料反应),模板变形,基础不均匀沉降等,归纳起来主要有以下几点。

外界气温变化。大体积混凝土在施工阶段,它的浇筑温度随着外界气温变化而变化。特别是气温骤降,会大大增加内外层混凝土温差,这对大体积混凝土是极为不利的。温度应力是由于温差引起温度变形而造成的,温差愈大,温度应力也愈大。同时,在高温条件下,大体积混凝土不易散热,混凝土内部的最高温度一般可达60℃-65℃,并且有较长的延续时间。因此,应采取温度控制措施,防止混凝土内外温差

2 引起的温度应力。

混凝土的收缩。混凝土中约20%的水分是水泥硬化所必需的,而约80%的水分要蒸发,多余水分的蒸发会引起混凝土体积的收缩。混凝土收缩的主要原因是内部水蒸发引起混凝土收缩。如果混凝土收缩后,再处于水饱和状态,还可以恢复膨胀并几乎达到原有的体积。干湿交替会引起混凝土体积的交替变化,在混凝土内部产生很大的收缩应力,导致混凝土的裂缝。影响混凝土收缩,主要是水泥品种、混凝土配合比、外加剂和掺合料的品种以及施工工艺、养护条件等。

水泥水化热。水泥在水化过程中要释放出一定的热量,而大体积混凝土结构断面较厚,表面系数相对较小,所以水泥产生的热量聚集在结构内部不易散失。这样混凝土内部的水化热无法及时散发出去,以至于越积越高,使内外温差增大,产生温度应力和收缩应力。水化热产生的混凝土内部最高温度,多发生在浇筑后的最初3天至5天,以后逐渐降低,这与混凝土单位体积中水泥用量和水泥品种有关。结构裂缝主要是由降温和收缩引起的,前者引起外约束,是导致贯通裂缝的主要原因;后者引起自约束,主要引起表面裂缝。因此在降温阶段,如果温差较大,则早期出现裂缝的可能性较大。

3

约束条件。大体积混凝土与地基浇在一起,早期混凝土温度上升时,混凝土膨胀受到地基约束会产生压应力;当后期温度下降时,混凝土收缩受到地基约束便会产生拉应力。由于混凝土的抗压性能优于抗拉性能,所以在受压时一般不会出现裂缝,而在受拉时,当拉应力大于混凝土的抗拉强度时,就会在混凝土中出现垂直裂缝。

2大体积混凝土裂缝的防控措施

2.1 科学 用料、合理调配

控制含泥量。根据结构断面最小尺寸和泵送管道内径,选择合理的最大粒径。选用天然连续级配的粗集料,使混凝土具有较好的可泵性,减少用水量、水泥用量,进而减小水化热,以采用级配良好的中砂为宜,通过试验证明,采用细度模数2.8的中砂比采用细度模数2.3的中砂,可减少用水量20kg/m3-25kg/m3,可降低水泥用量28kg/m3-35kg/m3。因而降低了水泥水化热,混凝土温度升高和收缩,选用合理砂率对混凝土的可泵性是有所提高的。 控制水灰比。混凝土

4 中掺入一定数量的优质粉煤灰。不但能代替部分水泥,而且粉煤灰颗粒呈球状具有滚动效应,起到润滑作用,可改善混凝土拌合物的流动性、粘聚性、保水性,并且能够补充泵送混凝土中粒径在0.315mm以下的细集料达到占15%的要求,从而改善了可泵性。掺优质粉煤灰的混凝土后期强度高,在一定范围内60天比28天强度均可增长20%左右。

减少水泥用量。选用水化热较低的32.5号矿渣硅酸盐水泥。其早期的水化与同龄期的普通硅酸盐水泥相比,3天的水化热约低30%。大体积混凝土引起裂缝的主要原因是水泥水化热的大量积聚,使混凝土早期升温和后期降温产生内部和表面温差。合理地选用水泥是控制温度裂缝的有效措施。

2.2优化浇捣方法

大体积混凝土施工段的划分及浇筑顺序应根据具体工程结构确定,通常按该工程项目划分表的单元工程进行划分。混凝土可采用混凝土运输车运到现场,汽车泵或混凝土输送泵运送入仓;如采用非泵送混凝土,可用吊机(车)直接布料或搭设脚手架采用机动车布料。大体积混凝土必须根据当地中长期天气预报,选择最佳天气条件进行浇筑,应尽量安排在低温时段浇筑,以最大限度降低混凝土的初凝温度。在浇

5 筑过程中,应遵循“同时浇捣、分层推进,一次到顶,循序渐进”的成熟工艺。振捣时重点控制两点,即混凝土流淌的最近点和最远点,振动点振动时不能漏振,尽可能采用两次振捣工艺,以提高混凝土的密实度。

2.3加强后期养护

养护是一项十分关键的工作,养护主要是保持适宜的温度和湿度,以便控制混凝土内表温差,促进混凝土强度的正常 发展 及防止混凝土裂缝的产生和发展。根据工程的具体情况,应尽可能多养护一段时间,拆模后立即回土或覆盖保护,同时预防近期骤冷气候影响,以控制内表温差,防止混凝土早期和中期裂缝。养护用水的温度应与现场测得的混凝土表面温度接近,以免人为造成混凝土表面产生温度梯度,进而出现裂缝。大体积混凝土的养护,不仅要满足强度增长的需要,还应通过温度控制,防止因温度变形引起混凝土的开裂。温度控制就是对混凝土的浇筑温度和混凝土内部的最高温度进行控制。在混凝土养护阶段的温度控制应遵循以下几点:①混凝土的中心温度与表面温度之间、混凝土表面温度与室外最低气温之间的差值均应小于20℃;当结构混凝土具有足够的抗裂能力时,不大于25℃-30℃。②混凝土拆模时,混凝土的温差不超过20℃。其温差应包括表面温度、中心温

6 度和外界气温。③采用内部降温法来降低混凝土内外温差。④保温法是在结构外露的混凝土表面以及模板外侧覆盖保温材料(如草袋、锯木、湿砂等),在缓慢的散热过程中,使混凝土获得必要的强度,以控制混凝土的内外温差小于20℃。⑤混凝土表层布设抗裂钢筋网片,增强混凝土的抗裂性,防止混凝土收缩时产生干裂。

结语

虽然学术界对于混凝土裂缝的成因和 计算 方法有不同的理论,但对于具体的预防和改善措施意见还是比较统一,同时在实践中的应用效果也是比较好的,具体施工中要靠我们多观察、多比较,出现问题后多分析、多 总结 ,结合多种预防处理措施,同时应做好充分的施工准备、加强现场协调与组织管理,混凝土的裂缝是完全可以避免的。

参考 文献

7 [1]叶琳昌,沈义.大体积混凝土施工[M].北京: 中国 建筑 工业 出版社,1987.

[2]段峥.现浇大体积混凝土裂缝的成因与防治[J].混凝土,2003(8).

第二篇:大体积混凝土裂缝防治论文

目 录

一、摘要

二、前言

三、大体积混凝土裂缝产生原因及防裂措施概述3.1大体积混凝土裂缝形成的原因 3.2防止裂缝的措施 3.3采用合理的施工方法

四、小结

一、摘 要

本文对大体积混凝土的施工进行了一次概述。重点对 大体积混凝土裂缝的产生与防治作出阐述。

关键词:

大体积混凝土 裂缝 防裂措施

施工方法

二、 前 言

近年来,随着国家经济的飞速发展和建筑技术的日新月异,建筑规模不断扩大,大型现代化建筑和构筑物不断增多,混凝土结构因其材料物美价廉、施工简便、承载力大、可饰性强的特点,得以被广泛应用,于是大体积混凝土也由此成为构成大型建筑或构筑物主体的重要组成部分。对于大体积混凝土,目前国内尚无一个确切的定义。日本建筑学会标准(JASS5)规定:“结构断面最小厚度在80㎝以上,同时水化热引起混凝土内部的最高温度与外界气温之差预计超过25°C的混凝土,称为大体积混凝土”。美国混凝土学会(ACI)规定:“任何就地浇筑的大体积混凝土,其尺寸之大,必须要求采取措施解决水化热及随之引起的体积变形问题,以最大限度减少开裂”。由此就引出了大体积混凝土开裂的问题,如果裂缝一旦形成,特别是基础贯穿裂缝出现在重要结构部位,将会降低结构的耐久性,削弱构件的承载力,同时可能危害到建筑物的安全使用。所以如何采取有效措施防止大体积混凝土的开裂,是一个值得研究的问题。

三、 大体积混凝土裂缝产生原因及防裂措施概述

3.1 大体积混凝土裂缝形成的原因

产生裂缝的原因可分为两类:一是结构型裂缝,是由外荷载引起的,包括常规结构计算中的主要应力以及其他的结构次应力造成的受力裂缝。二是材料型裂缝,是由非受力变形变化引起的,主要是由温度应力和混凝土的收缩引起的。本文主要探讨材料型裂缝。其中具体原因如下。

3.1.1 温度应力引起裂缝(温度裂缝)

目前温度裂缝产生主要原因是由温差造成的。温差可分为以下三种:混凝土浇注初期会产生大量的水化热,由于混凝土是热的不良导体,水化热积聚在混凝土内部不易散发,常使混凝土内部温度上升,而混凝土表面温度为室外环境温度,这就形成了内外温差,这种内外温差在混凝土凝结初期产生的拉应力一旦超过混凝土抗压强度时,就会导致混凝土裂缝;另外,在拆模前后,表面温度降低很快,造成了温度骤降,也会导致产生裂缝;当混凝土内部达到最高温度后,热量逐渐散发而达到使用温度或最低温度,它们与最高温度的差值就是内部温差;这三种温差都会产生温度裂缝。在这三种温差中,较为主要是由水化热引起的内外温差。

3.1.2 收缩引起裂缝

收缩有很多种,包括干燥收缩、塑性收缩、自身收缩、碳化收缩等等。这里主要介绍塑性收缩。 3.1.3 塑性收缩

在水泥活性大、混凝土温度较高,或在水灰比较低的条件下会加剧引起开裂。因为这时混凝土的泌水明显减少,表面蒸发的水分又不能得到及时补充,此时混凝土尚处于塑性状态,仅仅受到一点拉力,混凝土的表面就会出现不均匀的裂缝,出现裂缝以后,将进一步加大混凝土体内的水分蒸发,于是裂缝进一步扩展。 3.2 防止裂缝的措施

由以上分析,材料型裂缝主要是由温差和收缩引起,所以为防止裂缝的产生,必须最大限度的降低温差和减小混凝土的收缩,具体措施如下。 3.2.1优选原材料

一. 水泥

由于温差主要是由水化热产生的,所以为了减小温差要尽量采用早期水化热低的水泥,在满足强度和耐久性等要求的前提下,宜选用低热或中热的矿渣水泥、火山灰水泥(发热量270~290kJ/kg)、严禁使用安定性不合格的水泥。另外,在不影响水泥活性的情况下,要尽量使水泥的细度适当减小,此外水泥的细度将会影响水化热的放热速率,试验表明比表面积每增加100cm 5

2/g,1d的水化热增加17J/g~21 J/g,7d和20d均增加4 J/g~12 J/g。

二. 掺加粉煤灰

为了减少水泥用量,降低水化热并提高和易性,可以掺部分粉煤灰,掺入粉煤灰主要有以下作用:①由于粉煤灰中含有大量的硅、铝氧化物,其中二氧化硅含量40%~60%,三氧化二铝含量17%~35%,这些硅铝氧化物能够与水泥的水化产物进行二次反应,是其活性的来源,可以取代部分水泥,从而减少水泥用量,降低混凝土的热胀;②由于粉煤灰颗粒较细,能够参加二次反应的界面相应增加,在混凝土中分散更加均匀;③同时,粉煤灰的火山灰反应进一步改善了混凝土内部的孔结构,使混凝土中总的孔隙率降低,使硬化后的混凝土更加致密,相应收缩值也减少。但粉煤灰的掺量不宜过多,在工程中应根据具体情况确定粉煤灰的掺量。

三. 骨料 (1)

粗骨料

由于粗骨料级配越好,孔隙率越小,总表面积越小,每立方米的用水泥砂浆量和水泥用量也越小,水化热就随之降低,有利于防止裂缝的产生。所以应尽量扩大粗骨料的粒径且粗骨料含泥量≤1%.

(2)

细骨料

宜采用级配良好的中砂和中粗砂,最好用中粗砂,因为其孔隙率小,总表面积小,可减少混凝土的用水量和水泥用量,降低水化热,减少裂缝,但要控制砂子的含泥量,含泥量越大,收缩变形就越大,裂缝就越严重,因此细骨料尽量用含泥量≤3%中粗砂。

四. 加入外加剂

加入外加剂后能减小混凝土收缩开裂,外加剂对混凝土收缩开裂性能有以下影响:

(1)减水剂对混凝土开裂的影响

减水剂主要用来改善混凝土的和易性,降低水灰比,提高混凝土强度或在保持混凝土一定强度时减少水泥用量,有利于防止开裂。

(2)缓凝剂对混凝土开裂的影响

缓凝剂的作用一是延缓混凝土放热峰值出现的时间,由于混凝土的强度随龄期增长而增大,当放热峰值出现时,混凝土强度也增大了,从而减小裂缝出现的机率,二是改善和易性,减少运输过程中塌落度损失。

(3)引气剂对混凝土开裂的影响

引气剂的应用对改善混凝土的和易性、可泵性、提高混凝土耐久性能十分有利。在一定程度上增大混凝土抗裂性能。但需注意的是:外加剂不能掺量过大,否则会产生负面影响。 3.3 采用合理的施工方法 3.3.1 混凝土的拌制

(1)在混凝土拌制过程中,要严格控制原材料计量,同时严格控制混凝土出机塌落度。

(2)要尽量降低混凝土拌合物出机口温度,拌合物可采取以下两种降温措施:一是送冷风对拌和物进行冷却,二是加冰拌合。

(3)搅拌后的混凝土,应及时运至浇筑地点,入模浇筑。在运送过程中,要防止混凝土离析、灰浆流失、坍落度变化等现象,如发生离析现象,必须进行人工二次拌合后方可入模。

3.3.2 混凝土浇注、拆模 (1)混凝土浇注过程质量控制

浇注过程中应采用机械振捣。振捣棒的操作,要做到“快插慢拔”,在振捣过程中,宜将振动棒上下略有抽动,以使一下振动均匀。每点振捣时间一般以20~30s为宜,但还应视混凝土表面呈水平不再显著下沉、不再出现气泡、表面泛出灰浆为准。间

距均匀,以振捣力波及范围重叠二分之一为宜,浇注完毕后,表面要压实、抹平,以防止表面裂缝。另外,浇注混凝土时要求分层浇注(分层的时间间隔做到有利于散热),分层流水振捣,同时要保证上层混凝土在下层初凝前结合紧密。避免纵向施工缝、提高结构整体性和抗剪性能。 (2)浇注时间控制

尽量避开气温较高的时间浇注,若由于工程需要在夏季施工,则尽量避开正午高温时段,浇注尽量安排夜间进行。 (3)混凝土拆模时间控制

混凝土在实际温度养护的条件下,强度达到设计强度的75%以上,混凝土中心与表面最低温度差控制在25℃以内,预计拆模后混凝土表面温降不超过9℃以上允许拆模。 3.3.3 做好表面隔热保护

大体积混凝土的温度裂缝,主要是由内外温差过大引起的。混凝土浇注后,如果此时受到冷空气的袭击,或者过份通风散热,使表面温度降温过大将很容易产生裂缝,所以在混凝土在拆模后,特别是低温季节,需立即采取表面保护。防止表面降温过大,引起裂缝。另外,当日平均气温在2~3d内连续下降不小于6~8℃时,28d龄期内混凝土表面必须进行表面保护。 3.3.4 养护

混凝土浇注完毕后,应及时洒水养护以保持混凝土表面经常湿润,这样可防止干缩裂缝,促进混凝土强度的稳定增长。一般在浇注完毕后12~18h内立即开始养护,具体要求是:普通硅酸盐水泥拌制的混凝土不得少于14天;矿渣水泥,火山灰质水泥、大坝水泥、矿渣大坝水泥拌制的混凝土不得少于21天。

3.3.5 通水冷却

若在高温季节施工,则要在初期采用通冷水来降温,但注意,通水时间不能过长,因为时间过长会造成降温幅度过大而引起较大的温度应力。

四、小结

大体积混凝土结构裂缝预防和控制是一项系统工程,须从材料、设计、施工和维护四个方面综合解决。要积极采用先进技术,配合成熟的技术措施,在理论上提出可行的控制措施,在实践操作中采用切实可行、经济合理的技术。材料配臵、施工组织方面,要科学组织、合理安排,严格按照施工规范,操作规程操作,不断改进操作工艺,加强养护,以预防和减少裂缝的产生,将工程裂缝损害控制在最小程度。

附 录

[参考文献] [1] 龚召熊:《水工混凝土的温控与防裂》 北京:中国水利水电出版社,1999 [2] 戴镇潮:《大体积混凝土的防裂》 混凝土,2001, [3] 覃维祖:《混凝土的收缩、开裂及其评价与防治》 混凝土,2001 [4] 迟陪云:《大体积混凝土开裂的起因及防裂措施》 混凝土,2001,

[5] 康方中:《浅谈现浇商品混凝土楼板变形裂缝的成因和防治》 混凝土,2003,

[6] 段 峥:《现浇大体积混凝土裂缝的成因与防治》 混凝土,2003,

[7] 尤启俊:《外加剂对混凝土收缩抗裂性能的影响》 混凝土,2004,

2016年04月29日

第三篇:大体积混凝土温度裂缝(范文模版)

大体积混凝土温度裂缝

摘要:介绍了大体积混凝土概念的界定,从温度应力和内外约束两个方面浅析了大体积混凝土温度裂缝产生的机理,总结了混凝土开裂的三种方式。根据裂缝产生的机理,结合工程实践从设计和施工角度总结出大体积混凝土温度裂缝的控制措施。

关键词:大体积混凝土;温度裂缝;温差

在全球各地的土木工程中,混凝土是最重要的建筑材料,其强度高、耐久性好,广泛用于各类建筑物、构筑物。随着人类科技的不断进步,建筑技术的不断发展,各种新型结构相继涌现,使得大体积混凝土结构应用越来越广泛。但大体积混凝土自身导热性能较差,混凝土内部水化热量难以散发,而表面散热快,中心温度和表面温度的差异造成混凝土开裂。

混凝土的温度裂缝问题是一个相当普遍的质量问题,不仅影响建筑物的外观,更会危及建筑的正常使用及结构的耐久性。特别是随着建设规模的日趋增大,大体积混凝土结构日益增多,工程裂缝控制技术难度更高。很多研究学者对如何避免大体积混凝土开裂进行了研究,大部分学者提出采用埋设冷却水管的温控措施,或者使用微膨胀混凝土。但是这些方法不仅造价高,而且也不完全可靠。大体积混凝土温度裂缝的控制从设计、材料、施工等多方面入手,采用综合治理措施更为有效。

1 大体积混凝土概念的界定

对大体积混凝土概念的界定问题,在工程界有一个逐步认识的过程。在研究初期主要是定量判别法,根据混凝土的厚度和温差来区别,采用0.8-1m和25℃作为区分的界限。

《JGJ55-2000 普通混凝土配合比设计规程》 采用定量和定性相结合的解释,其定义为:混凝土结构物实体最小尺寸等于或大于1m,或预计会因水泥水化热引起混凝土内外温差过大而导致裂缝的混凝土 。

美国混凝土协会(ACI 116R—00) 的解释是:“任意体量的混凝土,当其尺寸大到必须采取预防措施控制由于水泥水化热和体积变化以最大限度减少裂缝时,均可称为大体积混凝土”(concrete, mass-any volume of concrete with dimensions large enough to require that measures be taken to cope with generation of heat from hydration of the cement and attendant volume change , to minimize cracking)。

而日本建筑学会标准(JASS5) 的解释为:“结构断面最小厚度在80cm以上,同时水化热引起混凝土内部的最高温度与外界气温之差预计超过25℃的混凝土,称为大体积混凝土” 。

参考以上列出的解释,笔者认为大体积混凝土这个术语中的“大”在某种意义上属于约定俗成的说法;因为《JGJ55-2000 普通混凝土配合比设计规程》和美国混凝土协会(ACI 116R—00) 的解释中提到的因水泥水化热和体积变化引起混凝土裂缝,并没有对体积做出定量要求,而包含了体积不大但因预计水泥水化热和收缩会引起混凝土裂缝时需要采取预防措施来控制裂缝的混凝土结构。 2 2.1 大体积混凝土温度裂缝产生机理浅析 温度应力

超大体积混凝土由于水泥水化时会放出大量的水化热,而混凝土自身体积较厚,混凝土表面和内部的散热条件不同,混凝土表面由于直接和空气接触,散热条件好,热量可向大气中散发,表面温度上升较少;而混凝土内部自身导热性能差,水化热积聚在混凝土内部不易散发,温度会上升较多,这样就形成外低内高的温差。由于外部约束和内部约束的存在,使混凝土不能自由变形,于是就会在混凝土内部产生温度应力,这种由于温度变化产生的变形受到约束而产生的应力称为温度应力。由此可见:产生温度应力必须具备两个必要条件是温差和约束。温差越大,产生的温度应力越大,混凝土越容易开裂。当超大体积混凝土被完全嵌固时,它受到的约束最大,此时温度应力会达到最大值,当约束减小时,所产生的温度应力也随之减小,开裂的概率也随之降低。

2.2 约束

超大体积混凝土受到的约束一般分为内约束和外约束两种。 2.2.1 内约束引起温度裂缝的机理

一个物体或一个构件本身各质点之间的相互约束作用称为“内约束”。大体积混凝土在水泥水化时,会形成外低内高的温差,这种温差会使大体积混凝土内部温度分布不均匀,会引起质点发生的变形不一致,从而产生内约束。大体积混凝土中心由于温度较高,所产生的热膨胀也较表面大,因而在混凝土中心产生压应力,而表面则产生拉应力。当表面拉应力超过混凝土的抗拉强度时,就会在大体积混凝土的外表面产生裂缝,这种裂缝比较分散、裂缝宽度小、深度也很小,俗称“表面裂缝”。它一般发生在浇筑后的温度上升阶段,是由于混凝土体积发生膨胀所形成的。表面裂缝的形状见图1所示。

图1 表面裂缝

2.2.2 外约束引起的温度裂缝的机理

一个物体的变形受到其它物体的阻碍,一个结构的变形受到另一个结构的阻碍,这种结构与结构之间,物体与物体之间,物体与构件之间,基础与地基之间的相互牵制作用称作“外约束”。大体积混凝土浇筑后数日(一般不少于5 d),水泥水化热基本上释放完毕,由于环境温度较低,这时大体积混凝土就会从最高温度开始逐渐降温,降温的结果会引起混凝土的收缩,同时混凝土中多余水分也随之蒸发,这样就会引起混凝土体积出现不同程度的收缩。而地基、其它结构往往会对大体积混凝土进行约束,让其不能自由变形,在这种外部约束的作用下,混凝土的内外温差就会产生温度应力。这种温度应力一般是拉应力,当该温度应力超过混凝土的抗拉强度时,就会从约束面开始向上出现开裂,从而形成温度裂缝。若温度应力足够大,裂缝会连续产生,甚至会贯穿整个截面。贯穿裂缝会严重影响结构的性能,它会破坏结构的整体性、耐久性、防水性,给结构带来重大的损伤,直接影响到工程结构安全。贯穿裂缝一般发生在混凝土的温度下降阶段,且外部约束较大,裂缝一般与约束面成直角关系。如约束体为桩基、岩体、以及老混凝土结构面时,约束力会更大,产生的温度应力也会更大。但只有在温差(最高温度与最终稳定温度差)25℃以上,才会出现这种裂缝。此外,不同的约束体会导致不同的贯穿裂缝,且其发生部位和裂缝的多少也会不一样。若产生贯穿裂缝,后期养护不到位,还会加剧裂缝发展。外部约束应力形成裂缝的情况如图2所示。

图2 部约束应力所形成的裂缝

虽然引起大体积混凝土开裂的原因很多,但是按照裂缝深度的不同,一般可将裂缝分为:贯穿裂缝、深层裂缝和表面裂缝。在这三种裂缝中,贯穿裂缝的危害最大,它贯穿了结构面,破坏了结构的整体稳定性,大大降低结构的安全使用性能。深层裂缝的危害其次,并没完全切断结构面,除地基或受既有建筑混凝土影响外,不会发展成贯穿裂缝,则对结构的影响不太大。表面裂缝的危害性一般较小,除特种结构(如:有防辐射要求的探伤室、有防水要求的堤坝等)外,表面裂缝可以通过抹灰等方式处理。

图3 大体积混凝士结构裂缝类型示意图

3 大体积混凝土温度裂缝的控制

混凝土开裂不但会使结构承载能力相应的下降,改变结构的受力状态,而且会影响到结构外表的美观,影响结构的正常使用。例如:若大坝开裂则会使水渗漏,若探伤室开裂则会使射线泄露,严重影响到结构的使用功能。因此,我们一定要采取有效措施控制大体积混凝土的开裂。王铁梦教授从1955年起就开始研究分析多种结构裂缝,并在此基础上,提出了“抗”、“放”的原则。许多学者在“抗”、“放”原则的基础上又提出了多种抗裂措施。在实际工程中,应结合工程特点灵活运用“抗”、“放”、“抗放”结合的原则控制裂缝的开裂。在实际工程的设计和施工中,就可以通过分析混凝土开裂的不同原因来采取具体的防裂措施。例如:开裂原因与结构设计和受力荷载有关时,应当结合概念设计、平面布置、受力加固等原则和方法考虑控制混凝土开裂的措施。控制大体积混凝土开裂的措施与一般混凝土相比,除了上述措施之外,由于大体积混凝土的固有特性(主要是混凝土中的温度应力和温差),还有一些其他的抗裂措施。下面重点分析在设计和施工中,控制大体积混凝土开裂的措施。

大体积混凝土裂缝控制措施可分为两类,一类是:设计措施:设计控制措施可以分为以下几点:①合理布置平面、立面;可以避免体型突变,保证各种系数达到规范要求(安全系数应当适当提高);②合理留设施工缝;施工缝位置应优先选在在受力较薄弱、剪力较小的结构上,例如:探伤室大体积施工时,其墙体的施工缝可以留在板底和墙体之间;③合理配置钢筋;一般大体积混凝土的配筋率较小,适当提高配筋率可以改善应力分布情况,增强混凝土的抗拉应力,抵抗温度应力的影响,降低裂缝产生的可能性。

控制大体积混凝土开裂的另一类措施是:施工措施,这是控制大体积混凝土裂缝的关键。其施工措施可分为以下几个方面:

(1)合理的混凝土配合比设计;配合比设计包括选材和比例控制,在选材时,水化热是造成大体积混凝土开裂的主要原因。配合比设计时,可以在保证混凝土结构强度的条件下,降低水泥的使用量,选用较低水化热的水泥(如粉煤灰硅酸盐水泥),或者在混凝土中添加适当的粉煤灰、矿粉等,减少水化热的产生量。避免选用早强水泥、含氯化物、含铝酸钙等影响大体积混凝土结构使用的水泥。掺加适当的添加剂如:减水剂(在同等强度条件下,减水剂可以降低水灰比,在保证水泥用量不变时,节约用水;在保证用水量不变时,节省水泥。)、微膨胀剂(微膨胀剂可以减少混凝土的体积收缩,减小混凝土的收缩应力。)。为防止混凝土开裂,要严格控制骨料级配、含泥量,严禁使用海砂。在进行配合比设计时,一定要经过多次试验,经过试验合格后,方可用于施工;经检验配合比不合格或强度不够的混凝土,严禁用于工程施工。

(2)施工工艺的选择;施工工艺包含搅拌、输送、浇筑等几个过程,为保证混凝土有良好和易性和加工性能,一定要做好搅拌和输送工作。另外,需要注意:搅拌站或商品混凝土供应站应当建在实际工程附近。搅拌前可先用冷水冲刷骨料,降低建筑温度;搅拌时应该投料次序准确,不得一次性全加,按照配合比设计原则分清先后次序,一般情况下应先投水泥搅拌;搅拌时间合理,不得发产生分层、离析现象。运输时应当迅速,运输方式、运输路径应当便捷,保证运输车辆的运行,防止堵塞和交通拥挤,尽量减少周转次数和输送时间,避免离析(一旦发生,应进行二次搅拌)现象。浇筑前应进行技术交底,确定浇筑方案,做好准备工作;浇筑时供料及时,不能有离析,振捣密实,增强混凝土密实度,大体积混凝土还应当采用振捣棒振捣,并在混凝土初凝前进行二次振捣;妥善处理泌水;浇筑完成后,应及时采取合理措施,进行养护。

(3)采取合适的温控方案;温控方案包括两种:保温法和降温法。降温法指在混凝土内部埋设冷水管,这种方法多用于水利、交通结构。保温法一种是在混凝土表面采用保温材料覆盖,这种方法适用于我国南方气温在15℃以上的季节,寒冷地区不太适用;另一种是表面蓄水保温,表面蓄水保温可以控制表面龟裂,保证工程质量。在采用温控方案时一定要结合结构所在的地理环境和结构的组成形式。在混凝土结构设计时应当采取合理措施,避免结构形式和受力荷载所造成的混凝土开裂:施工时应当保证每个施工工序、施工措施都严格按照施工技术方案进行,并做好预警方案,一旦施工过程中出现问题即可立即实施备案,防止问题继续发展。

参考文献:

[1]

JGJ55-2000 普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2001. [2] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,2004.

[3] 张雄,张小伟,李旭峰.混凝土结构裂缝防治技术[M].化学工业出版社,2007. [4] 邹新辉.浅析大体积混凝土裂缝的常见问题及其预防措施[J].科技咨询,2010 [5] 宋锟等.大体积混凝土温度裂缝控制综合措施[J].山西建筑,2006 [6] 王润富,陈国荣.温度场和温度应力[M].北京:科学出版社,2005

第四篇:大体积混凝土温度裂缝防治措施

项目管理科 杜建豹 摘 要:大体积混凝土施工时产生的温度裂缝 ,破坏了结构的整体性、耐久性、防水性 ,影响结构安全和正常使用 ,危害严重。分析了裂缝产生原因 ,提出了在施工中应该采取的各种控制措施...

关键词: 温度 裂缝 养护 引言

随着经济和施工技术的迅速发展 ,现代建筑中涉及到大体积混凝土施工也越来越多 ,如高层建筑基础、大型设备基础、水利大坝等。它们的主要特点就是体积大 ,水泥水化热释放比较集中 ,内部温度升高比较快。当大体积混凝土内外温差较大时 ,会使混凝土产生温度裂缝。众多工程实践证明 ,大体积混凝土施工难度比较大 ,混凝土产生温度裂缝的机率较多 ,稍有差错 ,轻者会影响建筑物的抗渗性能和外观质量 ,重者还会严重影响建筑结构的安全 ,甚至造成坍塌事故 ,从而造成无法估量的损失。因此我们必须从根本上分析大体积混凝土温度裂缝的产生原因 ,采取各种措施减少和控制温度裂缝的出现 ,来保证施工的质量。

1、温度裂缝产生的原因

大体积混凝土结构的整体性要求高 ,施工时如无特殊情况 ,一般要求一次性整体浇筑。浇筑后 ,水泥因水化反应引起水化热 ,由于混凝土体积大 ,内部与表面散热速率不一样 ,聚集在内部的水泥水化热不容易散发 ,混凝土内部温度将显著升高 ,而混凝土 表面则散热较快 ,与混凝土内部产生较大的温度差 , 使混凝土内部产生压应力 ,表面产生拉应力。同时在浇筑初期混凝土的弹性模量和强度很低 ,对水化热急剧温升引起的变形约束不大 ,温度应力比较小。 随着混凝土龄期的增长 ,其弹性模量和强度相应提 高 ,对混凝土降温收缩变形的约束越来越强 ,即产生很大的温度应力 ,当混凝土的抗拉强度不能抵抗温度应力时 ,即产生温度裂缝。 大体积混凝土产生温度裂缝的影响因素主要有:

1.1 水泥水化热的影响

水泥在水化反应过程中产生大量的热量 ,这是大体积混凝土内部温度升高的主要热量来源。由于大体积混凝土截面的厚度大 ,水化热聚集在结构内

部不易散发 ,会引起混凝土内部急剧升温 ,造成较大的内外温差 ,从而产生温度裂缝。

1.2 内外约束条件的影响

大体积混凝土一般与地基整体浇筑在一起 ,当 温度变化时会受到地基的限制 ,因而产生外部的约 束应力。当混凝土早期温度上升时 ,产生的膨胀变 形会受到约束面的约束而产生压应力 ,而此时混凝 土的弹性模量很小 ,徐变和应力松弛却较大 ,与基层连接也不太牢固 ,因而压应力较小 ,但是当温度下降时 ,则产生很大的拉应力。若产生的拉应力超过混凝土的抗拉强度 ,就会出现垂直裂缝。工程实践证明 ,当混凝土的内外温差小于 25℃时 , 产生温度裂缝的几率就小的多。由此可见 ,降低大体积混凝土的内外温差和改善约束条件 ,是防止大体积混凝土产生裂缝的重要措施。

1.3 外界气温变化的影响

大体积混凝土结构在施工期间 ,外界气温的变化对防止大体积混凝土开裂有着重要影响。混凝土浇筑温度与外界气温有着直接关系 ,浇筑温度又影响着混凝土的内部温度。大体积混凝土结构不易散热 ,其内部温度有的工程竟高达 90 ℃以上 ,而且持续时间较长。如外界气温下降 ,特别是气温骤降 ,会加大混凝土的温度梯度 , 温差愈大 , 温度应力也愈大。此时混凝土内部产生压应力 ,表面产生拉应力 , 当这个拉应力超过混凝土的抗拉强度时 ,大体积混凝土的表面就会出现裂缝。

2、控制大体积混凝土产生温度裂缝的措施

大体积混凝土的施工技术要求比较高 ,特别在 施工中要防止混凝土因水泥水化热而引起的温度差。在施工时 ,必须从原材料选择、施工技术、养护、温度检测等有关环节做好充分的准备工作 ,才能防止大体积混凝土温度裂缝的产生。

2.1 原材料的选择

⑴ 选用发热量低初凝时间较长的水泥 如矿渣水泥。尽量降低混凝土中的水泥用量 ,减少水泥 水化反应产生的热量 ,降低混凝土的温升,提高混凝土硬化后的体积稳定性。为保证减少水泥用量后混凝土的强度和坍落度不受损失 ,可适度增加活性细掺料替代水泥。例如掺加适量的粉煤灰 减少水泥 用量 ,达到降低水化热的目的 , 但掺量不能大于30 % 。

⑵ 粗细骨料级配良好。通过试验选择合理的 石砂级配。在满足混凝土强度的基础上 ,骨料尽量选用较大的粒径 5 -40mm, 要具有较好的级配。 同时必须严格控制砂石料的含泥量 ,石子的含泥量 控制在 1 %以下,砂的含量在 2 %以下 ,这样既提高了混凝土抗压强度 ,又可以减少用水量和水泥的用 量。

⑶ 加适量的缓凝剂 ( 如木质素磺酸钙) 。掺加 缓凝剂不但可以延缓水化热的释放速度、推迟温峰的出现并延长混凝土的凝结时间 ,还可以改善混凝土和易性 ,减少水和水泥用量 ,从而降低水化热。

⑷ 拌制大体积混凝土的原材料均需进行检验合格后方可使用。

2.2施工技术措施

在炎热夏季进行施工时 ,要采取下列措施对材料进行降温 : ① 提前1周以上的时间将水泥入库降温 ,并保证水泥仓库有良好的通风;

②砂石堆进行覆盖 ,避免阳光直射 ,必要时向 骨料喷冷水;

③ 防止搅拌机在阳光照射下温升过高 ,可采用搭凉棚的方法为搅拌机遮荫;

④混凝土宜现场采用冷水拌制。

⑵ 浇筑混凝土前应将基槽内的杂物清理干净,而且混凝土的浇筑应连续进行,间歇时间不得超过3~5h,浇筑时必须严格控制混凝土的入模温度,混凝土最高浇筑温度不得超28℃,在浇筑混凝土时投入适量的毛石 ,以吸收热量并节约混凝土 ;在浇筑的混凝土内部预先埋置冷却管 ,用循环水来降低混 凝土内部温度峰值延缓升温速度 ;浇筑时若外界气 温过高 ,可采用在输送管上加盖草袋并喷冷水的方法。

⑶ 在施工现场要对商品混凝土逐车进行检查, 测定混凝土的坍落度和温度,检查混凝土量是否相 符,严禁混凝土搅拌车在施工现场临时加水。混凝土搅拌车到场等待时可采取向搅拌罐上喷冷水的措施来控制混凝土的浇筑温度。

⑷ 严格控制混凝土的浇筑速度。一次浇注的混凝土不可过高、过厚, 以保证混凝土温度均匀上升。对于断面相差很大的结构和剪力墙的孔、洞、口 处 ,应先浇灌较深的部位 ,待静止 1~2h 混凝土沉降后 ,再与断面或孔洞上部的混凝土一起浇筑。墙板混凝土宜采用非泵送混凝土 ,利用塔吊和人力推车连续进行 ,以避免施工冷缝的出现。

⑸ 可以适当在混凝土中掺加合成纤维。混凝土中掺入合成纤维后 ,可使数以千万计的纤维三维均匀的分布在混凝土内部,混凝土塑性阶段干缩及冷缩所产生的表面一旦延伸到合成纤维即可停止发展。

⑹ 合理安排施工工序,遵循“同时浇捣、分层推进、一次到位、 循序渐进”的成熟工艺,薄层浇捣,均匀上升,以利于散热。大体积混凝土浇筑时应尽量扩大浇筑工作面 , 分层浇捣 ,逐步推进。要严格控制振捣的时间及插 入深度 ,防止振捣过程中出现漏振。

根据结构特点 ,大体积混凝土的浇注方法可分为:全面分层、分段分层、斜面分层的浇注方案。如图1所示。

①图1a全面分层:在第一层混凝土全部浇筑完毕后 ,再回头浇筑第二层。此

时应使第一层混凝土还未初凝 ,如此逐层连续浇筑,直至完工为止。适用于结构的平面尺寸不太大的情况 ,施工时从短边开始,沿长边推进比较合适。必要时可分成两段 ,从 中间向两端或从两端向中间同时进行浇筑。

②图 1b 斜面分层:要求斜面的坡度不大于1/3, 适用于结构的长度大大超过厚度3倍的情况。混凝土从浇筑层下端开始 ,逐渐上移。混凝土的振捣 也要适应斜面分层浇筑工艺 ,一般在每个斜面层的上、下各布置一道振动器。上面的一道布置在混凝土卸料处 ,保证上部混凝土的捣实 ,下面一道振动器 布置在近坡脚处 ,确保下部混凝土密实。随着混凝土浇筑的向前推进 ,震动器也相应跟上。

③图1 c 分段分层 : 混凝土浇筑时,先从底层开始,浇筑至一定距离后浇筑第二层 ,如此依次向前浇筑其他各层。由于总的层数较多,所以浇筑到顶后第一层末端的混凝土还未初凝,又可以从第二段依 次分层浇筑。这种方案适用于单位时间内要求供应的混凝土较少,结构物厚度不太大而面积或长度较大的工程。

⑺振捣时振动棒应尽量垂直插入 ,快插慢拔 , 插点交错 ,均匀布置。在振捣上一层混凝土时 ,应深 入下一层约 50~100mm, 以消除层间的接缝。振捣时间以表面基本水平并出现水泥浆,混凝土不再冒气泡、不再明显坍落为度。必要时在混凝土凝结前的适当时间内进行二次振捣 ,以增加混凝土的密实 度 ,减少混凝土内部的微裂缝 ,提高混凝土的强度和抗渗性能。

⑻冬季大体积混凝土浇筑时 ,为防止表面散热过快 ,造成过大的内外温差,应在外部覆盖保温材料或者进行短时间加热 ,拆模后迅速回填土方以利保温。 2.3 大体积混凝土的养护措施

养护是大体积混凝土施工中一项十分关键的工 作。养护时要保持适宜的温度和湿度 ,以便控制混 凝土内外温差 ,促进混凝土强度的正常发展及防止混凝土温度裂缝的产生和发展。根据工程的具体情 况,应尽可能多养护一段时间 ,拆模后应立即回填土或覆盖保护。同时要预防冬期骤冷寒潮气候影响 ,以控 制内外温差 ,防止混凝土早期和中期裂缝。大体积混凝土的养护 ,不仅要满足强度增长的需要 ,还应通过人工的温度控制,防止因温度梯度引起混凝土的 开裂。

大体积混凝土养护阶段防止温度裂缝的措施主要有 :

⑴ 浇筑后2h采用塑料膜对表面覆盖,可有效增加混凝土的表面温度 ,减小总温差。若在冬季施工需在塑料膜上面加上草垫保温等。

⑵ 混凝土浇筑后 ,应在终凝后两小时开始带水养护 , 养护期14天以上。夏季浇筑大体积混凝土 时 ,可采用积水养护的方法。在混凝土表面上用砖砌成浅水池 ,然后放入 300mm 深的水 ,起保护和养护双重作用。

⑶ 冬季施工时 ,在结构外露的混凝土表面以及模板外侧覆盖保温材料 ( 如草袋、锯木、湿砂等) ,在 缓慢的散热过程中 ,使混凝土获得必要的强度 ,以控制混凝土的内外温差小于 25 ℃。

2.4 大体积混凝土施工中的温度检测措施

要对大体积混凝土进行有效的温度控制 ,就必须进行科学检测。设置测温点 , 以便了解内外温差的数据 ,及时采取相应措施 ,以保证控制的准确性。

大体积混凝土温度的检测要在混凝土浇灌完毕后 2 天开始 ,检测时间为1个月 ,在前面7天 ,每隔2 小时测温一次 ,以后每隔8小时测温一次。在浇筑混 凝土时 ,采用预埋温度传感片和测温仪 ,一般布置上中下三个混凝土内部测温点和一个混凝土表面控制的测温点,从浇筑开始测温,浇筑完后根据温控指标及时调整保温、保湿等养护条件。混凝土养护阶段的温度检测应注意以下几点 :

⑴ 混凝土的中心温度与表面温度之间、混凝土 表面温度与室外最低气温之间的差值均应小于20 ℃,当结构混凝土具有足够的抗裂能力时 ,不大于25 ℃~30 ℃。

混凝土拆模时 ,混凝土的温差不超过 20 ℃。

⑶ 配备专职测温人员,按两班考虑。对测温人员要进行培训和技术交底。测温人员要认真负责 , 按时按孔测温 ,不得遗漏或弄虚作假 ,发现问题应及时向项目技术负责人汇报。测温记录要填写清楚、整洁 ,换班时要进行交底。

测温工作应连续进行,经技术部门同意后方可停止测温。

⑸ 测温时若发现混凝土内部最高温度与表面温度之差达到 25 度或温度异常,应及时通知技术部门和项目技术负责人 ,以便及时采取措施。

3、结束语

大体积混凝土结构的材料选择、施工技术与养护措施直接关系到结构的使用性能 ,若不能很好的了解大体积混凝土结构温度裂缝产生的原因以及采取的

相应施工措施 ,实际生产当中就很难保证大体积混凝土的施工质量。虽然大体积混凝土很容易产生温度裂缝 ,但是大量的科学研究以及成功的工程实例都表明:只要我们在材料选择、施工工艺、以及 后期的养护过程中能够充分考虑各种因素的影响,还是完全可以避免危害结构安全的温度裂缝的产生。

参考文献 : [1] 中国建筑工业出版社. 建筑工程施工手册. 2003.4 [2] 张仁水. 建筑工程施工. 北京:中国矿业大学出版社. 2000 [3] 卢经扬等. 土木工程材料. 北京:煤炭工业出版社. 2004

第五篇:大体积混凝土的温度裂缝控制措施

河南省第五建筑安装(集团)有限公司450000龚凯辉[1] 毕超[3] 张笑康[2] 摘要:在现代建筑中如:高层建筑基础、大型设备基础、水利大坝等时常涉及到大体积混凝土施工。混凝土的温度裂缝问题日显突出,既是困扰建筑业多年的质量通病,也是一个很重要的研究课题。温度裂缝危及结构的整体性和稳定性,影响结构安全和正常使用,所以必须从根本上分析它,采取控制措施并保证施工时期的工程质量。

关键词:大体积混凝土 温度裂缝 控制措施 工程质量

1.温度裂缝产生机理

大体积混凝土是指混凝土结构物中实体最小尺寸不小于1m,或预计因水泥水化热引起混凝土内外温差过大而导致裂缝的混凝土。混凝土量大、结构厚实、工程条件复杂,施工技术要求高是它的主要特征。大体积混凝土施工阶段产生的温度裂缝,是其内外矛盾发展的结果,首先是内外温差过大产生温度应力和温度变形;其次结构的自身约束阻止了变形,升温产生热胀,降温产生冷缩,一旦温度应力超过了混凝土所能承受的拉伸极限值时,裂缝就会出现。综合考虑,影响裂缝开展的温度由浇筑温度、水泥水化热温度和散热温度三部分组成。因此我们要控制大体积混凝土的温度变形裂缝,那么就要从材料、工法和管理等方面入手。

1.合理地选用材料 (1)水泥的选用

水泥水化热是大体积混凝土中的主要温度因素,水泥水化热在建筑工程中一般会引起20-30。C的温升。温度上升与混凝土单位体积中水泥用量和水泥品种有关,并在浇筑后3-5d时内部温度达到峰值。水泥水化热释放比较集中,内部温升比较快,不管是夏热还是冬寒,混凝土表面的温度总是低于内部温度,当混凝土内外温差较大时,倘若温度控制措施不当,温度应力超过混凝土所能承受的拉力极限值时则易产生裂缝。在结构施工过程中,结构设计的硬性规定极大地制约了材料的选择,混凝土强度不可能因为考虑到施工工作性能的优劣而有所增减,因此在足够的强度、满足设计要求的前提下,尽量减少混凝土中的水泥用量,尽量选用水化热低、凝结时间长的水泥,优先采用低热矿渣硅酸盐水泥、粉煤灰硅酸盐水泥、火山灰质硅酸盐水泥等,混凝土的强度等级宜保持在C20-C35的范围。

例如,优先选用等级为32.5、42.5的矿渣硅酸盐水泥,与其同等级的矿渣水泥和普通硅酸盐水泥相比,3d的水化热可减少约28%。

(2)集料的选用

大体积混凝土砂石料一般称为粗细骨料,重量约占混凝土总重量的85%左右,正确选用砂石料对保证混凝土质量、节约水泥用量、降低水化热、降低工程成本是非常重要的。大体积混凝土宜优先采用粒径较大、以自然连续级配的粗骨料配制。这种用连续级配粗骨料配制的混凝土,具有较好的和易性、较少的用水量和水泥用量,以及较高的抗压强度。而细集料以采用级配良好的中砂为宜。

此外,骨料中超量的粘土、淤泥、粉屑、有机物及其他有害物质最大的危害是增加混凝土的收缩,引起混凝土的抗拉强度的降低,对混凝土的抗裂十分不利。因此,在大体积混凝土施工中,石子的含泥量控制在不大于1%,砂的含泥量控制在不大于3%。

2. 混凝土外加料的选用 (1)外加剂

大体积混凝土外加剂主要是指减水剂、缓凝剂和膨胀剂。

掺加减水剂主要是降低水泥水化速度,延迟水化热峰值的来临时间。通常在混凝土中掺入约水泥重量0.25%的木质素磺酸钙,木质素磺酸钙对水泥颗粒有明显的分散效应,并能使水的表面张力降低而引起加气作用,这样既使混凝土工作性能有明显的改善,又减少10%拌和用水且节约了10%左右的水泥。

目前建筑市场,泵送混凝土技术应用极为广泛。一般泵送混凝土为了延缓凝结时间要加适量的缓凝剂,这不仅保证混凝土的流动性,而且降低了水化热的释放速度,混凝土便于浇筑振捣,密实度更有所保障。

普通硅酸盐水泥配制的砂浆或混凝土在干燥时会产生收缩。实验证明,砂浆的收缩率为 0.1%~0.2%,混凝土的收缩率为 0.04%~0.06%,而一般混凝土的极限拉伸仅为 0.0l%~0.02%,差距如此大,混凝土硬化后易导致混凝土开裂。为了防止混凝土的初始裂缝,掺加膨胀剂,配置成补偿收缩型混凝土。

(2)外加掺合料

粉煤灰是泵送混凝土的重要组成部分,它含有大量的硅铝氧化物,这些氧化物能够与水泥的水化产生二次反应,减少水泥用量,降低混凝土的热胀,并且可以使混凝土密实度增加,有效地提高混凝土的抗渗性能。

3.科学的施工工艺

综上所述,在浇筑时的大体积混凝土内部热量聚集而导致体积膨胀是产生温度裂缝的根本原因。那么,在施工阶段,我们怎么去处理好因温度变形而引起的混凝土开裂问题呢?这需要注意以下几个方面。

(1)合理的浇筑与振捣

采取合理的分层连续浇筑或推移式连续浇筑,以加快混凝土散热速度。大体积混凝土结构的浇筑方案应根据整体性要求、结构大小、钢筋疏密、混凝土供应等具体情况,选用如下三种方式:

全面分层:在第一层全面浇筑完毕回来浇筑第二层时,第一层浇筑的混凝土还未初凝,如此逐层进行,直至浇筑好。这种方案适用于结构和平面尺寸大的场合,施工时从短边开始、沿长边进行较适宜。必要时也可分两段,从中间向两端或从两端向中间同时进行。

分段分层:此法适用于厚度不太大而面积或长度较大的结构。混凝土先浇筑底层,进行至一定距离后折回,再浇筑第二层,如此依次向前浇筑以上各分层。

斜面分层:此法适用于长度超过厚度3倍的结构。将混凝土从底连续浇筑到顶,使其自然流淌形成斜面。振捣工作应从浇筑层的下端开始,逐渐上移,以保证混凝土的施工质量。

振捣方式及要求:应尽量避免高温下施工,采用大功率插入式振捣器进行大面振捣,随浇随振,振捣时间以表面泛浆不再下沉为宜,间距要均匀,以振捣范围重叠二分之一为宜,深度一般为200-300mm。保证上层混凝土在下层混凝土初凝前浇筑完成,表面抹平,压实,防止表面裂缝。

(2)控制混凝土浇筑温度

混凝土从搅拌机出料后,经过运输、泵送、浇筑、振捣等工序后的温度称为混凝土的浇筑温度。应适当地限制混凝土的浇筑温度,避免集料在烈日下暴晒,可采取对冲水、覆盖降温等方法予以控制。一般情况下,混凝土的最高浇筑温度应控制在40℃以下。

(3)加强混凝土养护

大体积浇筑混凝土养护常用的可分为两类。降温法,在浇筑成型后通过冷却水进行循环降温,来调整内外温差;保温法,则是通过保温材料对成型表面的覆盖进行蓄热,以提高混凝土表面和四周的温度。一般应在完成浇筑混凝土后的

12-18h内洒水,混凝土的养护时间主要根据水泥品种而定,一般规定养护时间为14-21d后方可拆模,内外温差控制在25℃以内。

(4)后浇带的设置

后浇带是人为地断开混凝土使其产生应力收缩的释放空间,一般正常情况下由计算确定,其间距为20~30m。

后浇带的构造有平接式、T 字式、企口式等三种,后浇带的宽度应考虑施工方便,避免应力集中,宽度可取800~1200mm。后浇带的保留时间一般不宜少于40d,在填筑混凝土之前,必须将整个混凝土表面的原浆凿清形成毛面,清除垃圾及杂物,并隔夜浇水浸润。填筑的混凝土可采用膨胀混凝土,要求混凝土强度比原结构提高5~l0N/mm2,并保持不少于14d的潮湿养护。

(5)做好温度检测

为有效掌握和控制混凝土的内部与外部温度的变化值,应在大体积混凝土内埋设若干个测温点。可采用埋设锡热传感器,用混凝土温度测定记录仪对不同时间和深度下的温度进行施工全过程的跟踪和监测,及时绘制出混凝土内部温度变化曲线,随时对照理论计算值,可有的放矢地采取相应的技术措施。

4结论

在结构工程的设计与施工中,对于大体积混凝土结构,为防止其产生温度裂缝的技术措施均不是孤立的,而是相互联系、相互制约的,施工中必须结合实际、并加强组织管理,建立健全质量保证体系,制定各项工作制度,合理采用、全面考虑,才能收到良好的效果。

参考文献

[1]刘津明.混凝土结构施工技术.北京:机械工业出版社,2009 [2]姚谨英.混凝土结构工程施工.北京:机械工业出版社,2005 [3]孙加保.高层建筑施工.北京:化学工业出版社,2005 [4]GB50496-2009 《大体积混凝土施工规范》.北京:中国计划出版社 作者简介:

[1] 龚凯辉.(1982.3.2——)河南郑州人.现任河南五建安装公司项目技术负责人.助工.研究方向:工程项目管理. [2] 毕超.(1985.1.15——)河南焦作人.现任商丘工学院专职教师.助教.研究方向:工程造价管理.

[3] 张笑康.(1984.2.11——)河南郑州人.现任商丘工学院专职教师.助教.研究方向:工程项目管理.

上一篇:电梯过户需要什么资料下一篇:大三学期个人心得总结