铸钢件超声检测

2024-04-11

铸钢件超声检测(通用6篇)

篇1:铸钢件超声检测

引用 铸钢件超声波探伤检测标准

本文引用自一次记忆《铸钢件超声波探伤检测标准》

引用

一次记忆 的 铸钢件超声波探伤检测标准 中标与美标之差异

深圳市建设工程质量检测中心——弓明 学习运用两国标准让我们来共同分析一下,两种国情体系下的标准,在超声波探伤检测铸钢件时对铸钢件内部质量要求的差异吧。

铸钢件检测标准

1、《铸钢件超声探伤及质量评定方法》GB7233-87(中国标准文中简称中标)

2、《碳钢、低合金钢和马氏体不锈钢铸件超声波检验标准》ASTM-609/609M:1991(美国标准文中简称美标)

关于适用范围

中标规定:本标准规定了厚度等于或者大于30㎜的碳钢和低合金钢铸件的超声波探伤方法;以及根据超声探伤的结果对铸件进行质量评级的方法。所用的超声探伤方法仅限于A型显示脉冲反射法。

美标规定:1.1本方法包括了用脉冲反射纵波法,对经热处理的碳钢、低合金钢和马氏体不锈钢铸件进行超声波检验的标准和工艺。

4.2.2 双晶探头探测等于或小于1英寸(25mm)的截面,推荐使用5MHz,晶片尺寸为1/2英寸×1英寸(13mm×25mm)夹角为12°的探头。

中标当时制定的时候是把厚度小于30㎜铸钢件排除在本标准以外的。而美标则明确了等于或小于25㎜的铸钢件的具体检测方法。分析两国当时的铸造水平及探伤手段不难看出,中国当时的铸造件还停留在“傻大笨粗”,检测设备也是比较低端的,当时国内有能力生产双晶探头的厂家少,探伤人员可选择的探头有局限性,而且探伤人员很少接触到薄壁探伤,自然双晶探头很少使用甚至没用过。这和我国当时的国情密切相关,而现在我国铸造水平提高很快,此标准“本标准规定了厚度等于或者大于30㎜的碳钢和低合金钢铸件的超声波探伤方法”的开头对不少从事这个行业的工作人员造成不小的误导。很容易让人误认为厚度小于30㎜的铸钢件是不适合超声探伤检测的。其实不然,时代在变,不应用老方法去看待新事物。

关于定量和定性 美标在超声探伤检测上是只定量不定性的。全文只是要求探伤人员在“缺陷总数、位置、波幅和面积”上以数据的形式做出数据上的判断,可操作性强。

而中标则发扬了中国人求真的精神,把缺陷性质细分成为“裂纹、冷隔、未融合、气孔、缩松、缩孔、夹砂、夹渣等”。

要求探伤人员对缺陷的类型、尺寸、位置给出具体数据,尺寸、位置尚能准确给出,但说道类型,虽然中标只需要探伤人员将缺陷类型分为“平面型缺陷”和“非平面型缺陷”即可,但能准确不差的分辨,却非一日之功。定量又要定性使探伤标准因人而异,出现大同小异,尺度不一,造成了目前探伤人员许多的有争议的,不规范的错误操作。中标的可操作性欠佳。

关于缺陷类型的划分

中标规定:1.1平面型缺陷(Planar discontinuity):用本标准规定的方法检测一个缺陷,如果只能测出它的两维尺寸,则称为平面型缺陷。属于这种类型的缺陷有裂纹、冷隔、未融合等。

1.2非平面型缺陷(Non-planar discontinuity):用本标准规定的方法检测一个缺陷,如果能够测出它的三维尺寸,则称为非平面型缺陷。属于这种类型的缺陷有气孔、缩松、夹砂、夹渣等。

凡出现下列任何一种显示情况的位置,都要做上标记:

a.缺陷回波幅度等于或者大于距离波幅曲线的位置;

b.底面回波幅度降低12dB或者12dB以上的位置;

c.不论缺陷回波幅度的大小,凡出现线状和片状特征缺陷显示的位置。

4.4.1平面型缺陷尺寸的测定

对于具有线状和片状特征的缺陷显示,用6dB法画出缺陷的范围。按几何原理,确定缺陷的位置、大小和缺陷在铸钢件厚度方向的尺寸,按中标表2的规定,计算缺陷的面积。

中标表2

4.2.2非平面型缺陷尺寸的测定

4.2.2.1缺陷回波幅度等于或者大于距离波幅曲线者,用6dB法在探伤面上画出缺陷的范围。按中标表3的规定,计算缺陷的面积。

中标表3

当使用纵波检测时,缺陷近探伤面一侧的边界和深度,由缺陷回波脉冲前沿的波幅上升到比距离波幅曲线底6dB的位置来确定。当使用横波斜探头检测时,缺陷的边界,有缺陷回波脉冲前沿幅度上升到比同时显示的最大缺陷回波幅度低6dB的位置来确定。

缺陷在铸钢件厚度方向的尺寸,由不同方向检测所确定的缺陷上部和下部边界而得到。

由于铸钢件几何形状的限制,不能从不同方向检测的缺陷,必须在探伤报告中说明。

美标规定:10.2 验收的质量等级应由需方和供方根据下列准则的一条或几条加以确定:

10.2.1 不允许存在等于或大于DAC曲线且其面积超过美标表2中所用质量等级所规定面积的缺陷。

10.2.2 不允许存在由缺陷引起的底波降低量等于或大于75%,且其面积以超过表2中所

用质量等级所规定面积的缺陷。

10.2.3 产生波高等于或大于DAC曲线的连续缺陷回波,且其尺寸超过所用质量等级规定 的最大长度的缺陷,应予拒收。

10.2.4 买卖双方商定的其他验收准则。

10.3 可采用其他方法来确定根据超声波检验作出的拒收结论的正确性。

美标表2

18.2 线性缺陷——线性缺陷定义为长度等于或大于其宽度三倍的缺陷。象裂缝或条渣类的缺陷即使幅度为0.5英寸(13mm)的也应去除。

18.3 非线性缺陷:

18.3.1 单个缺陷——单个缺陷不得超过美标表3所列的需方订单规定的质量等级。单个缺陷定义为,一个缺陷与相邻缺陷之间的距离,大于相邻两缺陷中较大缺陷的最大尺寸的缺陷。

美标表3

18.3.2 密集缺陷——密集缺陷应定义为在边长为1英寸(25mm)立方体中有两个或两个以上的缺陷。密集缺陷不得超过美标表4中需方订单规定的质量等级。缺陷之间的距离小于密集缺陷中最大缺陷的最小尺寸时,则此密集区应予去除并焊补。

美标表4

18.3.3 两个密集缺陷区之间的距离,必须大于其中任一个密集缺陷区最大缺陷的最小尺寸。否则,含有最大单个缺陷的密集缺陷区应予去除。

18.3.4 所有缺陷,既不管探头在铸件表面上移动所画出的面积,也不管所要求的质量等级,均不得贯穿铸件壁厚的1/3T,T为缺陷处的铸件壁厚。

比较两个标准,貌似中标比美标高了一个级别,当美国人还在盯着铸钢件中的缺陷分析他们是线和面的关系时,我们已经开始分析铸钢件中缺陷的面和体的关系啦!要不说中国人聪明,空间思维好,而且还不厌其烦的用各种探头从各个方向打缺陷的边缘,分析其深度。可见一点中国的标准是不注重效率的:假设一个面积=200×120;深度=25~30;板厚=60~65的缺陷,用美标双晶探头做单面探伤即可确定缺陷数据,假设5分钟能结束检测。而按照中标的方法则需要用双晶探头做三面探伤确定面积、分析深度,加上构件翻转。估计需要30分钟方能确定缺陷数据。所以说中标的超声波检测方法并不先进,到像是在做学术研究,不适于生产,当中国人的铸钢件探伤还停留在分析发现铸造缺陷性质时,美国已经进入标准件生产啦,他们把缺陷量化,而不再考虑协助铸造提高工艺。可见中标是落后的,工业大生产,需要的是标准和量化。当前我国的铸造技术又上了台阶,而检测方法似乎还很落后。

关于探伤方法的划分

中标对探头的选择:

2.2探头

2.2.1纵波直探头的晶片直径在10~30㎜的范围,当被检测的铸钢件的探伤面较粗糙时,建议使用有软保护膜的纵波直探头。

2.2.2应使用在钢中的折射角为45°、60°、70°的横波斜探头,或者用K值为1,1.5,2,2.5,3的横波斜探头。

2.2.3纵波双晶探头两晶片之间的声绝缘必须良好。美标对探头的选择:

4.2 探头

4.2.1 纵波探头

纵波探头应是直径为 1/2~3/2英寸(13~28mm)的圆晶片,或边长为1英寸(25mm)的方晶片。应根据铸件探伤的信噪比状况,在1~5MHz频率范围内选用。本底噪声不得超过距离幅度校正曲线(DAC)的25%。探头应在其额定频率下工作。

4.2.2 双晶探头

探测等于或小于1英寸(25mm)的截面,推荐使用5MHz,晶片尺寸为1/2英寸×1英寸(13mm×25mm)夹角为12°的探头。

4.2.3 为了评价和确认缺陷,也可使用其他频率和尺寸的探头。

S1.1.2 探头——斜探头应能在钢中产生30°~75°范围的斜射声束,此角度是以垂直于受检铸件入射表面的方向量度的。最好应使用频率为0.4~5MHz的探头。

斜探头探伤作为补充要求被列入标准。仅当供需双方一致同意时才使用,其目的是为了有效检出那些由于设计或可能存在的缺陷取向,用纵波不能进行有效检验的铸件关键区。

中标的超声探伤检测方法:4.1.2.1纵波直探头探伤灵敏度的调整a.用AVG曲线板调整;b.用对比试块调整。

4.1.2.2纵波双晶探头探伤灵敏度的调整。

4.1.2.3横波斜探头探伤灵敏的调整。

美标的超声探伤检测方法:方法A——平底孔校准法(图1、2);方法B——底波校正法(图3);方法C——斜探头横孔校正法(图4)。

由此可见中标虽然照猫画虎的列举了各种探头,可具体到探伤时依然是忽视试块的存在,各种土办法都用上了,没有规范各种探头选用的范围、方法和探伤目的不明确。以至于多方探伤尚存在各种争议,严重影响了探伤质量,当读过美标之后才知道这种探头原来是取长补短,对探伤质量各有要求,各有侧重。随着中国铸造业的不断发展,探伤手段方法应该与时俱进。

关于对底波降低存在疑问的处理

中标规定:4.4.2.2对于底面回波降低12dB或者12dB以上的位置,应核查底面是否倾斜或者不平整、耦合接触是否良好。

凡是因存在缺陷而使底面回波降低12dB或12dB以上者,以底面回波降低12dB为条件,在探伤面上画出缺陷的范围,按中标表3注②计算缺陷的面积。

缺陷的深度,由一处连续缺陷回波最左边的波峰的位置来确定。缺陷在铸钢件厚度方向的尺寸,由一处连续缺陷回波中最左边的与最右边的两个波峰之间的宽度来确定。

既无底面回波,又无缺陷回波的位置,应提高探伤灵敏度检测,观察是否存在反射面与入射声束倾斜的缺陷。4.4.4存在疑问的缺陷

对于存在疑问的缺陷显示,允许采用经过验证而行之有效的其他无损检测方法进行检验。如仍不能得出结论,则由供需双方协商处理办法。

美标规定:8.5 检验铸件两壁平行区域时,底波损失75%以上的区域要进行复查,以便判定底波损失是由于接触不良,耦合剂不足,还是缺陷取向倾斜等所致。如果底波损失的原因不明,则认为该区域有疑问,需进一步查明。

10.2.2 不允许存在由缺陷引起的底波降低量等于或大于75%,且其面积以超过美标表2中所用质量等级所规定面积的缺陷。

10.2.4 买卖双方商定的其他验收准则。

10.3 可采用其他方法来确定根据超声波检验作出的拒收结论的正确性。

18.3.7 任何区域,底波损失等于或大于75%,并超过了所用质量等级规定的面积,而不管信号幅度是否超过0.5英寸(13mm)拒收线,均应拒收,除非能确定底波损失不是由于缺陷所造成的。如果提高增益,底波满足要求,按信号幅度百分比又不超过0.5英寸(13mm)拒收线的缺陷,则该区应为合格。

对于底波降低的疑问,相关的超声探伤资料指出超声波探伤中若出现无低波或者低波衰减严重不能忽视一种可能性就是铸钢件材料组织晶粒粗大,铸钢件晶粒粗大是指经过机械加工或进行断口检验时,显示出晶粒组织过分粗大而不适合应用的缺陷,这种晶粒粗大的组织,可能是遍布于铸钢件整体,也可能发生于铸钢件的局部。从本质上讲,晶粒粗大缺陷是一种冶金缺陷。当底波降低的疑义被确定为晶粒粗大时,允许重新热处理,重新热处理后超声探伤检测情况依然则判为不合格。

美标中是明确“任何区域,底波损失等于或大于75%,并超过了所用质量等级规定的面积,而不管信号幅度是否超过0.5英寸(13mm)拒收线,均应拒收”,而中标则是认为“凡是因存在缺陷而使底面回波降低12dB或12dB以上者”底波的降低是因为缺陷的存在而造成的,事实上标准中并没有把晶粒粗大定义为缺陷。这样出现了存在疑问的缺陷的说法,最终变成“由供需双方协商处理办法”。使之不了了之,这样的标准在执行起来困难重重。

我国的铸造水平不断发展,而比较欧美一些发达国家尚有不足,但我国大型国企做为国家的钢铁龙头,每年仍能生产大量高附加值的符合国外标准的铸钢件。国内对铸钢件的质量要求正不断提高,做为我国的铸钢件无损探伤标准是否也应该与时俱进,跟上潮流,期待新的国家标准早日修编。

篇2:铸钢件超声检测

NDT(Non-destructive testing),就是利用声、光、磁和电等特性,在不损害或不影响被检对象使用性能的前提下,检测被检对象中是否存在缺陷或不均匀性,给出缺陷的大小、位置、性质和数量等信息,进而判定被检对象所处技术状态(如合格与否、剩余寿命等)的所有技术手段的总称

无损检测是工业发展必不可少的有效工具,在一定程度上反应了一个国家的工业发展水平,其重要性已得到公认。我国在1978年11月成立了全国性的无损检测学术组织——中国机械工程学会无损检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损检测学会或协会。我国目前开设无损检测专业课程的高校有大连理工大学、西安工程大学、南昌航空工业学院等院校。在无损检测的基础理论研究和仪器设备开发方面,我国与世界先进国家之间仍有较大的差距,特别是在红外、声发射等高新技术检测设备方面更是如此。

无损检测的应用特点

a.无损检测的最大特点就是能在不损坏试件材质、结构的前提下进行检测,所以实施无损检测后,产品的检查率可以达到100%。但是,并不是所有需要测试的项目和指标都能进行无损检测,无损检测技术也有自身的局限性。某些试验只能采用破坏性试验,因此,在目前无损检测还不能代替破坏性检测。也就是说,对一个工件、材料、机器设备的评价,必须把无损检测的结果与破坏性试验的结果互相对比和配合,才能作出准确的评定。

b.正确选用实施无损检测的时机:在无损检测时,必须根据无损检测的目的,正确选择无损检测实施的时机。

c.正确选用最适当的无损检测方法:由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、形状、部位和取向,选择合适的无损检测方法。

d.综合应用各种无损检测方法:任何一种无损检测方法都不是万能的,每种方法都有自己的优点和缺点。应尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。此外在无损检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。只有这样,无损检测在承压设备的应用才能达到预期目的

二、超声波检测(UT)

1、超声波检测的定义:通过超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。

2、超声波工作的原理:主要是基于超声波在试件中的传播特性。a.声源产生超声波,采用一定的方式使超声波进入试件;b.超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;c.改变后的超声波通过检测设备被接收,并可对其进行处理和分析;d.根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。

3、超声波检测的优点:a.适用于金属、非金属和复合材料等多种制件的无损检测;b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件;c.缺陷定位较准确;d.对面积型缺陷的检出率较高;e.灵敏度高,可检测试件内部尺寸很小的缺陷;f.检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。

4、超声波检测的局限性a.对试件中的缺陷进行精确的定性、定量仍须作深入研究;b.对具有复杂形状或不规则外形的试件进行超声检测有困难;c.缺陷的位置、取向和形状对检测结果有一定影响;d.材质、晶粒度等对检测有较大影响;e.以常用的手工A型脉冲反射法检测时结果显示不直观,且检测结果无直接见证记录。

5、超声检测的适用范围a.从检测对象的材料来说,可用于金属、非金属和复合材料;b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等;c.从检测对象的形状来说,可用于板材、棒材、管材等;d.从检测对象的尺寸来说,厚度可小至1mm,也可大至几米;e.从缺陷部位来说,既可以是表面缺陷,也可以是内部缺陷。

超声波无损检测在无损检测焊接质量验收中非常重要

来自:soundrey 2007年1月22日10:45

化工企业在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。

无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。

那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。下面介绍一下超声波探伤在实际工作中的应用。

接到探伤任务后,首先要了解图纸对焊接质量的技术要求。目前钢结构的验收标准是依据GB50205-95《钢结构工程施工及验收规范》来执行的。标准规定:对于图纸要求焊缝焊接质量等级为一级时评定等级为Ⅱ级时规范规定要求做100%超声波探伤;对于图纸要求焊缝焊接质量等级为二级时评定等级为Ⅲ级时规范规定要求做20%超声波探伤;对于图纸要求焊缝焊接质量等级为三级时不做超声波内部缺陷检查。

在此值得注意的是超声波探伤用于全熔透焊缝,其探伤比例按每条焊缝长度的百分数计算,并且不小于200mm。对于局部探伤的焊缝如果发现有不允许的缺陷时,应在该缺陷两端的延伸部位增加探伤长度,增加长度不应小于该焊缝长度的10%且不应小于200mm,当仍有不允许的缺陷时,应对该焊缝进行100%的探伤检查,其次应该清楚探伤时机,碳素结构钢应在焊缝冷却到环境温度后、低合金结构钢在焊接完成24小时以后方可进行焊缝探伤检验。另外还应该知道待测工件母材厚度、接头型式及坡口型式。截止到目前为止我在实际工作中接触到的要求探伤的绝大多数焊缝都是中板对接焊缝的接头型式,所以我下面主要就对焊缝探伤的操作做针对性的总结。一般地母材厚度在8-16 mm之间,坡口型式有I型、单V型、X型等几种形式。在弄清楚以上这此东西后才可以进行探伤前的准备工作。

在每次探伤操作前都必须利用标准试块(CSK-I A、CSK-ⅢA)校准仪器的综合性能,校准面板曲线,以保证探伤结果的准确性。

1、探测面的修整:应清除焊接工作表面飞溅物、氧化皮、凹坑及锈蚀等,光洁度一般低于▽4。焊缝两侧探伤面的修整宽度一般为大于等于2KT+50mm,(K:探头K值,T:工件厚度)。一般的根据焊件母材选择K值为2.5探头。例如:待测工件母材厚度为10mm,那么就应在焊缝两侧各修磨100mm。

2、耦合剂的选择应考虑到粘度、流动性、附着力、对工件表面无腐蚀、易清洗,而且经济,综合以上因素选择浆糊作为耦合剂。

3、由于母材厚度较薄因此探测方向采用单面双侧进行。

4、由于板厚小于20mm所以采用水平定位法来调节仪器的扫描速度。

5、在探伤操作过程中采用粗探伤和精探伤。为了大概了解缺陷的有无和分布状态、定量、定位就是精探伤。使用锯齿形扫查、左右扫查、前后扫查、转角扫查、环绕扫查等几种扫查方式以便于发现各种不同的缺陷并且判断缺陷性质。

6、对探测结果进行记录,如发现内部缺陷对其进行评定分析。焊接对头内部缺陷分级应符合现行国家标准GB11345-89《钢焊缝手工超声波探伤方法和探伤结果分级》的规定,来评判该焊否合格。如果发现有超标缺陷,向车间下达整改通知书,令其整改后进行复验直至合格。

一般的焊缝中常见的缺陷有:气孔、夹渣、未焊透、未熔合和裂纹等。到目前为止还没有一个成熟的方法对缺陷的性质进行准确的评判,只是根据荧光屏上得到的缺陷波的形状和反射波高度的变化结合缺陷的位置和焊接工艺对缺陷进行综合估判。对于内部缺陷的性质的估判以及缺陷的产生的原因和防止措施大体总结了以下几点:

1、气孔:单个气孔回波高度低,波形为单缝,较稳定。从各个方向探测,反射波大体相同,但稍一动探头就消失,密集气孔会出现一簇反射波,波高随气孔大小而不同,当探头作定点转动时,会出现此起彼落的现象。产生这类缺陷的原因主要是焊材未按规定温度烘干,焊条药皮变质脱落、焊芯锈蚀,焊丝清理不干净,手工焊时电流过大,电弧过长;埋弧焊时电压过高或网络电压波动太大;气体保护焊时保护气体纯度低等。如果焊缝中存在着气孔,既破坏了焊缝金属的致密性,又使得焊缝有效截面积减少,降低了机械性能,特别是存链状气孔时,对弯曲和冲击韧性会有比较明显降低。防止这类缺陷产生的措施有:不使用药皮开裂、剥落、变质及焊芯锈蚀的焊条,生锈的焊丝必须除锈后才能使用。所用焊接材料应按规定温度烘干,坡口及其两侧清理干净,并要选用合适的焊接电流、电弧电压和焊接速度等。

2、夹渣:点状夹渣回波信号与点状气孔相似,条状夹渣回波信号多呈锯齿状波幅不高,波形多呈树枝状,主峰边上有小峰,探头平移波幅有变动,从各个方向探测时反射波幅不相同。这类缺陷产生的原因有:焊接电流过小,速度过快,熔渣来不及浮起,被焊边缘和各层焊缝清理不干净,其本金属和焊接材料化学成分不当,含硫、磷较多等。防止措施有:正确选用焊接电流,焊接件的坡口角度不要太小,焊前必须把坡口清理干净,多层焊时必须层层清除焊渣;并合理选择运条角度焊接速度等。

3、未焊透:反射率高,波幅也较高,探头平移时,波形较稳定,在焊缝两侧探伤时均能得到大致相同的反射波幅。这类缺陷不仅降低了焊接接头的机械性能,而且在未焊透处的缺口和端部形成应力集中点,承载后往往会引起裂纹,是一种危险性缺陷。其产生原因一般是:坡口纯边间隙太小,焊接电流太小或运条速度过快,坡口角度小,运条角度不对以及电弧偏吹等。防止措施有:合理选用坡口型式、装配间隙和采用正确的焊接工艺等。

4、未熔合:探头平移时,波形较稳定,两侧探测时,反射波幅不同,有时只能从一侧探到。其产生的原因:坡口不干净,焊速太快,电流过小或过大,焊条角度不对,电弧偏吹等。防止措施:正确选用坡口和电流,坡口清理干净,正确操作防止焊偏等。

5、裂纹:回波高度较大,波幅宽,会出现多峰,探头平移时反射波连续出现波幅有变动,探头转时,波峰有上下错动现象。裂纹是一种危险性最大的缺陷,它除降低焊接接头的强度外,还因裂纹的末端呈尖销的缺口,焊件承载后,引起应力集中,成为结构断裂的起源。裂纹分为热裂纹、冷裂纹和再热裂纹三种。热裂纹产生的原因是:焊接时熔池的冷却速度很快,造成偏析;焊缝受热不均匀产生拉应力。防止措施:限制母材和焊接材料中易偏析元素和有害杂质的含量,主要限制硫含量,提高锰含量;提高焊条或焊剂的碱度,以降低杂质含量,改善偏析程度;改进焊接结构形式,采用合理的焊接顺序,提高焊缝收缩时的自由度。

冷裂纹产生的原因:被焊材料淬透性较大在冷却过程中受到人的焊接拉力作用时易裂开;焊接时冷却速度很快氢来不及逸出而残留在焊缝中,氢原子结合成氢分子,以气体状态进到金属的细微孔隙中,并造成很大的压力,使局部金属产生很大的压力而形成冷裂纹;焊接应力拉应力并与氢的析集中和淬火脆化同时发生时易形成冷裂纹。防止措施:焊前预热,焊后缓慢冷却,使热影响区的奥氏体分解能在足够的温度区间内进行,避免淬硬组织的产生,同时有减少焊接应力的作用;焊接后及时进行低温退火,去氢处理,消除焊接时产生的应力,并使氢及时扩散到外界去;选用低氢型焊条和碱性焊剂或奥氏体不锈钢焊条焊丝等,焊材按规定烘干,并严格清理坡口;加强焊接时的保护和被焊处表面的清理,避免氢的侵入;选用合理的焊接规范,采用合理的装焊顺序,以改善焊件的应力状态。

篇3:超声波轮对检测装置

德国测试设备供应商NDT AG公司已将其首套AURA超声波轮对检测装置发给中国铁道部。

该台检测装置 (见图1) 拟安装在中国西部的成都。该设备已应用于德国铁路 (DB) 部门。它可同时检测轮对双侧的材料缺陷, 检测时间一般为5 min。

篇4:超声波探伤检测研究

关键词:超声波探伤 检测技术原理 优点与缺点 未来发展

中图分类号:TP274.5;TP368.12 文献标识码:A 文章编号:1672-5336(2014)24-0000-00

1 超声波探伤检测的原理

在超声波探伤没有出现之前,金属探伤工作一直是靠表面观察、有经验的人员的观察和听声音等方法,后来出现了着色探伤和磁粉探伤这两种方法,有效的对金属内部的气泡与缺陷、裂纹等进行了揭示。但是相比起超声波探伤这一方法来说,前两种方法不但过程复杂,而且花费大,而且还存在着不准确,无法发现隐藏在工件内部的缺陷和裂纹的问题。这些问题在超声波探伤这一方法出现之后都得到了完美的解决。超声波探伤方法凭借其对工件的无损性,简单易行性,可靠性和可反复检测,一次购买长期使用的多种优点而被多大用户所称赞和喜爱。那么超声波探伤的工作原理到底是怎么样的呢?它是如何超越了传统的经验观察和磁粉探伤、着色探伤等探伤方法而在它们中间脱颖而出,成为其中的姣姣者的呢?这首先要从超声波探伤的原理说起。

人们都知道蝙蝠是通过超声波来活动觅食的。蝙蝠的发声器官与人类不同,它能够发出一种频率比人耳能够听到的声音频段更高的声波,这种声波具有良好的方向性,和非常好的穿透能力,并具有传播距离远,能够在碰到障碍物后反弹回来的良好特性。还能够用于测距、测速、清洗、焊接、碎石、杀菌消毒等。蝙蝠正是靠了这一特殊的器官与功能在夜间飞行和觅食的,凭借着超声波的良好传播和反弹的特性,蝙蝠即使是在伸手不见五指的黑夜中也能对周围的环境了如指掌,并完美的掌握猎物的方位和运动状态并成功的进行猎食。科学家们在了解了超声波与蝙蝠的这一优秀的功能之后,就将之运用到了船上,用它来测量水深和海中或者空中的物体。但是后来科学家们又发现了超声波在金属和一些物质中良好的穿透性能,凭借这一功能和遇上障碍物后反射的特性,科学家才发明了后来的超声波探伤仪。其工作原理就是靠着超声波在金属中良好的穿透性和遇上障碍物后反射的这两大特性。首先因为超声波声束能集中在特定的方向上进行传播,在介质中沿直线传播,其次,超声波在介质中传播过程中,会发生衰减和散射,且在异种介质的界面上将产生反射、折射和波型转换。所以当我们用超声波来探伤时,一但在金属内部存在着气泡与裂纹,那么超声波在穿过金属介质到达气泡和裂纹后就会发生变化,然后再次遭遇金属介质后又会发生变化和反射,利用这些特性,探伤者就能够轻易的了解金属内部气泡的位置和大小,以及金属介质的厚度了。如图1所示。

图1 超声波探伤检测的原理

2 超声波探伤检测的优点与缺点

目前超声波探伤仪有许多种类,多个产品,但是几乎所有的产品的探头都是通过压电效应的工作原理来工作的。压电效应 是一种物理现象,指的是某些晶体材料在交变拉压应力的作用下,产生交变电场的效应。压电效应的另一个现象是当晶体材料在交变电场作用下,产生伸缩变形。而超声波探伤检测仪的探头正是用这种具有压电效应的晶体制造成的。这使得这种探头具有压电效应,当我们需要探伤时,接通电路,探伤系统发出高频电脉冲激励探头上的压电晶片时,就激发发生压电效应,制造出超声波。而当超声波遇上障碍物而反射回来时,探头上的晶片受到超声波的作用,又激发压电效应,将声能转换为电能,并由探伤系统中的处理后显示在显示屏上。目前超声波探伤仪有多种类型,横跨多个探伤领域,光探头就有直探头、斜探头、双晶探头等多个各类,目前最先进的是双晶探头,双晶探头有两块压电晶片,一块用于发射超声波,另一块用于接收超声波。根据入射角不同,又分为双晶纵波探头和双晶横波探头。不同于以往的直探头,现在的斜探头、双晶探头都有探测探测与探测面垂直或成一定角度的缺陷,如焊缝、汽轮机叶轮等的功能,大大的扩展了超声波探头能够探测的工件的各类和范围。

总结起来,目前超声波探伤检测仪所具有的优点有这样一些:较强的穿透能力、较高的的灵敏度,可发现大小只有0.1毫米左右的气泡和裂纹、准确性较高,可发现气泡和裂纹的方向、大小和形状、探伤方便、可当场显示检测结果、操作方便安全。但缺点也不少,主要有这么一些:对检测人员的经验和操作要求较高、无法检测形状不规则,小而薄的物件,也无法检测材质不均匀的工件、无法准确的揭示出缺陷的详细情况、探伤仪昂贵,探伤成本较高等等。

3 超声波探伤检测仪器未来的发展趋势

参考上文中揭示的目前超声波探伤检测仪所具有优点与缺点,结合现代科学技术的现状和未来的发展趋势,超声波探伤检测技术将会向着以下几个方面发展:①向高精度、高分辨率方向发展。②高温条件下的测量明显增多,在线检测、动态检测增多。③在若干领域向超声无损评价发展,使得超声检测内容有了新的内涵。如超声检测技术与断裂力学相结合,对重要构件进行剩余寿命评价;超声检测技术与材料科学相结合,对材料进行物理评价。④在无损检测方面向定量化、图像化方向发展,超声检测系统将进一步数字化、图像化、自动化、智能化。⑤现代信息处理技术如数值分析法、神经网络技术、模糊技术、遗传算法、虚拟仪器技术将广泛应用于超声检测技术领域。

参考文献

[1]郑君.基于嵌入式系统超声波探伤的研究[D].北京交通大学,2008年.

[2]韩辉.数字化超声波探伤仪关键技术的研究[D].沈阳理工大学,2008年.

收稿日期:2014-11-16

作者简介:严伟(1983—),男,江苏靖江人,本科,检定员,助工。

篇5:超声波气体检测

摘 要:介绍了一种新型的气体泄漏超声检测系统,在分析小孔气体泄漏产生超声波的原理的基础上,阐述了该检测系统的原理及设计方案。该系统能对各种压力容器的孔隙泄漏所产生的微弱超声信号进行精确检测。该系统利用DSP技术对泄漏所产生的超声波信号进行分析处理和声压级计算,从而实现对泄漏的检测及泄漏量的估算。

关键词:DSP 声压级 本底噪声 泄漏超声波

目前,工业上和生活中均大量用到用于储存和输送压缩气体的压力容器,如气缸、气罐、煤气管道等。由于各种原因,容器会产生漏孔从而发生气体泄漏。据估计,工业上由于泄漏而损失掉的压缩气体平均占到40%左右。泄漏不但会造成能源的浪费,而且如果是有害气体的话,还会对空气造成污染。因此,准确地判断和定位产生泄漏的位置,对于提高企业的生产效率和节约能源具有重大的意义。

传统的泄漏检测方法如绝对压力法、压差法、气泡法等,操作复杂并且对技术人员要求较高,而且不具有实时性。目前,工业上广泛利用泄漏产生超声波的原理来进行泄漏检测。利用超声波检测气体泄漏位置,不仅方法简单,而且准确可靠。基于此,本文研究并设计了一种新型的超声波气体泄漏检测系统。检测原理

1.1气体泄漏产生超声波

如果一个容器内充满气体,当其内部压强大于外部压强时,由于内外压差较大,一旦容器有漏孔,气体就会从漏孔冲出。当漏孔尺寸较小且雷诺数较高时,冲出气体就会形成湍流,湍流在漏孔附近会产生一定频率的声波,如图1所示。声波振动的频率与漏孔尺寸有关,漏孔较大时人耳可听到漏气声,漏孔很小且声波频率大于20kHz时,人耳就听不到了,但它们能在空气中传播,被称作空载超声波。超声波是高频短波信号,其强度随着离开声源(漏孔)距离的增加而迅速衰减。因此,超声波被认为是一种方向性很强的信号,用此信号判断泄漏位置相当简单。

图1 气体泄漏产生超声波

1.2 声压与泄漏量的关系

泄漏超声本质上是湍流和冲击噪声。泄漏驻点压力P与泄漏孔口直径D决定了湍流声的声压级L。著名学者马大猷教授推出如下公式[1]:

式中,L为垂直方向距离喷口1m处的声压级(单位:dB);D为喷口直径(单位:mm);D0=1mm;P0为环境大气绝对压力;P为泄漏孔驻压。

由此可知, 在与泄漏孔的距离一定时,泄漏超声的声压级是随泄漏孔尺寸和系统压力的变化而变化的。

泄漏产生的超声波频带比较宽,一般在20kHz到100kHz之间。在不同的频率点,超声波的能量是不同的。实际上,它的频谱峰值也是随泄漏孔的尺寸和压力的变化而变化的。比如:在一定的泄漏孔径和压力下,如果泄漏超声波的频谱峰值是在38kHz点,那么加大孔径以后它的频谱峰值可能出现在36kHz点;如果孔径不变,加大系统内外压差,频谱峰值可能出现在43kHz点。但是在同一频率点,对于形状相同的泄漏孔,泄漏所产生的超声波的声强随泄漏量的增大而增大。另外,如果泄漏量恒定,即泄漏面积一定,则泄漏孔的形状越接近于圆形,声压越高。当泄漏孔的雷诺数用式(2)表示时,在40kHz点声压与雷诺数之间的关系如图2所示。

图2 声压级与雷诺数的关系

式中,ρ为气体密度;μ为粘度;V为流速;D为力学平均直径。

由图2可知,如果能检测出泄漏孔附近在某一个频率点的声强,则可以推算出该泄漏孔的雷诺数。对于该泄漏孔,由于它的力学平均直径是确定的,所以这时雷诺数与气体泄漏量成正比关系。但是对于不同的泄漏孔,并不知道它的力学平均直径,因此光知道雷诺数还不能求出泄漏量。在工业上,对于管道气体,由于有源源不断的气体补给,管道里面的气压一般都是恒定值。而对于工业容器,由于小孔泄漏的泄漏量非常微弱,容器当中的压力变化非常缓慢,所以可以认为在一段时期内是恒定值。当系统内外压力一定时,对于不同的泄漏孔,它的泄漏流速都是一定的,可以用公式(3)[2]来表示:

式中,V为气体流速;p为管内压力;P0为环境大气绝对压力;T1为绝对温度;σ=P0/P;R为气体常数;K=,对于空气,k=1.4,则K=2.646。

当雷诺数、气体流速知道以后,就可以反求出该泄漏孔力学平均直径D,即可得出泄漏量。通过以上分析得出:只要能检测出距离泄漏点一定距离的超声波在某一个频率点的强度,再给出泄漏系统内外压力,就可以估算出气体泄漏量。系统硬件实现

小孔气体泄漏所发出的超声波强度是极其微弱的,而且在工业场合,环境噪声是相当大的。所以要检测出在恶劣环境下的气体泄漏所发出的超声,必须对系统信号放大部分进行精心的设计。在本系统中只检测40kHz点的泄漏超声波的强度,原因是通过实验得出,在40kHz点的泄漏超声波能量都是比较大的,而且泄漏声和本底噪声能量差值也最大(如图3所示)。这样选择可以增加系统灵敏度。

系统原理如图4所示。系统分为模拟和数字两部分,模拟部分包括信号放大电路和音频处理电路等。信号放大电路由前置放大电路、带通滤波电路和二次放大电路组成。音频处理电路由本振电路、混频器、功率驱动电路组成。数字部分主要由DSP和LCD、RAM、键盘等外围设备组成。传感器信号经过放大滤波以后,一路交由DSP处理,另一路通过降频转化为可听声。下面分别介绍各部分原理。

图3 本底噪声与泄漏声声压图

图4 系统原理图

2.1 信号放大电路

图5所示为模拟电路的信号放大部分。

前置放大电路选用AD公司的专用高精度仪器三运放AD620。AD620是由三个精密运放集成的差分专用仪器运放,它具有低偏移、高增益(信号可直接放大到1000倍)、高共模拟制比的特点,特别适用于放大传感器信号。由于传感器接收到的大量的低频噪声(如50Hz的工频噪声)强度远大于它所接收到的超声信号,所以在传感器与AD620之间必须接一个无源高通滤波器。这样虽然增加了传感器的功耗,但是在后面可以通过增大放大倍数来弥补。第二级是一个有源带通滤波电路。在这一级可以滤掉前面滤波器没有滤掉的大部分背景噪声和由器件或电路产生的噪声。这里选择的通带为38kHz~42kHz。第二级和第三级运放都采用AD公司的OP777,它是一个超精密的低噪声运放,具有极低的电压和电流偏移以及很高的增益稳定性。第三级是一个一般的同相放大电路。经过第三级放大以后,信号范围为-3.3V~+3.3V,再经过如图所示的两个20kΩ的电阻,并接上+3.3V的偏置电压,就可以使输入到DSP的AD采样信号变为0~3.3V。

虽然选用的器件是低噪声的,但是对于检测极其微弱的泄漏超声信号来说,还是不能忽略器件本身的噪声。在信号进入DSP以后再一次对其进行数字滤波,滤掉由前面器件和电路产生的直流电压偏置和噪声。这样可以得到足够高精度的泄漏超声波信号。

图5 信号放大电路

图6 音频处理电路原理图

2.2 音频处理电路设计

设计音频处理电路的目的是能够比较方便地判断哪里有泄漏的产生。人耳的听觉范围大约在1kHz到20kHz之间。因此检测到的超声信号必须通过降频才能为人耳所听到。降频的原理是利用差分信号的乘法特性:

然后在Uo后接上低通滤波器,则可得差频信号。如选用本振电路的频率为37kHz,那么得到的差频信号为3kHz,可为人耳听到。音频处理电路的原理图如图6所示。

2.3 DSP

DSP的主要功能是负责A/D转换、对A/D转换后的信号进行分析处理、对LCD及电源进行管理。这里采用TMS320LF2407A。DSP芯片是一种具有特殊结构的微处理器。芯片内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,并提供特殊的DSP指令,可以快速地实现各种数字信号处理算法。TMS320LF240X是德州仪器(TI)公司推出的基于C2×LP16位的定点低功耗的数字信号处理器系列,2407A型处理器是此系列中的最新产品。40M指令/秒(40MIPS)的处理速度可以提供远远超过传统的16位微控制器和微处理器的性能。它的内置10位模/数转换电路可以使电路得以简化。

2.4 LCD显示部分设计

LCD的作用是显示泄漏孔的声强和估算的泄漏值以及由键盘输入的数据。这里选用内藏三星公司的KS0713显示控制芯片的LCD显示模块。它有128×64的点阵。其供电电压只需3.3V。KS0713芯片速度相当快,内部晶振频率可达2MHz,很适合使用高速CPU芯片的场合。这里采用DSP的数字I/O口来控制LCD模块,如图7所示。

图7 TMSLF2407A与KS0713的接口

图8 键盘接口电路

图9 主程序流程图

2.5 键盘电路设计

键盘的作用是输入泄漏系统的内外压力值和选择不同的气体常数。在估算气体泄漏量时,需要知道气体的流速,由公式(3)可知,泄漏气体的流速可以通过气体内外的压力和气体常数等换算出来,这些数值是通过键盘输入进去的。这里采用一维键盘,用DSP的四个数字I/O口来接收键盘输入,采用软件的方法消除键盘的抖动。本系统设计了四个按键:“功能” 键、“+”键、“-”键和“确定”键。功能键用于循环选择容器内气压、容器外气压和气体常数的设置等。每按一次功能键,在上述三个功能间切换一次。键盘接口电路如图8所示。系统软件部分设计

因为系统要完成测量泄漏超声的声压级、估算泄漏量以及完成显示功能,所以软件主要由信号采集子程序、滤波子程序、FFT变换程序、泄漏估算子程序、LCD显示子程序、键盘服务子程序等组成。限于篇幅,在此只列出程序设计的总体思路,如图9所示。本文所介绍的超声波泄漏检测系统具有精度高、体积小、便于携带和具有很好的人机交互界面等特点。该系统还利用DSP等技术实现了对泄漏量的估算。

参考文献 袁易全,黄建人.高灵敏超声检漏仪的研究,东南大学学报,1989 2 李建藩.气压传动系统动力学.广州:华南理工大学出版社,1991 李 进,陈会仓,程 斌等.气体泄漏超声波检测装置.工业仪表与自动化装置,1996(5)4于亚非.用超声波传感器检测气体泄漏.仪器与未来,1992(8)5 李光海,王 勇,刘时风.基于声发射技术的管道泄漏检测系统.自动化仪表,2002;23(5):20~23

作者姓名: 龚其春 叶 骞 刘成良 王永红

作者单位: 上海交通大学机电控制研究所SMC研究中心

出处:电子技术应用

篇6:超声波检测相关标准

GB/T1786-1990锻制园并的超声波探伤方法

GB/T 2108-1980薄钢板兰姆波探伤方法

GB/T2970-2004厚钢板超声波检验方法

GB/T3310-1999铜合金棒材超声波探伤方法

GB/T3389.2-1999压电陶瓷材料性能测试方法纵向压电应变常数d33的静态测试

GB/T4162-1991锻轧钢棒超声波检验方法

GB/T 4163-1984不锈钢管超声波探伤方法(NDT,86-10)

GB/T5193-1985钛及钛合金加工产品(横截面厚度≥13mm)超声波探伤方法(NDT,89-11)(eqv AMS2631)

GB/T5777-1996无缝钢管超声波探伤检验方法(eqv ISO9303:1989)

GB/T6402-1991钢锻件超声波检验方法

GB/T6427-1999压电陶瓷振子频率温度稳定性的测试方法

GB/T6519-2000变形铝合金产品超声波检验方法

GB/T7233-1987铸钢件超声探伤及质量评级方法(NDT,89-9)

GB/T7734-2004复合钢板超声波检验方法

GB/T7736-2001钢的低倍组织及缺陷超声波检验法(取代YB898-77)

GB/T8361-2001冷拉园钢表面超声波探伤方法(NDT,91-1)

GB/T8651-2002金属板材超声板波探伤方法

GB/T8652-1988变形高强度钢超声波检验方法(NDT,90-2)

GB/T11259-1999超声波检验用钢制对比试块的制作与校验方法(eqv ASTME428-92)

GB/T11343-1989接触式超声斜射探伤方法(WSTS,91-4)

GB/T11344-1989接触式超声波脉冲回波法测厚

GB/T11345-1989钢焊缝手工超声波探伤方法和探伤结果的分级(WSTS,91-2~3)

GB/T 12604.1-2005无损检测术语 超声检测 代替JB3111-82 GB/T12604.1-1990

GB/T 12604.4-2005无损检测术语 声发射检测 代替JB3111-82 GB/T12604.4-1990

GB/T12969.1-1991钛及钛合金管材超声波检验方法

GB/T13315-1991锻钢冷轧工作辊超声波探伤方法

GB/T13316-1991铸钢轧辊超声波探伤方法

GB/T15830-1995钢制管道对接环焊缝超声波探伤方法和检验结果分级

GB/T18182-2000金属压力容器声发射检测及结果评价方法

GB/T18256-2000焊接钢管(埋弧焊除外)—用于确认水压密实性的超声波检测方法(eqv ISO

10332:1994)

GB/T18329.1-2001滑动轴承多层金属滑动轴承结合强度的超声波无损检验

GB/T18604-2001用气体超声流量计测量天然气流量

GB/T18694-2002无损检测 超声检验 探头及其声场的表征(eqv ISO10375:1997)

GB/T 18696.1-2004声学 阻抗管中吸声系数和声阻抗的测量第1部分:驻波比法

GB/T18852-2002无损检测 超声检验 测量接触探头声束特性的参考试块和方法(ISO12715:1999,IDT)

GB/T 19799.1-2005无损检测 超声检测 1号校准试块

GB/T 19799.2-2005无损检测 超声检测 2号校准试块

GB/T 19800-2005无损检测 声发射检测 换能器的一级校准

GB/T 19801-2005无损检测 声发射检测声发射传感器的二级校准

GJB593.1-1988无损检测质量控制规范超声纵波和横波检验

GJB1038.1-1990纤维增强塑料无损检验方法--超声波检验

GJB1076-1991穿甲弹用钨基高密度合金棒超声波探伤方法

GJB1580-1993变形金属超声波检验方法

GJB2044-1994钛合金压力容器声发射检测方法

GJB1538-1992飞机结构件用TC4 钛合金棒材规范

GJB3384-1998金属薄板兰姆波检验方法

GJB3538-1999变形铝合金棒材超声波检验方法

ZBY 230-84A型脉冲反射式超声探伤仪通用技术条件(NDT,87-4/84版)(已被JB/T10061-1999代替)

ZBY 231-84超声探伤仪用探头性能测试方法(NDT,87-5/84版)(已被JB/T10062-1999代替)

ZBY 232-84超声探伤用1号标准试块技术条件(NDT,87-6/84版)(已被JB/T10063-1999代替)

ZBY 344-85超声探伤用探头型号命名方法(NDT,87-6)

ZBY 345-85超声探伤仪用刻度板(NDT,87-6)

ZB G93 004-87尿素高压设备制造检验方法--不锈钢带极自动堆焊层超声波检验

ZB J04 001-87A型脉冲反射式超声探伤系统工作性能测试方法(NDT,88-6)(已被JB/T9214-1999代替)

ZB J74 003-88压力容器用钢板超声波探伤(已废止)

ZB J26 002-89圆柱螺旋压缩弹簧超声波探伤方法

ZB J32 004-88大型锻造曲轴超声波检验(已被JB/T9020-1999代替)

ZB U05 008-90船用锻钢件超声波探伤

ZB K54 010-89汽轮机铸钢件超声波探伤及质量分级方法

ZB N77 001-90超声测厚仪通用技术条件

ZB N71 009-89超声硬度计技术条件

ZB E98 001-88常压钢质油罐焊缝超声波探伤(NDT,90-1)(已被JB/T9212-1999代替)

SDJ 67-83水电部电力建设施工及验收技术规范:管道焊缝超声波检验篇

QJ 912-1985复合固体推进剂药条燃速的水下声发射测定方法

QJ 1269-87金属薄板兰姆波探伤方法

QJ1274-1987玻璃钢层压板超声波检测方法

QJ 1629-1989钛合金气瓶声发射检测方法

QJ 1657-1989固体火箭发动机玻璃纤维缠绕燃烧室壳体超声波探伤方法

QJ 1707-1989金属及其制品的脉冲反射式超声波测厚方法

QJ2252-1992高温合金锻件超声波探伤方法及质量分级标准

QJ 2914-1997复合材料结构声发射检测方法

CB 827-1975船体焊缝超声波探伤

CB 3178-1983民用船舶钢焊缝超声波探伤评级标准

CB/Z211-1984船用金属复合材料超声波探伤工艺规程

CB1134-1985BFe30-1-1管材的超声波探伤方法

CB/T 3907-1999船用锻钢件超声波探伤

CB/T3559-1994船舶钢焊缝手工超声波探伤工艺和质量分级

CB/T 3177-1994船舶钢焊缝射线照相和超声波检查规则

TB 1989-87机车车辆厂,段修车轴超声波探伤方法

TB 1558-84对焊焊缝超声波探伤

TB 1606-1985球墨铸铁曲轴超声波探伤

TB 2046-1989机车新制轮箍超声波探伤方法

TB 2049-1989机车车辆车轴厂、段修超声波探伤标准试块

TB/T1618-2001机车车辆车轴超声波检验

TB/T 1659-1985内燃机车柴油机钢背铝基合金双金属轴瓦超声波探伤

TB/T2327-1992高锰钢辙叉超声波探伤方法

TB/T2340-2000多通道A型显示钢轨超声波探伤仪技术条件

TB/T 2452.1-1993整体薄壁球铁活塞无损探伤球铁活塞超声波探伤

TB/T2494.1-1994轨道车辆车轴探伤方法新制车轴超声波探伤

TB/T2494.2-1994轨道车辆车轴探伤方法在役车轴超声波探伤

TB/T2634-2000钢轨超声波探伤探头技术条件

TB/T2658.9-1995工务作业标准 钢轨超声波探伤作业

TB/T 2882-1998车轮超声波探伤技术条件

TB/T 2452.1-1993整体薄壁球铁活塞无损探伤球铁活塞超声波探伤

TB/T 2959-1999滑动轴承金属多层滑动轴承粘结层的超声波无损检验

TB/T2995-2000铁道车轮和轮箍超声波检验

TB/T 3078-2003铁道车辆高磷闸瓦超声波检验

HB/Z33-1998变形高温合金棒材超声波检验

HB/Z34-1998变形高温合金园并及盘件超声波检验

HB/Z35-1982不锈钢和高强度结构钢棒材超声检验说明书

HB/Z36-1982变形钛合金棒材超声波检验说明书

HB/Z37-1982变形钛合金园并及盘件超声波检验说明书

HB/Z59-1997超声波检验

HB/Z 74-1983航空铝合金锻件超声波检验说明书

HB/Z75-1983航空用小直径薄壁无缝钢管超声波检验说明书

HB/Z 76-1983结构钢和不锈钢航空锻件超声检验说明书

HB/Z 5141-19803Cr3Mo3VNb热作模具钢坯超声波探伤

HB 5141-19803Cr3Mo3VNb热作模具钢坯超声波探伤

HB 5169-1981铂铱25合金板材超声波探伤方法

HB5265-1983航空发动机TC11钛合金压气机盘用并(环)坯及锻件超声波检验说明书

HB5266-1983航空发动机TC11钛合金压气机盘用并(环)坯及锻件超声波检验验收标准

HB 5358.1-1986航空制件超声波检验质量控制标准(NDT,90-6)

HB6108-1986金属蜂窝胶接结构声谐振法检测

HB6107-1986金属蜂窝胶接结构声阻法检测

HB5460-1990蜂窝构件超声波穿透C 扫描检测方法

HB 5461-1990金属蜂窝胶接结构标准样块

MH/T3002.4-1997航空器无损检测 超声检验

YB 943-78锅炉用高压无缝钢管超声波检验方法

YB 950-80专用TC4钛合金锻制并材超声波探伤方法

YB3209-1982锻钢冷轧工作辊超声波探伤方法

YB 4082-1992 钢管自动超声探伤系统综合性能测试方法

YB 4094-1993 炮弹用方钢(坯)超声波探伤方法

YB/T 036.10-1992冶金设备制造通用技术条件锻钢件超声波探伤方法

YB/T144-1998超声探伤信号幅度误差测量方法

YB/T 145-1998钢管探伤对比试样人工缺陷尺寸测量方法

YB/T 898-77钢材低倍缺陷超声波检验方法

YB/T951-2003钢轨超声波探伤方法

YB/T4082-2000钢管自动超声探伤系统综合性能测试方法

YB/T4094-1993炮弹用方钢(坯)超声波探伤方法

JB 1151-1973高压无缝钢管超声波探伤

JB 2674-80合金钢锻制模块技术条件

JB 3963-1985压力容器锻件超声波探伤(NDT,87-8)(已废止)

JB 4010-1985汽轮发电机用钢制护环 超声探伤方法

JB 4125-85超声波检验用铝合金参考试块的制造和控制

JB 4126-85超声波检验用钢质参考试块的制造和控制

JB/T 1152-1981锅炉和钢制压力容器对接焊缝超声波探伤(NDT,82-2)

JB/T 3144-1982锅炉大口径管座角焊缝超声波探伤

JB/T1582-1996汽轮机叶轮锻件超声探伤方法(NDT,86-12)

JB/T1581-1996汽轮机、汽轮发电机转子和主轴锻件超声波探伤方法

JB/T4010-1985汽轮发电机用钢制护环超声探伤方法(NDT,86-12)

JB/T4009-1999接触式超声纵波直射探伤方法 代替JB4009-85

JB/T4008-1999液浸式超声纵波直射探伤方法 代替JB4008-85

JB/T 4730.3-2005承压设备无损检测 第3部分 超声检测 取代JB4730-1994

JB/T5093-1991内燃机摩擦焊气门超声波探伤技术条件

JB/T5439-1991压缩机球墨铸铁零件的超声波探伤

JB/T5440-1991压缩机锻钢零件的超声波探伤

JB/T5441-1991压缩机铸钢零件的超声波探伤

JB/T5754-1991单通道声发射检测仪技术条件

JB/T6903-1993阀门锻钢件超声波检查方法

JB/T6916-1993在役高压气瓶声发射检测和评定方法

JB/T6979-1993大中型钢质锻制模块(超声波和夹杂物)质量分级

JB/T7367.1-2000圆柱螺旋压缩弹簧超声波探伤方法

JB/T7522-2004无损检测 材料超声速度测量方法(代替JB/T7522—1994)

JB/T7524-1994建筑钢结构焊缝超声波探伤

JB/T 7602-1994卧式内燃锅炉T 形接头超声波探伤

JB/T7667-1995在役压力容器声发射检测评定方法

JB/T 7913-1995超声波检验用钢制对比试块的制作与校验方法旧标准GB/TH11259-89(2000年作废)

JB/T8283-1999声发射检测仪性能测试方法 代替JB/T8283-95

JB/T8428-1996校正钢焊缝超声波检测仪器用标准试块

JB/T8467-1996锻钢件超声波探伤方法

JB/T8931-1999堆焊层超声波探伤方法

JB/T9020-1999大型锻造曲轴超声波检验

JB/T9212-1999常压钢质油罐焊缝超声波探伤 代替ZBE98001-88

JB/T9214-1999A型脉冲反射式超声探伤系统工作性能测试方法 代替ZBJ04001-87

JB/T9219-1999球墨铸铁超声声速测定方法

JB/T9377-1999超声硬度计技术条件

JB/T9630.2-1999汽轮机铸钢件 超声波探伤及质量分级方法

JB/T9674-1999超声波探测瓷件内部缺陷

JB/T10061-1999A型脉冲反射式超声探伤仪通用技术条件 代替ZBY230-84

JB/T10062-1999超声探伤仪用探头性能测试方法 代替ZBY231-84

JB/T10063-1999超声探伤用1号标准试块技术条件 代替ZBY232-84

JB/T10326-2002在役发电机护环超声波检验技术标准

JB/T 53070-1993加氢反应器焊缝超声波探伤

JB/T 53071-1993加氢反应器堆焊层的超声波探伤

JB/ZQ 6141-1986超声波检验用钢质对比试块的制作和控制

JB/ZQ 6142-1986超声波检验用铝合金对比试块的制作和控制

JB/ZQ 6159-1985奥氏体钢锻件的超声波检验方法

JB/ZQ 6104-1984汽轮机和发电机转子锻件超声波探伤方法

JB/ZQ 6109-1984铸钢件超声波检测方法

JB/ZQ 6112-1984汽轮发电机用钢质护环的超声波检验方法

JB/Z 262-86超声波探测瓷件内部缺陷(已被JB/T9674-1999代替)

JB/Z 265-86球墨铸铁超声声速测定方法(已被JB/T9219-1999代替)

JG/T3034.1-1996焊接球节点钢网架焊缝超声波探伤及质量分级法

JG/T3034.2-1996螺栓球节点钢网架焊缝超声波探伤及质量分级法(JG--建筑工业行业标准)[NDT2000-12]

JGJ 106-203建筑基桩检测技术规范 声波透射法

JG/T 5004-1992混凝土超声波检测仪

DL 505-1992汽轮机焊接转子超声波探伤规程

DL/T 5048-95电站建设施工及验收技术规范(管道焊接接头超声波检验篇)

DL/T 505-1992汽轮机焊接转子超声波探伤规程

DL/T 542-1994钢熔化焊T形接头角焊缝超声波检验方法和质量分级

DL/T 694-1999高温紧固螺栓超声波检验技术导则

DL/T 714-2000汽轮机叶片超声波检验技术导则

DL/T 718-2000火力发电厂铸造三通、弯头超声波探伤方法

DL/T820-2002管道焊接接头超声波检验技术规程

JJG(航天)53-1988 国家计量检定规程-A型脉冲反射式超声波探伤仪检定规程

JJG(铁道)130-2003 国家计量检定规程-钢轨超声波探伤仪检定规程

JJG(铁道)156-1995 国家计量检定规程-超声波探头检定规程(试行)

JJG(铁道)157-2004 国家计量检定规程-钢轨探伤仪检定仪检定规程

JJG 645-1990 国家计量检定规程-三型钢轨探伤仪检定规程

JJG(豫)107-1999 国家计量检定规程-非金属超声波检测仪检定规程

JJG 403-1986 国家计量检定规程-超声波测厚仪检定规程

JJG 746-2004 国家计量检定规程-超声探伤仪检定规程 代替JJG746-1991

JJG(辽)51-2001 国家计量检定规程-不解体探伤仪检定规程

SY4065-1993石油天然气钢制管道对接焊缝超声波探伤及质量分级

SY 5135-1986SSF 79超深井声波测井仪

SY/T5446-1992油井管无损检测方法 钻杆焊缝超声波探伤

SY/T5447-1992油井管无损检测方法 超声测厚

SY/T 0327-2003石油天然气钢质管道对接环焊缝全自动超声波检测

SY/T 6423.2-1999石油天然气工业 承压钢管无损检测方法电阻焊和感应焊钢管焊缝纵向缺欠的超声波检测

SY/T 6423.3-1999石油天然气工业承压钢管无损检测方法埋弧焊钢管焊缝纵向和/或横向缺欠的超声波检测

SY/T 6423.4-1999石油天然气工业 承压钢管无损检测方法焊接钢管焊缝附近分层缺欠的超声波检测

SY/T 6423.5-1999石油天然气工业 承压钢管无损检测方法焊接钢管制造用钢带/钢板分层缺欠的超声波检测

SY/T 6423.6-1999石油天然气工业 承压钢管无损检测方法无缝和焊接(埋弧焊除外)钢管分层缺欠的超声波检测

SY/T 6423.7-1999石油天然气工业 承压钢管无损检测方法无缝和焊接钢管管端分层缺欠的超声波检测

SY/T 10005-1996海上结构建造的超声检验推荐作法和超声技师资格的考试指南

EJ/T 606-1991压水堆核电厂反应堆压力容器焊缝超声波在役检查

EJ/T 958-1995核用屏蔽灰铁铸件超声纵波探伤方法与验收准则

EJ/T 195-1988焊缝超声波探伤规程与验收标准

EJ/T 768-1993核级容器堆焊层超声波探伤方法与探伤结果分级

EJ/T 835-1994核级容器管座角焊缝超声探伤方法和验收准则

HG/T3175-2002尿素高压设备制造检验方法不锈钢带极自动堆焊层超声波检测

WCGJ 040602-1994燃油锅炉填角焊缝超声波探伤标准

CECS21:2000超声法检测混凝土缺陷技术规程(中国建筑科学研究院结构所)

CECS02:1988超声-回弹综合法检测混凝土抗压强度规程

HJ/T 15-1996超声波明渠污水流量计

YS/T 585-2006铜及铜合金板材超声波探伤方法

超声波检测国家标准/行业标准台湾标准:

CNS 3712 Z8012-74金属材料之超音波探伤试验法

CNS 4120 Z7051-87超音波探测用G型校正标准试块

CNS 4121 Z7052-87超音波探测钢板用N1型校正标准试块

CNS 4122 Z7053-87超音波探测用A1型校正标准试块

CNS 4123 Z7054-87超音波探测用A2型校正标准试块

CNS 4124 Z7055-87超音波探测用A3型校正标准试块

CNS 11051 Z8052-85脉冲反射式超音波检测法通则

CNS 11224 Z8053-85脉冲反射式超音波检测仪系统评鉴

CNS 11399 Z8061-85压力容器用钢板直束法超音波检验法

CNS 11401 Z8063-85钢对接焊道之超音波检验法

CNS 12618 Z8075-89钢结构熔接道超音波检测法

CNS 12622 Z8079-89大型锻钢轴件超音波检测法

CNS 12668 Z8088-90钢熔接缝超音波探伤试验法及试验结果之等级分类

CNS 12675 Z8094-90铝合金熔接缝超音波探伤试验技术检定之试验法

CNS 12845 Z8099-87结构用钢板超音波直束检测法

CNS 13302 A3341-82钢筋混凝土用竹节钢筋瓦斯压接部超音波探伤试验法

CNS 13342 Z8126-83非破坏检测词汇(超音波检测名词)

CNS 13403 Z8127-83无缝及电阻焊钢管超音波检测法

CNS 13404 Z8128-83电弧焊钢管超音波检测法

CNS 14135 Z8135-87金属材料超音波测厚法

CNS 14136 Z8136-87锻钢品超音波检测法

上一篇:参观抗日纪念馆的意义下一篇:木心作文素材运用

本站热搜

    相关推荐