拜耳法氧化铝生产中的有机物

2024-04-22

拜耳法氧化铝生产中的有机物(精选5篇)

篇1:拜耳法氧化铝生产中的有机物

拜耳法氧化铝生产中的有机物

有机物的积累和危害是大多数拜耳法氧化铝厂必须面对的问题。溶液中有机物含量较高时,其所产生的负面影响往往是多方面的,工厂的产量、产品质量及其它技术经济指标将因此受到严重影响。文献[1]报道,仅澳大利亚每年由于有机物造成的氧化铝产量损失就达130万吨。某些有机物的存在使生产砂状氧化铝变得困难。因此,有机物问题成为氧化铝生产中的主要研究方向之一。国外就拜耳法生产中有机物的行为、对生产过程的影响及其排除方法等进行了长期的、大量的研究,取得了重要进展。

我国大多数氧化铝厂采用混联法或烧结法生产,有机物的影响很小或完全不存在。平果铝业公司氧化铝厂是我国目前唯一的采用纯拜耳法生产的工厂,投产较晚,原矿中的有机物含量也较低,有机物的影响需继续观察和研究。我国在“九五”期间进行的中、低品位铝土矿选矿研究取得了重大的进展,但除原矿中部分有机物进入精矿外,还有一定数量的浮选药剂被带入精矿,这种浮选药剂在拜耳法生产中的行为及其影响如何,尚未见诸文献报道,非常值得重视。

一、拜耳法溶液中的有机物

拜耳法溶液中的有机物主要来自铝土矿,絮凝剂、消泡剂、脱水剂等添加剂也会带入少量有机物。但据文献报道,其数量和影响均较小。铝土矿中的有机碳含量通常为0.1-0.3%,但亦可低至0.03%或高达0.6%(某些地表矿)。热带铝土矿中有机碳含量较高,一般为0.2~0.4%,而一水硬铝石型铝土矿中的含 1 量则较低,通常为0.1%。南美、非洲、澳大利亚铝土矿中的有机物含量较高,而欧洲、俄罗斯和中国的大多数铝土矿有机物含量较低。

铝土矿中的有机物分为腐殖质和沥青两种[2]。腐殖质主要成分为木质素转变的产物—腐殖酸。腐殖质成分复杂,其平均元素组成为,%:58%C,36%O2,4%H2,2%N2及其它杂质。腐殖质易溶于碱液。沥青中的C和H含量比腐殖质中的高,实际上不溶于碱液。据文献[3],铝土矿高压溶出时,腐殖质几乎全部溶入溶液,而沥青的溶出率不高于10%,在赤泥浆液稀释及沉降分离过程中,又全部析出进入赤泥。Jose G.Pulperiro等[4]报道,在铝土矿溶出条件下,60-90%的腐殖质溶解于强苛性碱溶液中,生成腐殖酸钠。不溶解的腐殖质是由于被铝土矿中不溶的无机物结合或吸附。

虽然原矿中有机物的含量一般不高,在铝土矿溶出时也非全部进入溶液,但由于种分母液与洗液是循环的,拜耳法流程中的有机物会逐渐积累,直至达到进出平衡为止。溶液中有机物的平衡浓度主要取决于铝土矿中有机物的含量及其组成,也与溶出条件等有关。一般情况下,拜耳溶液中有机碳含量为7-15g/L,在极端情况下可达25g/L[5]。文献[6]报道,处理热带铝土矿的德国施塔德氧化铝厂的溶出液中,有机碳含量甚至高达34g/L。

Β.Α.Зинченко[7]早期所作的乌拉尔氧化铝厂有机物的平衡表明:随铝土矿(一水硬铝石型)进入流程的有机物占全部有机物的88.5%,其余11.5%来自面粉(当时用作赤泥絮凝剂),而赤泥排走的有机物占全部有机物总量的83%,仅有17%进入溶液。进入溶液中的有机物主要随苏打结晶(据有关资料,苏打结晶中有机碳含量达0.5~1.5%)和氢氧化铝排出,二者分别占原矿中有机物总量的5.7%和4.5%,按对进入溶液中的有机物总量计算,则分别占33.5%和26.5%,其余则随苏打苛化后的石灰渣、蒸发母液等排出或循环。

文献[4]列举了铝土矿中的有机碳在浸出过程中降解产物的一组典型数据:其中成为碳酸钠的占15%,草酸钠10%,溶解的有机物钠盐(TOC)占55%,20%的有机碳未溶出而进入赤泥。

S.C.Grocott[8]测定了澳大利亚Darling Range铝土矿中总碳在浸出过程中(150C,实验室条件下)的平衡。该矿中有机碳占总碳量的80%,20%为无机碳。浸出时总碳的40%进入赤泥,其余60%中变成草酸钠、非草酸钠形态有机物以及碳酸钠形态的碳分别占10%,40%和10%。

文献中还报道了一些国外拜耳法厂溶液中有机物的含量、组成及性质等情况,因各自处理的铝土矿及生产工艺不同而存在较大差异。

G.Lever,J.C.Guthrie,K.Yamada,P.T.The,N.Brown,C.Sato,K.Solymar,S.C.Grocett,Gilbert Bouzat及Э.Е.Мовсесов等许多学者对铝土矿中有机物在拜耳法生产中的行为、存在形态、溶解度、分子量及各种有机物的含量等进行了广泛深入的研究[9-19]。采用了诸如气相色谱法(GC)、凝胶渗透色谱法(GPC)、气相色谱/质谱法(GC/MS)、红外光谱以及根据溶液中各有关离子形态的热力学数据建立草酸钠与三水铝石在拜耳法溶液中溶解度(种分条件下)的物理化学模型等现代检测手段和实验方法。

研究表明,溶出过程中有机碳的溶解量主要取决于铝土矿种原始腐殖质的化学成分。在溶出过程中,腐殖酸钠即开始水解并缓慢地氧化,降解为中间的和稳定的化合物,其降解程度又取决于浸出温度以及铝土矿中氧化剂和催化剂的存在。这个过程是高分子量有机物逐渐降解为中等分子量有机物,再转变为低分子量有机物,最后的稳定产物为草酸钠和碳酸钠。在低温溶出条件下(130-150C),大多数铝土矿中的有机碳约有5%转变为草酸钠,而采用高温溶出条件时(220-250C),生成的草酸钠约增加一倍。草酸钠是最重要的一种 3 降解产物,它是在拜耳法条件下唯一的具有低溶解度的稳定产物,能对生产过程造成严重负面影响(见下文)。在拜耳法溶液中存在不同类型的、数以千计的有机物。为了表征溶液中的这些有机物的含量水平,文献中常以总有机碳(TOC)数量来描述。所以拜耳法溶液中有机物的组成相当复杂,性质差异也大,与原矿中的有机物化学成分已大不相同。

Lever将拜耳法溶液中的有机物分为三类(以下提到的各种有机酸,实际上均以其钠盐形态存在于拜耳法溶液中):

1)腐殖酸

包括新从铝土矿中溶出的高分子有机物及其初始降解产物,分子量大于500;

2)中等分子量降解产物,主要为苯羧酸和酚酸; 3)低分子量降解产物。

Lever用于研究的两种溶液取自两个以牙买加铝土矿为原料的拜耳法厂,两厂溶出温度分别为135C和240C,溶液中有机碳含量分别为8.5g/L和15g/L。研究表明,溶液中有机物包括上述三类,分子量变化范围约为50-10000。溶液中大约一半的有机碳是以低分子量有机物形态存在,其余一半分属中、高分子量有机物,且二者有机碳含量相近。

Lever的研究表明,上述两种溶液中高分子有机物的绝大部分(88-89%)的表观分子量为1000-5000,低温(135C)溶出液中的高分子有机物按有机碳含量计为2.1g/L,而高温溶出液为3.6g/L,大致分别相当于两种溶液中存在有苯五羧酸等18种中等分子量的有机物,并测定了这些有机物在两种溶液中各自的含量;此外,还认定了在低温溶出液中存在草酸、甲酸、醋酸、乳酸及琥珀酸等五种低分子量降解产物,并测定了其各自的含量。

J.C.Guthric等研究了两种拜耳法厂的种分母液中的有机物,测定了溶液 4 中的总有机碳含量,不同分子量的有机物的含量及其所占比例,并确定溶液中存在苯五羧酸等35种有机化合物。

二、有机物对拜耳法生产的影响

分析有关的文献资料及国外一些拜耳法厂的生产实践,我们可以取得如下认识:

1)当流程中某些有机物积累到一定含量后,其对生产的影响是很大的,且涉及到拜耳法生产的大多数工序;除极个别情况外,它的影响都是负面的;

2)溶液中有机物种类繁多、数以千计,组成复杂、性质各异,对生产的影响及影响程度也不相同。只有相对少数的有机物造成有害影响。高、中分子量的有机物以及低分子量中的草酸钠产生不同的负面影响,而其它低分子量有机物的不良影响要小得多;

3)溶液中的有机物改变溶液的物理性质:溶液比重、粘度、沸点、比热均增加,界面张力降低,这些对拜耳法生产都会造成一定的负面影响; 4)某些有机物含量较高时,拜耳法湿法工序(包括原矿浆储存、赤泥沉降分离、种分及母液蒸发等工序),由于溶液或浆液中往往产生大量泡沫而减小设备容积并造成溶液损失。文献[5,16]报道,产生泡沫的原因是溶液中存在较多的腐殖酸盐等高、中分子量有机物使溶液的界面张力降低之故[20];

5)在个别特定情况下,某些有机物对一水硬铝石型铝土矿溶出有良好作用,但有的有机物则使氧化铝溶出率降低。有机物对分解的影响最大,当溶液中某些有机物积累到一定程度后,种分产出率和产品质量(粒 5 度、强度及杂质含量)都将受到严重影响。有机物对种分母液蒸发以及苏打结晶长大及分离也有负面影响。某些有机物在换热设备表面析出形成结疤,影响传热并降低设备产能;

6)由于有机物与碱反应生成各种有机钠盐,造成碱的损失。

下面扼要介绍有机物对拜耳法某些主要生产工序的影响。A. 对一水硬铝石型铝土矿溶出及赤泥分离洗涤的影响

М.Н.Смирнов详细研究了某些有机物对乌拉尔一水硬铝石型铝土矿(A/S 9.08,TiO22.2%,CaO0.8%)铝土矿溶出过程的影响,溶出温度为205C,其结论为:

1)某些有机物能达到大大提高一水硬铝石型铝土矿的Al2O3溶出率,用工厂循环母液溶出与用配制的纯母液溶出相比,前者的Al2O3溶出率要高出许多;

2)不是所有的有机物都能加速一水硬铝石型铝土矿的溶出,只有含有醇基的有机物才会有此作用。含醇基的有机物本身对溶出并无明显影响,而是因为它使CaO得以活化,即生成了比CaO溶解度高得多的醇酸钙之故。因此,当存在这种有机物时,石灰添加量可以减少。

Деревянкин[23]的研究证实了Смирнов的上述结论。

3)含醇基的有机物对一水硬铝石型铝土矿溶出的强化作用只是当CaO添加量在3-4%以下时才很显著,CaO添加过量时,有机物的这种作用便不明显了;

4)溶于苯而不溶于碱的有机物(主要是沥青)可降低铝土矿的溶出率,因其包裹在铝土矿颗粒表面,阻碍碱液向内渗透。当矿石中沥青含量 6 较高时,需要增加石灰添加量。

溶液中有机物对拜耳法赤泥分离洗涤过程不利,随着有机物含量的提高,溶液粘度增加,赤泥沉降速度降低,沉降槽溢流浮游物增多[22]。S.Ostap指出,当采用合成高分子絮凝剂时,这种影响便不明显。如上所述,腐殖酸钠等高分子有机物含量高时,赤泥分离洗涤系统可产生大量泡沫。

B.对晶种分解的影响

许多研究以及拜耳法厂的生产实践表明,晶种分解是受有机物影响最为严重的工序。早在30年代,Волъф等人就发现有机物可降低晶种分解速度。经过许多学者多年来的研究,关于有机物对晶种分解影响的认识已大大深化。

有机物对晶种分解的影响可概括为如下几个方面:

1)2)降低分解速度和氧化铝产出率;

使氢氧化铝粒度变细、易碎,在过滤特别是煅烧过程中易碎裂,从而成为拜耳法厂生产砂状氧化铝的主要困难之一; 3)4)5)6)7)增加产品中的杂质特别是Na2O的含量; 不利于分解产物氢氧化铝的沉降、过滤和分级; 种分槽内产生大量泡沫;

溶液带颜色直至黑褐色,分解产物氢氧化铝的白度降低; 加速种分槽内氢氧化铝结疤。

种分原液中的有机物达到一定含量后才对分解过程产生明显危害。国外有的文献中称这一对种分过程造成负面影响的最低有机物含量为“危害临界值”。不同的文献中报道的这一临界值有所不同[24]。如Волъф提出的为1%(以耗氧 7 量占溶液中Na2OT的百分数计),法国的资料为0.6%,而А.И.Лайнер等人则认为是1.77%,等等。很明显,这一数值不同的原因在于各研究者所用溶液的有机物的存在形态以及分解原液成分、作业条件不同。不同类型的有机物以及分解条件的不同对种分造成的影响差异很大。高分子腐殖酸钠降解的稳定产物,被认为是对晶种分解危害最大的杂质之一。溶解于溶液中的草酸钠被认为对于拜耳法生产的任何方面都没有影响,只是超过溶解度后才给生产造成严重影响[1, 12]。一些学者对草酸钠在铝酸钠溶液中的溶解度和行为进行了研究。

Brown等人的研究表明,拜耳法溶液里高分子有机物的众多降解产物中,草酸钠是唯一能积累到超过其在溶液中溶解度的化合物,它可以在生产流程中温度最低的地方结晶析出。Brown研究了拜恩提思兰氧化铝厂种分母液中草酸钠平衡溶解度与溶液温度及浓度之间的关系。草酸钠的主要排出点为氢氧化铝产品中的固体草酸钠。细粒氢氧化铝中的草酸钠含量高于粗粒部分。焙烧时,氢氧化铝中的草酸钠结晶在~250C时分解,使氧化铝碎裂,颗粒变细,同时液增加了产品中的钠含量。

P.J.The 等的研究表明,拜耳法溶液中草酸钠的溶解度与温度成正比,与全碱浓度成反比。在工业溶液中,由于其它离子的存在,草酸钠的表观溶解度要比在纯溶液中高出很多。

The 确定了工业铝酸钠溶液中草酸钠表观溶解度与温度、全碱浓度及有机碳浓度之间的关系。

B.Gryra等指出,拜耳法母液中Na2C2O4的过饱和度通常超过100%。一般认为,溶液中含有高分子量的腐殖酸盐有机物,使草酸钠的溶解度提高。

以往文献中报道的草酸钠溶解度模型均为由实验结果建立的经验模型,其应用有局限性。Gilbert ouzat等根据溶液中相关离子的热力学数据,建立了在 8 种分作业条件下草酸钠和三水铝石(氢氧化铝)溶解度的物理化学模型,可以计算在广阔的Na2Ok及杂质(Na2SO4、Na2CO3、NaCl)浓度范围内,计算铝酸钠溶液中草酸钠和Al2O3的平衡浓度。计算结果与实验结果吻合良好。

如上所述,草酸钠在铝酸钠溶液中的溶解度取决于很多因素。一般情况下,在种分时,当溶液中Na2C2O4超过6g/L时,即可能开始与氢氧化铝共同析出。

草酸钠对种分最主要的影响是生成细粒子氢氧化铝,其机理[1,25]一是由于过饱和的草酸钠以细小的针状结晶析出,氢氧化铝在其上产生二次晶核;二是由于降低了附聚效果,固体草酸钠(也包括溶解的有机物)能结合于长大的氢氧化铝晶种中,从而增加碱含量。草酸钠在~250C分解,既减小了煅烧产品的粒度,也增加了氧化铝产品中的碱含量,这些对铝电解过程均很不利。草酸钠附着在氢氧化铝上影响后者的分级、晶种制备。由于草酸钠的共同析出,加速了种分槽内的氢氧化铝结疤的生成速度,清理核维护工作量增加。

如上所述,有的文献指出,溶解于溶液中的草酸钠(溶解度以下)对种分并无危害。Satapathy[26]也认为,溶液中的草酸盐含量很少时无害于氢氧化铝质量,以草酸盐形态存在的碳含量只有高于溶液中Na2Ok的0.5%时才影响分解产品质量。但很多拜耳法厂深受草酸钠的影响。

乌克兰处理进口红土性三水铝石矿的尼古拉也夫拜耳法氧化铝厂,自1980年投产后的短短几年内,溶液中有机物(特别是草酸钠)含量迅速增加,致使氧化铝产品粒度大大变细,过滤作业困难,种分分解率下降[27]。

Β.Γ.Τесля[28]报道了尼古拉也夫氧化铝厂投产后5年内溶液中有机碳和碳酸钠的积累情况,种分分解率及晶种和分解产品中细粒子(-45μm)含量与溶液中有机碳浓度的关系,并详细研究了上述杂质对种分过程的影响。作者认为,为了减轻有机杂质对氧化铝生产指标的有害影响,首先必须尽可能实现将 9 草酸钠从循环母液中分离出来。

大多数关于草酸钠杂质影响的研究均限于其溶解度极限以下。Roberto Cacalo等[25]研究了在草酸钠溶解度以下时,其对种分产出率、产品质量及分解动力学的影响。

Cacalo等种分试验所用溶液为合成的纯铝酸钠溶液,Al2O3/Na2CO3比为0.70,分解温度为70℃,添加的草酸钠最高达5g/l。作者研究了草酸钠含量及晶种等因素对产出率等的影响。结果表明,草酸钠(在溶解度以下时)显著提高Al2O3产出率。根据作者的研究是由于界面张力降低,分解活化能降低,而细颗粒的成核与附聚都有所加速,颗粒粒度分布及特点均有变化。作者测得的分解活化能(△Ec)为74kJ/mol(对纯溶液),这与文献报道的数据相符。对含5g/l草酸钠的溶液的分解活化能为65kJ/mol,较上述数值低12%。Cacalo等采用激光散射技术(Laser light scattering techniques)和扫描电镜研究了草酸钠对种分产物粒度分布和结构特点的影响。

除高分子有机物降解产物草酸钠外,拜耳法溶液中还有不少溶解度较高而对种分造成负面影响的有机物。

A.Lectard等[29]用欧洲、非洲及澳大利亚等地铝土矿高温溶出后的工业溶液进行种分实验,以确定氧化铝产出率与原液苛性碱浓度、有机物含量之间的关系,建立了相应的经验模型。实验结果表明,为了获得高的氧化铝产出率,溶液的净化是必要的。

B.Gryra等认为[5],高分子量腐殖酸化合物由于提高氧化铝的溶解度而增加了溶液的稳定性,同时也氢氧化铝晶种失去活性(Deactivation)。

高分子腐殖酸钠遏制草酸钠的排除,并使铝酸钠溶液呈黑褐色,氢氧化铝 10 也带色,且是造成溶液中产生泡沫的根源。

P.J.The等研究了杂质对拜耳法溶液中钙含量的影响[30],研究表明,分解原液中约90%的钙含量将进入分解产物氢氧化铝中。当原液中碳酸钠浓度一定时,拜耳法溶液中的钙含量受有机物含量的影响很大。有机物与碳酸钠还有一种叠加效应,使溶液中钙的含量进一步提高。

并非所有类型的有机物都具有上述同样有害影响。在低温溶出(143℃)下,腐植质及带5个羟基的有机物能提高CaO溶解度。葡萄酸钠(Sodium gluconate)的影响最大。提高溶出温度至235℃,除腐殖酸钠外,所有杂质均使氧化钙的溶解度降低。这是因为钙化合物的溶解度是随温度的升高而降低的,但在235℃溶出温度下,添加3g/l腐植质,溶液中CaO从0.008g/l提高到0.038g/l,这可能是由于钙离子与腐殖质降解产物间发生反应而引起的。这种降解产物看来是随着温度的提高而增加的,特别是溶液中的碳酸钠浓度较高时。

文献[31]中还报道了有些有机物使种分产物中的碱含量增加,其中有的是吸附于晶种表面(如gluconate),有的是成为结合碱进入氢氧化铝中。

И.Д.Бибик等[32]研究了有机物对种分的影响。作者从帕夫洛达尔铝厂的铝酸钠溶液中分离出6种有机物—腐殖酸、富里酸、石炭酸、酚酸、中性化合物、高分子树脂化合物,用与帕厂工业溶液化学成分相当的合成溶液进行种分实验。结果表明,高分子树脂化合物、酚酸及中性化合物对分解无影响,其它有机物则降低分解率,石炭酸的负面影响最大,当其含量为~2.5g/l时,分解率可降低10%。作者认为有机物吸附于晶种表面,阻碍了氢氧化铝晶种与液相之间的接触,因而阻碍其长大。关于有机物引起溶液产生泡沫的实验表明,腐 11 植酸、富里酸及石炭酸导致溶液中产生泡沫,而其它三种则否。产生大量泡沫的原因作者也认为是气泡(空气)与溶液界面上表面张力大大降低之故。

P.J.The的研究[33]表明,往人工配制的铝酸钠溶液中,按0.8%有机碳添加异糖精葡萄糖酯(Glucoisosaccharinate),与不添加这种有机物的分解实验相比,氧化铝产出率降低了17%(由69.4g降至57.1g),同时分解产物中<20um的细粒子由22%增加到45%。如添加同等数量的上述有机物于铝土矿高压溶出的溶液中,种分氧化铝产出率降低18%,但对分解产物粒度的影响不如合成溶液那样显著。

The对葡萄糖同质异构盐的有害影响进行了解释。Abdolmohecmmad

Alamdari[34]

醇(Mannitol)[CH2-(CHOH)4-CH2OH]作为一个典型的羟基有机物以研究拜耳法溶液中有机物对种分的遏制作用。合成的纯种分原液含Al2O3120g/l,分子比Na2O/Al2O3=1.5,用蒸馏水调整其浓度。在恒温(60℃)下分解。采用不含有机物的高纯氢氧化铝做晶种(60g/l),其平均粒度约40um,几何比表面约0.2m2/g,使用纯晶种是为了避免颗粒磨损。种分过程中产物的粒度分布采用库尔特分析仪(Coulter Multisizer Zone analyser)测定,用电镜研究其颗粒结构,对比纯溶液和添加不同数量甘露糖醇在种分过程中的晶种长大和成核速率,以确定其抑制种分过程的机理。

Alamdari的研究结果表明,甘露糖醇能够大大地抑制氢氧化铝的析出,其添加量少到20mg/g晶种即足以使氢氧化铝晶种约90%的活性点“中毒”(poisoning)。甘露糖醇分子吸附于晶种的活性点上,阻碍了铝酸根离子向这些活性点扩散。种分的机理包括铝酸根离子的聚合形成晶核或铝酸根离子扩散 12 至晶种表面,通过化学反应而结合到晶格中(grouth)。甘露糖醇的作用机理在于其同时降低成核和长大速率。其量越多,影响越大。

John F.Coyne等[31]研究了羟基有机物在氢氧化铝晶体上的吸附。作者研究了一系列脂肪族羟基化合物对氢氧化铝的吸附以及这些化合物对种分的影响。

采用配制的纯铝酸钠溶液,所用羟基有机物均为分析纯试剂。重点研究了葡萄酸钠(Sodium gluconate)、酒石酸钠和甘露糖醇(Mannitol)三种,同时也研究了其它一些羟基有机物。

配制的种分原液成分为:

TC=180g/l(以Na2CO3表示)TA=225g/l(以Na2CO3表示)A/TC比=0.6 试验中也使用了美铝Kwinana氧化铝厂的工业溶液。种分温度74℃,接料器转速350rpm,晶种量100g/l。

根据研究所获得的吸附等温线表明,吸附量最多的三种有机物为葡萄酸、甘露糖醇和酒石酸钠。有的有机物没有吸附。

吸附量最多的有机物也是P、J、The发现的抑制种分的那些化合物,而且也是Grocott和Rosenberg认为提高种分产品中碱含量的那些化合物。因此,这些研究结果表明,羟基有机物的吸附是抑制种分过程的机理。但是众所周知,这些化合物仅在PH 不大于10时才能与含铝离子络合。因此,作者对其机理进行了进一步研究。

Coyne等通过深入的试验研究和理论分析,得出如下结论:葡萄酸钠等羟基有机物吸附于氢氧化铝的量小,仅覆盖氢氧化铝总面积很小的一部分,但它 13 能显著抑制氢氧化铝晶体成长,从而降低分解速度和产出率。如添加相当于吸附氢氧化铝有效面积3.5%的葡萄酸钠,即可使种分几乎完全停止进行。通过实验证明,有机物杂质是通过吸附于占晶种表面很小一部分的活性生长点而起作用的。用拜耳法厂溶液进行的分解试验表明,工厂溶液中的有机物杂质只有一小部分(约<1%=是真正影响氢氧化铝晶体长大的。尽管作用工厂溶液中含有大量有机物(TOC=30g/l),当添加少量葡萄酸钠(0.2g/l)时,种分产出率即明显降低。无论是合成溶液还是工厂溶液,其影响都同样存在。

Coyne等的研究对于从理论上阐明拜耳法溶液中有机物是如何影响种分Al2O3产出率的具有较大意义。

C.对种分母液蒸发的影响

Ф.И.Цымъал 的研究[35]表明,有机物杂质可使蒸发母液中的Na2Oc浓度提高(有资料表明,工业溶液中的碳酸钠浓度一般比平衡浓度高出1.5~2.0%),亦即使溶液中Na2CO3过饱和,有机物含量越高,这一影响越明显。有机物提高溶液粘度,并使析出的一水碳酸钠粒度变细,造成沉降和过滤分离的困难。

三、有机物的排除方法

许多研究人员对氧化铝生产中有机物的排除进行了长期的、大量的研究,发表了很多研究报告和专利。从拜耳法生产流程中排除有机物的方法很多,这些方法可分为两类:一类是从溶液中将有机物排除,主要是通过母液煅烧、吸附、生成沉淀等方法除去;一类是部分或全部地将其破坏于溶液中,主要是通 14 过各种氧化方法将有机物部分或全部氧化为Na2CO3。这些方法可单独使用,也可以联合使用。在众多的方法中,只有少数已用于工业上,有些方法因为投资大、作业费用高难以采用,还有些方法处于不同规模的试验阶段。每种方法都有其优缺点。没有一种方法能够普遍适用于所有拜耳法厂,选择适当的排除方法要根据各厂的具体情况。各种方法所处理的有机物种类也有不同,有的主要用于除去草酸钠,有的则主要针对高分子有机物。有机物排除可以结合拜耳法溶出过程中进行,也可以从赤泥洗液、氢氧化铝洗液、种分母液或蒸发母液中排除。

溶液(或料浆)煅烧法

此法已在日本、加拿大、美国与匈牙利等国的某些拜耳法厂采用。50年代初,加拿大Arvida氧化铝厂即采用了这一方法[5]。使用初期,种分母液蒸发后即直接送往“煅烧炉”,导致全部苛性碱碳酸化,而后,曾采用母液与细粒氢氧化铝混合煅烧,显然这一方法有其缺点,最后使用磨细的铝土矿作为苛化剂,煅烧产物主要由铝酸钠、铁酸钠组成,必须浸出。浸出可在赤泥洗涤系统中进行。

日本某厂1979年开始用此法除有机物[36],用氢氧化铝与种分母液混合(保持Al2O3/Na2O分子比略高于1),经蒸发、干燥后,在1000℃煅烧1小时,使溶液中有机物盐分解,并与氧化铝反应生成固体铝酸钠,而后进行溶出。

文献[3]报道了对这一方法所作的改进,使设备生产能力大大提高。美铝(Alcoa)的Kwinana等氧化铝厂采用溶液煅烧温度为816~1093℃。M.A.Hollanders等对草酸钠与铝土矿混合物煅烧过程进行了详细研究[38]。拜耳法厂排除的草酸钠常常弃臵以致引起环境污染问题,同时也造成其中铝和钠的损失。为此,将其与铝土矿混合煅烧是避免上述缺点的一个途径。研究表 15 明,煅烧温度不能低于850℃,以保证生成铝酸钠的反应速度。900℃时氧化铝回收率最高。草酸钠在≥900℃下煅烧分解率≥96%(生成铝酸钠)。煅烧温度在1100℃时,由于生成β—Al2O3而使氧化铝回收率降低。

溶液煅烧法几乎可以完全破坏其中的有机物,同时也回收了有机钠盐中的钠几碳酸钠,也没有由于环境污染而需要处理的废渣,但是这一方法投资大,费用高[5]。因此所处理的液量受到限制,实际上其所处理的溶液仅约为工厂总液量的1%,因而工厂溶液中TOC的降低是缓慢的[39]。文献[4]还指出,该法的主要缺点除费用高外,还有操作困难,工作环境不好等问题,但这些现都已获得解决[40]。

结晶沉淀法

结晶沉淀法用于排除溶液中的草酸钠,有多种方案:如用石灰乳处理氢氧化铝洗液(或晶种洗液),使之生成草酸钙沉淀。采用高晶种比的拜耳法厂的氢氧化铝洗液中含有较多的有机物,其中大部分为草酸钠,可用蒸发浓缩的方法将其结晶析出。用石灰苛化赤泥洗液,也可生成不溶性草酸钙。种分母液经蒸发或不经蒸发而添加较大量的草酸钠晶种,均可使溶液中的草酸盐结晶析出,这一方法在国外某些拜耳法厂采用,如San Ciprian氧化铝厂采用蒸发结晶的方法,以控制溶液中杂质,主要是碳酸钠和草酸钠[41],从1982-1983年的统计数据看,每月排除的草酸钠达数十吨。添加少量的吸附剂(活性碳或阳离子多价螯和剂)于草酸钠过饱和的种分母液中,破坏草酸钠的过饱和状态,草酸钠即自动析出,用钡盐[42](如铝酸钡、氧化钡等)加于氢氧化铝洗液中,在40~70℃处理半小时,可除去溶液中的60~70%的草酸盐,此法也可除去SO42-、CO32-、PO42-及VO42-,效果好,但钡盐昂贵,BaO〃Al2O3回收工艺复杂,包括结晶液固分离及煅烧等工序。利用低沸点的有机溶剂,例 16 如醇类,能有效的控制拜耳法溶液中的草酸钠[12]。在所实验的醇类中,甲醇对降低拜耳法溶液中的草酸钠含量(降低其溶解度)最有效,乙醇次之,丁醇作用最小。但甲醇能和溶液完全混合,因此需要一个蒸馏过程以回收甲醇,循环利用。

J.A.Chartouni报道了加铝(Alcan)OURO Preto氧化铝厂草酸钠排除系统的改进情况[43]。改进的主要部分为使蒸发母液经过一个由预先获得的细粒草酸钠的床层以强化其接触,以利草酸钠结晶长大,使系统更为有效。

F.S.Williams与A.J.Perrotta的研究[44-46]表明层状双氢氧化物(layered double hydroxides)和活性炭具有从拜耳法溶液中排除有机物的能力,并从而导致草酸钠从所处理的溶液中析出过程的强化。他们所开发的这一强化草酸钠排除的工艺已工业化,称为普罗克斯法(Purox process)。氢氧化物复合物为Mg2Al(OH)7·nH2O(Hydrotalcite)、Mg2Al(OH)6(CO3)0.5·nH2O(Hydrotalcite)、Ca2Al(OH)7·3H2O(Hydrocalumite)、Ca2Al(OH)6(CO3)0.5·nH2O(Hydrocalumite)。这些复合物由相应的氧化物或氢氧化物在拜耳法溶液中反应生成。

作者进一步的研究表明,当使用两种或两种以上的吸附剂时,由于其协同效应,草酸钠的沉淀析出可以得到进一步强化。因为在工厂的草酸钠沉淀系统中,循环的草酸钠晶种随着时间的推移,由于积累了其它共沉淀的有机物而失效。加入多种吸附剂时,它们对于不同类型的有机物稳定剂将有不同的吸附能力,从而从溶液种排除更多的这些草酸钠稳定剂,恢复草酸钠晶种的活性。具体作法是将加有草酸钠晶种的苛性碱浓度低的溶液用两种或两种以上的吸附剂处理,以排除阻碍草酸钠沉淀的那些有机物,然后将处理后的晶种浆液与种分母液混合,在一定温度下使后者中的草酸钠结晶析出。试验表明,从活性炭、17 ESP(氢氧化铝电收尘收集的炉灰)、氧化钙和氧化镁中选择两种吸附剂是最为有效的,而出乎意料的是,活性炭与ESP炉灰两种吸附剂组合使用效果最好,虽然ESP炉灰单独使用对草酸钠的排除效果很小。

作者将上述强化草酸钠排除的工艺称为多功能普罗克斯法(Multi-functional Purox process).采用吸附剂和离子交换树脂处理

原则上可用活性炭、活性氧化铝、细粒氢氧化铝、不同镁化合物及离子交换树脂,对后两种方法的研究较多,其中用镁化合物排除有机物已经工业化。

文献中报道了用多种镁化合物净化种分蒸发母液中有机物的方法。这种方法之所以引起重视在于其易行和吸附剂回收的可能性。

德国[47]Ludwigshafen氧化铝厂将MgSO4·2H2O加入溶出过程中,在90℃以上水解产生的Mg(OH)2与溶液反应生成铝酸镁,新生成的铝酸镁对腐殖酸盐有很好的吸附能力。该厂从1974年使用该法后,生成明显改善,经济效益显著。据报道,溶液中SO42-未见升高,产品中MgO含量亦为增加。德国另外一个厂使用此法也收到了良好的效果,在一定条件下可使用价格较低的煅烧白云石,其附加优点是不带入其它阴离子。在溶出一水硬铝石矿时,白云石中的CaO可代替石灰添加剂,因此费用相应降低。

乌克兰的尼古拉也夫氧化铝厂蒸发母液中总有机物为18.8~24.2g/l,其中主要为高分子化合物(HMC)、羧酸(CA)及酚(H),而HMC对该厂溶液中有机物总量及溶液颜色均起着首要作用,如前所述,带颜色的有机物给拜耳法生产造成很多困难。溶出澳大利亚Darling Range铝土矿时,高分子有机物占进入溶液中全部有机物的一半以上。

Yury A.Zaytsev等对用镁化合物(氧化镁、氢氧化镁及铝酸镁等)排除“尼”厂及澳大利亚拜耳法蒸发母液中的有机物进行了研究[

48、49]。试验表明,镁化合物是种分母液中带颜色的有机物(COS)的有效吸附剂。吸附剂用量是决定COS吸附量的首要因素,而温度和时间对吸附效果的影响小。随吸附剂损失的氧化铝以使用氢氧化镁和铝酸镁为最小,起吸附效果也优于氧化镁,因而更适用于拜耳法。对“尼”厂蒸发母液而言,适宜的作业条件为:添加量(以MgO计)15~30g/l,处理时间30~60min,温度60~80℃。从母液中吸附的COS可达50~60g/l。

只有当镁化合物能够再生循环使用或者有很可靠的用途时,采用镁化合物排除拜耳法中的有机物才有可能。利用途径之一是用于生产镁铝尖晶石,热法处理(将吸附有机物后的吸附剂经干燥煅烧)是应用最广的恢复其吸附性能的方法。再生后得到的铝酸镁对吸附COS是很有效的。根据作者提出的蒸发母液净化与吸附剂再生工艺,1m3蒸发母液的镁化合物(以MgO计)用量可以降至12Kg。

前苏联对用离子交换树脂吸附有机物进行了较多的研究[51,52]。试验结果表明,用强碱性阳离子交换树脂AB-17可除去种分母液中70%的有机物,而从洗液中可除去100%,此法已经进行了半工业化试验。

但一些研究人员对上述方法持否定意见,因为阳离子聚合物昂贵,在通常的用量情况下,只能除去少部分有机物,采用大剂量(50g/L)效果才好,但不经济。因此,关键在于要有一个有效的阳离子聚合物的回收工艺,或者开发价格低廉的阳离子聚合物,否则离子交换树脂交换法是没有工业应用可能的。P.Atkins等曾试验了几种阳离子聚合物和再生方法,但证明都不经济。加铝(Alcan)Pierre G.Cousineau等报道在一小型试验厂用离子交换法将拜耳 19 法厂排除去的草酸钠转化为草酸产品的试验结果[53]。这一方法是基于以下反应

Na2C2O4 +2R H==H2C2O4 + R Na 树脂的再生采用5-10%的稀H2SO4

R Na + HX==R H + Na X 在采用H2SO

4的情况下,X代表SO42,再生反应生成的Na2SO4作为副

-产品。

试验厂总计运行了约1000小时,作者认为这一工艺是可行的,操作简单,维修工作量小,得到的草酸符合试剂级质量标准。

氧化法

氧化法是使工业溶液中的有机物部分地氧化为碳酸钠,另一部分氧化成低分子量有机钠盐,后者(草酸钠除外)对拜耳法生产的危害通常比其原来的高分子有机物要小得多。氧化剂可用软锰矿(MnO2)、空气、氧气及臭氧。

西德联合铝业公司(VAW)研究出用氧气在管道溶出器内湿法氧化拜耳法溶液中的有机碳的方法已成功在Stade氧化铝厂应用多年。该厂在管道溶出器中270℃温度下溶出铝土矿,溶液中有机碳含量曾高达34g./L.使用的效果明显,有机碳含量下降,种分Al2O3产出率提高,氢氧化铝粒度改善,并成功地解决了生成易爆气体混合物而产生的安全问题。溶出时产生的废气中除含有氮气和甲烷外,主要还含有氢[6]

J.Matyasi等认为湿式空气氧化(用O2或压缩空气)首先是破坏有机物中危害最大的腐殖酸,破坏程度随着反应温度和氧的分压的提高而增加。Matyasi等用匈牙利与德国多个拜耳法厂的浓溶液和种分母液在不同溶出条件以及不同规模下进行的湿法氧气净化有机物试验取得了满意的效果。

B.J.Foster等(凯撒铝和化学公司)针对Gramercy铝厂(高温溶出一水铝土矿)进行的湿法氧化试验[55]以除去溶液中腐殖酸盐有机物证明是有效的。在通常的溶出时间内,大部分腐殖酸盐可被破坏。

但是有机物的氧化反应除非氧化率很高,否则会产生中间化合物草酸钠,结果使氧化后的溶液中的草酸钠含量反而提高。大多数采用传统高压釜溶出铝土矿的溶出温度不高于240-250℃,这就不利于将氧气直接通入溶出过程,因为这不仅会导致有机物氧化效果低下,而且溶液中的草酸钠含量可大大提高,更高的温度和搅拌强度以及采用催化剂是达到高氧化程度以及氧化后溶液中低草酸钠含量所必需的。

N Brown[56]以结晶硫酸铜(CuSO4.5H2O)为催化剂,在管道溶出器内对两个拜耳法厂的溶液进行了有机物氧化反应动力学的研究,试验规模包括小型试验及试验厂试验。对催化剂作用,温度及氧气、搅拌等因素的影响以及催化剂的回收和循环利用等进行了研究,确定了

对两厂溶液有机物氧化率达≥85%,氧化后溶液中草酸钠含量不高于2g/L以及苯羧酸(一种最难用湿O3氧化而破坏的有机物)不积累所需要的作业条件。

文献[39]了论述了有机物湿法氧化及采用铜盐催化剂的一些问题。MnO2是一种众所周知的氧化剂,并在一系列湿法冶金过程中被采用。对于用MnO2矿氧化拜耳法溶液中有机物的研究颇多。

T Tran 等[57]研究了用MnO2矿氧化拜耳法溶液中草酸钠及其它有机物时温度等因素对氧化效果的影响。试验证明,MnO2对草酸钠.甲酸钠.乙酸钠.腐植酸钠有良好的氧化效果。而苯三羧酸盐难于氧化。温度是最主要的因素,在240℃用MnO2 矿处理,效果远好于190℃,用矿量也是主要的因素,随眷MnO2用量的增加,氧化效果显著提高。

氧化过程发生的主要反应为:

Na2C2O4 + 2MnO2 + 2NaOH==2MnOOH + Na2CO3 HCO2Na + 2MnO2 +NaOH==2MnOOH + Na2CO3

C2H3O2Na + 8MnO2 +3NaOH +H2O ==8MnOOH +2Na2CO3 C9H3O6Na3 +30MnO2 +15NaOH +6H2O==30MnOOH +9Na2CO3

反应产物中有Mn3O4 Mn2O3

氧化反应消耗NaOH,而增加nNa2CO3浓度。

MnO2矿是比较便宜而又稳定的氧化剂。本身及其反应产物均不溶于溶液中。

用MnO2氧化拜耳法溶液中有机物有多种可能的方式。一是从循环溶液中分出一部分溶液单独进行处理,此溶液可以是蒸发种分母液,也可以是氢氧化铝晶种洗水,在稀苛性碱液中进行的氧化反应较快。上述方案的优点是MnO2矿回收容易,便于多次循环使用。提高其利用率。但要增加设备。另一种方案是将MnO2矿加于铝土矿溶出过程中,优点是需要或只需要很少的设备投资,MnO2矿反应残渣与赤泥一道排放。但这一方案受制于高温溶出的拜耳法厂的溶出温度与时间,对于采用高温溶出的拜耳法厂是有利的,因为低于200℃时,没有明显的氧化反应,而在250℃浸出时,能有效地除去有机物。

AD Stuart也研究了各种因素对MnO2 矿氧化效果的影响[58],在250℃及MnO2矿量大(200-500g/L)的条件下,种分母液与MnO2接触一次(反应时间30min)可以除去有机碳3-8g/L.作者还进行了矿石循环使用的研究,溶液可连续地流过MnO2矿料柱,直至MnO2矿全部耗尽为止。

A.D.Stuart和T.Tran[59]进行了在铝土矿溶出过程中添加MnO2矿及用MnO2 矿处理种分母液的进一步研究,实验仍然表明,为取得有机物氧化的好效果,22 必须高温、高矿量(MnO2添加量)。在溶出过程中添加MnO2需要添加铝土矿10-50%的MnO2矿才能显著地除去有机物。而采用低矿量则也有直接氧化有机物为Na2CO3以及加速有机物的降解反应。经过MnO2矿六次循环使用后,最终氧化铝产品中没有发现Mn杂质。作者认为,单独分出一小部分母液用MnO2排除去有机物的方法适用于所有的拜耳法厂,而且可以采用高的MnO2添加量,容易回收重复利用。

如本文第二部分所述,并非所有有机物都影响种分产出率和产品质量。但迄今为止,大多数致力于有机物问题的论述均着眼于排除全部有机物,如果把重点转移到选择性地氧化溶液中的某些有害物质,则有可能比以往确定的温度(>200℃)更低的条件下进行拜耳法溶液的MnO2矿处理。从而将MnO2处理与铝土矿溶出过程结合起来,当溶出铝土矿要求不高的处理温度时,以往的研究证明,当用MnO2 矿处理的温度较低时,经MnO2处理后溶液中的有机碳含量降低也较少。但是这对处理后的溶液种分指标的影响却没有研究过。

A RobertGee 等[61]研究了用不同溶液用MnO2矿处理后对种分过程的影响。首先用种分原液进行MnO2矿处理。矿量50g/l,处理温度145-250℃,处理后溶液地在规定条件下进行种分,发现经MnO2矿处理后溶液产出率显著提高(提高幅度随处理温度提高而提高,较不处理时相对提高值最大可达7%),氢氧化铝产品中的Na2O 含量显著地降低。但是在生产上MnO2矿处理种分原液不可行的,因为要经过一个提高温度再降低温度的过程。

在铝土矿溶出过程中(175℃,30min)进行MnO2矿氧化处理的试验结果,发现也有类似效果。但不如处理种分原液时显著。作者认为是铝土矿中通常不被溶出的有机物以及溶出时存在易氧化的有机物部分地消耗了MnO2矿氧化能力之故。当MnO2矿用量为50g/L时,处理后溶液的种分产出率仅提高约 23 2g/L,从经济上的可行性看,这可能是不够的。

A Robert Gee等的研究表明,采用种分蒸发母液进行MnO2矿处理是有效的,蒸发后高浓度溶液中富集了活性有机物,根据用两个低温溶出的拜耳法厂的蒸发母液进行的MnO2矿处理试验结果(50g/LMnO2,250℃),用处理后溶液进行溶出后的溶液进行种分,由于MnO2排除了使溶液中Al2O3稳定的某些有机物,使每一循环的Al2O3产出率提高,并改善氢氧化铝质量(Na2O含量降低)氢氧化铝粒度及微量元素含量无明显变化。而Fe2O3,CaO,TiO2含量还有降低。在实践中是分出一小部分蒸发母液进行MnO2矿处理,处理后溶液因为草酸钠含量提高,必需通过加晶种冷却结晶的方法除去,再将过滤分离后的溶液与末经MnO2矿处理的蒸发母液合并,送往溶出。用MnO2矿处理蒸发母液,由于某些有机物被MnO2部分地氧化而生成草酸钠,例如:

3MnO2 +RCHOHCOONa +NaOH—Mn3O4 +NaC2O4 + H2O +ROH 式中R 代表脂肪烃或芳香烃基团

经济评价表明,将少部分母液用MnO2矿处理,而后排除草酸钠是最可的方案。

电解净化法是利用阳极上析出的原子氧氧化有机物杂质.ВСАнашкин等认为此法前景良好[62]其优点是从溶液中直接产生氧化剂,过程不复杂,也不含带入污染溶液的其它杂质。但此法关键在于降低电耗,Gnyra 等对这一方法持否定意见。

哈萨克科学院冶金与选矿研究所对使用臭氧氧化工业铝酸钠溶液中的有机物进行了多年的研究,并进行过工业规模的试验,用臭氧与空气混合,研究者认为采用臭氧氧化是降低拜耳法溶液杂质含量最有前途的方法之一[63,64]。

Gnyra及Lever等也研究了用臭氧处理拜耳母液[5]用含O31.7-2.0%O3的氧 24 气通过含有机碳10-12g/L的拜耳母液,从溶液中结晶出粗大的Na2C2O4针状结晶,并有部分有机碳氧化成Na2CO3,母液从棕黑色变成淡色,不再产生泡沫。Gnyra建议了一个处理140m3拜耳法母液的臭氧氧化装臵。

俄罗斯博戈斯洛夫铝厂(并联法)从1993年3月起在种分工序采用晶体成长修饰剂(MPK)[66]这是Hалко Кэмикал公司生产的一种有机试剂,它可以强化晶种附聚,减少新晶核生成,提高氢氧化铝晶体长大速度,并可阻碍草酸钠与其它有机物与氢氧化铝其沉淀,在保证氢氧化铝粒度.强度及杂质含量的情况下,提高Al2O3产出率,在工业条件下,修饰剂添加量多少,Al2O3产出率提高了1-3Kg/m3,当添加量为15-25%时,产品中细粒子(-10和-20μ)的数量减少一半,产品粒度稳定,种分过程氢氧化铝粒度周期性变化

敏感性降低。并明显减少了氧化铝煅烧时的飞尘损失,根据试验,采用Hалко 7832MPK的效果最好。

如前所述,草酸钠是严重危害种分过程的一种杂质,大多数拜耳法厂均采取从溶液中将其排除的方法,但通常要为此付出较大的费用。澳大利亚为Nalco及Alcoa等公司开发了一种草酸盐稳定剂,为选择性表面活性剂添加剂(Nalco138)[66],其作用在于抑制种分过程中草酸钠与氢氧化铝共沉淀,草酸钠稳定与以上所述晶体成长修饰是可以单独或同时应用于晶体分解的两种技术,目的都是在于优化种分作业。

草酸钠稳定度是以其在一定条件下,溶液中不致发生自发结晶析出草酸钠的最高浓度作为衡量尺度的。试验结果表明,添加很少量的稳定剂(Naclo 138 10ppm)即可明显地提高草酸钠的稳定性,Naclo 138可添加于种分原液中,它是一种选择性表面活性剂,在种分过程中不吸附于氢氧化铝上,而留在溶液中或吸附于草酸钠晶体表面上,N138对种分产品粒度或产出率没有影响,大量 25 的过程添加仍具有使草酸钠稳定的作用。而无明显的副作用。由于延缓或阻碍了草酸钠的结晶析出,种分过程得以改善。

但是,在拜耳法的流程中的某些点上,草酸钠沉淀析出(从而利于它的排出)仍然是重要的。否则,尽管有N 138的稳定作用,该处草酸钠的浓度将继续上升,以至可能发生共沉淀。如果一个氧化铝厂他铝土矿进入流程中的草酸钠量不大,则可不需要设臵草酸钠排除系统。否则,仍需要设臵草酸钠排除系统(尽管有N138的稳定作用),此时需要消除该处稳定剂的活性。否则,它将阻碍草酸钠的排除,而提高草酸钠稳定发生性带来的利益将丧失。N138在130℃以上很快发生热分解,丧失其作为稳定剂的活性。用结晶法排除草酸钠前,溶液常经过一个蒸发浓缩过程,溶液被加热到高温,这有利于稳定剂的热分解。

四.消除拜耳法生产中泡沫的方法

如前所述,在许多湿法工序中产生的大量泡沫是某些有机物给拜耳法生产造成的严重危害之一。国外某些公司和厂家采用消泡剂效果良好,如彼施涅公司采用三丁氧乙基磷酸盐。前苏联试验了多种消泡剂[67-70],主要是石油化工生产上的废料或价格不高的产品。工业试验表明,其效果不次于三丁氧乙基磷酸盐。这些消泡剂多为表面活性剂。

工业试验表明,添加C3-C17 仲醇于铝土矿细磨和种分工序,可大大减少泡沫的生成,而其消耗量仅为溶液的0.00015-0.0003%(按体积计)。这种消泡剂在浓铝酸钠溶液中保持较长时间以及经过高压溶出工序后,消泡性能仍然稳定。Р Г Чернова等研究了多种有机物质在浓铝酸钠溶液中的消泡性能,从中筛选出下列几种被认为是最好的消泡剂:邻苯二甲酸二丁脂,C6H4 26(CO2C4H9)2,氨基石腊,有机硅溶液,这些消泡剂效果良好,用量少,在生产条件下与碱液长期接触而不丧失其消泡性能。如添加0.001%(以体积计)有机硅溶液于铝酸钠溶液中,泡沫完全消失。其在铝酸钠溶液中保持3600小时而消泡性能完全不变。邻苯二甲酸二丁脂用于帕夫洛达尔铝石种分工序的工业试验表明,其消泡性能良好。实验还表明,上述三种消泡剂对氧化铝厂各主要工序有益无害。

参考文献

[1] Reberto Calalo et al, Light Metals, 1993:125-133 [2] А.И.Лайнер,《 Производство Глинозема》 Металлургия , 1961 :162 [3 ] С.И.Кузнецов и.др, Физическая Химия Производства Глинозема по Способу

Байера , 1964: 209-210 [4] Jobe G.Pulpeiro et al, Light Metals,1998: 89-95 [5] B.Gnyra et al, Light Metals, 1979: 151-161 [6] W.Arnswald, Light Metals, 1991 :23-27 [7] С.И.Кузнецов и.др, Физическая Химия Производства Глинозема по Способу

Байера , 1964 : 209 [8] S C Grocott, Light Metals, 1988: 833-841 [9] G Lever, Light Metals, 1978, 12:71-83 [10] J D Guthrie et al, Light Metals, 1984: 127-147 [11] K.Yamada et al, light Metals, 1981: 117-128 [12] P J The et al, Light Metals, 1987: 5-10 [13] K.Yamada et al, light Metals, 1973: 745-754 [14] N Brown et al, Light Metals, 1980: 105-117 [15] C Sato et al, Light Metals 1979: 151-161 [16] K Solymar et al, Light Metals, 1996 :29-35 [17] Gilbert Bouzat et al, Light Metals, 1991:97-102 [18] S C Grocott et al ,Light Metals 1993:167-172 [19] Э.Е.Мовсесов и.др, Цветные Металлы, 1998,7: 46-48 [20] ibid [3]: 211 [21] М.Н.Смирнов Труды ВАМИ Металлургиздат, 1957, 3 9: 24-35 [22] М.Н.Смирнов Труды ВАМИ Металлургиздат, 1957, 39 : 44-51 [23] ibid [3]: 248 [24] ibid [3] :323-324 [25] Tichbon W et al, Proceedings of 2nd International Alumina Quality Workshop, 1990 :110 [26] Satapathy, Light Metals, 1990:106-113 [27] В.Г.Тесля и.др Совершенствование Процессадекомпозиции ВАМИ建院60周年特辑

11-13

[28] В.Г.Тесля и.др, Цветные Металлы, 1987,9: 42-44 [29] A Lectard et al, Light Metals, 1983: 123-143 [30] P J.The et al, Light Metals,1985: 209-222 [31] John F.Coyne et al, Light Metals, 994: 39-45 [32] И.Д.Бибик и.др, Цветные Металлы, 1984,9 : 43-45 [33] P J.The et al, Light Metals, 1980: 119-130 [34] Abdolmohammad Alamdari et al Light Metals 1993:143-149 [35] А.И.Лайнер, Производство Глинозема, 1961: 310-311 [36] Sato et al, Light Metals, 1982 :119-128 [37] Y Shibue et al, Light Metals, 1990 : 35-40 [38] M A Hollanders et al, Light Metals, 1994: 91-97 [39] Sharonl Eyer et al, Light Metals, 2000: 45-51 [40] J Fenger et al light Metals 1996 [41] J L Monita Benito, Light Metals, 1984: 53-63 28 [42] Jean Deabriges et al, Light Metals, 1977: 15-21 [43]J A Chartounl Travaux ICSOBA 1 19 1989: 357-363 [44] F S Williams et al, Light Metals, 1998: 81-87 [45] A J Perrotta et al, Light Metals, 1995 :77 [46] A J Perrotta et al, Light Metals, 1997: 37 [47] Pohlamd H H et al, Light Metals, 1983: 211-221 [48] Yury A Z aytsev et al Light Metals 1998 :97-101 [49] Yury A Z aytsev et al Light Metals 2000: 59-64 [50] Ковзаленко В.А.и.др, Комплексное исполъзование Минералъного Сыръя, 1984, 4 : 35-40 [51] Калистратов А.А.И.др, Комплексное исполъзование Минералъного Сыръя, 1983 ,3 : 43-46 [52] P Atkins et al, Light Metals 1993:151-157 [53] Pierre C Cousineau et al Light Metals 1991:139-143 [54] J Matyasi et al, Light Metals, 1986:1057-1071 [55] B.J.Foster et al, Light Metals,1988 :79-83 [56] N.Brown, Light Metals, 1989: 121-130 [57] Tran T.et al, Light Metals,1986: 217-223 [58] A.D.Stuart, Light Metals,1988 : 95-105 [59] A.D.Stuart et al, Light Metals, 1988: 887-891 [60] A.D.Stuart et al, Hydrometallurgy, 1987, 19:37-49 [61] A.Robert Gee et al, Light Metals,1992: 123-130 [62] АНашкин В.С.и.др, Комплексное исполъзование Минералъного Сыръя, 1983 ,11 : 21-25 [63] Ни Л.П.и.др, Комплексное исполъзование Минералъного Сыръя, 1981, 4: 35-40 [64] Ни Л.П.и.др, Комплексное исполъзование Минералъного Сыръя, 1986, 9 : 45-47 [65] Ю.Н.Чернабук и.др, Цветные Металлы, 1988,6:26-28 [66] Graeme J Farouharson et al, Light Metals, 1995: 95-101 [67] Сафанова О.Ф.и.др, Обогащение Руд, 1983,6:25-27 [68] Сафанова О.Ф.И.др, Цветные Металлы, 1985,2 : 34-36 [69] Чернова Р.Г.И.др, ИЗВ Вузов, Цветные Металлргия, 1983,2: 27-31 [70 ] Никитина Л.И.идр.ИЗВ Вузов, Цветные Металлргия, 1985, 3: 41-45

篇2:拜耳法氧化铝生产中的有机物

1、脱硅槽共5台,哪几个是加热槽?

答:1#、2# 槽。

2、加热槽的温度控制范围是多少?

答:要求加热温度为102±2℃。

3、加热料浆温度不允许超过多少度?为什么?

答:不允许超过105℃。超过105℃料浆会发生沸腾现象而喷溅伤人。

4、哪几个脱硅槽可以做出料槽?

答3#、4#槽。5、5#槽的作用是什么?

答:作用是缓冲液量,因此,料位要保持低料位。

6、加热脱硅槽与停留槽的内部构造有何不同?

答:加热槽内部有加热管束,而停留槽没有。

7、脱硅加热槽加热蒸汽来源有哪几个?

答:Nt101来二次乏汽和低压管网来的低压蒸汽(溶出高闪蒸汽并入低压管网)。

8.为什么设计预脱硅系统?

答:为了将铝土矿中以高岭石形态存在的SiO2在进入高压溶出之前预先生成铝硅酸钠,减少在加热管表面的结疤。因而要设立预脱硅。9.预脱硅温度低的原因可能?

a.蒸汽压力低b.冷凝水排放不畅c.料位低。10.预脱硅反应时间多长? 8-10小时

11.脱硅效果不好的原因是?

a.温度低b.反应停留时间短c.矿浆细度不合格

12.预脱硅出料槽为什么必须保证一定的槽存,通常生产上采用什么方法? 必须保证隔膜泵进口压力大于0.12MPa。生产上通常采用出料槽满槽操作。13.搅拌在预脱硅槽中起什么作用?

a.加速脱硅反应速度b.防止料浆沉淀c.对加热槽有利于热交换 14.来料固含低会造成哪些不利影响?

a.产能降低b.液量大,流程通过困难c.溶出难以调配d.增加蒸发的负荷 15.在预脱硅料位计失灵不准时,如何估计预脱硅槽料位? 可以通过搅拌电流的大小来估计料位。

16.矿石中的氧化钛在反应中有什么危害?如何消除?

氧化钛会在矿石表面形成Na2TiO2保护膜,阻断溶出反应的继续进行。添加石灰可以清除Na2TiO2保护膜,促进溶出反应。17.预脱硅槽加热管束破怎么判断?

将蒸汽冷凝水隔离,当有料浆从冷凝水管中排出时,就是管束破,另外,管束破后一般温度会很高,并且容易出现沸腾现象。18.隔膜泵开车前应进行哪些检查?

a.所有清理检修的设备管道阀门、仪表的工作是否完成,b.流程是否正确、畅通,各连接法兰是否密封,阀门是否灵活好用 c.动力端油槽油位是否正常

d.推进液油槽油位是否正常 e.减速箱油位是否正常

f.齿轮联轴节等各润滑点油质、油量是否符合要求 g.卸荷阀压力限制系统蓄能器 h.推进液系统压力 i.动力端润滑油系统

j.各种安全罩及法兰防护罩是否齐全、牢固。

19.如何判断氮气包已破裂?

出口管震动大,出口压力表没有波动现象,触摸屏运行压力曲线图成直线状态,氮气包壳体上下温度一样。

20.动力端油槽油位、推进液油槽油位、减速箱油位正常的标准是什么?

介于玻璃管顶部、中部之间;于玻璃管顶部,填充时应及时补充;加至油面镜中部

21.动力端润滑油过热,可能的原因有哪些? a.冷却器工作不正常 b.冷却水故障

c.齿轮箱内部零件损坏 d.轴承损坏

e.齿轮驱动装置磨损

22.隔膜泵停车放料前应检查什么?在放料时如何操作放料阀?

首先检查泵的出口压力是否已经卸压。在放料开始时应缓慢打开放料阀。23.隔膜泵的进料温度应控制在多少?为什么?

95±5℃,因为隔膜的工作条件要求不得超过100℃,否则将降低隔膜的使用寿命。

24.隔膜泵的进料压力是多少? >1.2 bar 25.隔膜泵为什么要打回流? a.常压试泵,检查有无故障 b.料浆侧充分填充 c.推进液侧充分填充

26.隔膜泵在停车前为什么冲洗? 防止料浆沉淀,堵塞管道

27.隔膜泵在停车前冲洗改洗液或循环水时应注意什么事项? 杜绝管道内有空气,防止空气进入隔膜室造成隔膜破裂 28.隔膜泵进口管振动有哪些原因? 进口缺料、机组压力低于氮气包压力 29.如何判断隔膜泵隔膜已破裂? a.连续补油

b.推进液油位下降 c.推进液被污染

30.如何判断阀尔卡?

a听声音,进出料不平衡造成隔膜泵及出口管道震动剧烈 b阀尔运动节拍失调

c单向阀阀体及隔膜室温度降低 31.隔膜泵启动操作步骤? a.关闭泵的回流阀

b.以最低泵速启动主电机

c.打开泵出口进机组的阀门(先开手动,后开电动)d.打开泵进口阀 e.转换为自动控制

f.调整隔膜泵主电机转速(调整流量)32.隔膜泵倒泵步骤?

a.备用隔膜泵开车前的准备 b.备用隔膜泵的启动

c.逐步降低待停泵的流量,提高备用泵的流量 d.当待停泵的流量<15%时,停待停泵 e.提高备用泵的流量至所要求的流量 f.待停隔膜泵停车

G.隔离待停隔膜泵,用循环水冲洗,放料后进入检修状态。33.隔膜泵停车步骤? a.将隔膜泵的转速降低 b.停泵

c.关闭进机组的手动阀、电动阀 d.关闭泵进料阀 e.打开泵的回流阀

f.打开泵的循环水进口阀 g.启动隔膜泵主电机 h.冲洗完毕后停泵 i.停隔膜泵主电机

J.关闭泵的循环水进口阀后放料备用。

34.减荷阀起作用?

防止隔膜泵隔膜室内油压过高。油压过高时减荷阀动作泄压,保护隔膜不受损坏。

35.仪表风为什么要求清洁、干燥?

因为用户都是精密仪表,管路细小,元件要求用风不含水分、清洁的环境。

36.填空题:

1、荷兰泵基本组成部分为(主电机)、(减速机)、(动力端)、(推进液)、(料浆侧)五大部分组成。

2、点巡检通常采用(看)、(听)、(摸)、(闻)、(尝)方法来判断。

3、荷兰泵系统压力设计为:减速机温度设计为不大于(80℃)、动力端油泵压力不低于(1.45bar)、推进液压力设计为(5——15bar)、仪表风压力设计为(5——7bar)、氮气包预充压力是运行压力的(60%)、进料补偿器压力(2bar).4、减速机的油位不准高于(第二刻度)线,动力端油位必须在停泵时油镜的(1/2),推进液油位不准低于油镜的(2/3)。

5、打回流时泵速不准大于(10%),润滑油泵有噪音适应检查(过滤器是

否堵)、(油镜油位)、(吸油管泄漏)、(油泵损坏)、(油泵电机损坏)。

6、三个隔膜室同时出现补油应检查(安全阀损坏)、(安全阀压力表坏)、(安全阀泄压阀损坏)。

7、减速机用(320#)油,对轮联轴器用(460#)油,动力端(320#)油,推进液用(46#)油。

8、液力端补排油信号有(探头)、(传送箱)、(电磁阀)、(二位三通阀)、(二位二通阀)来传送信号。

9、动力端润滑油泵润滑的部位(曲轴的轴承)、(十字头)、(上、下滑道)、(活塞连杆润滑)。

10、推进液压力低时检查(过滤器是否堵)、(油泵损坏)、(电机损坏)、(吸油管泄漏)、(油槽油位)。

11、推进液润滑(活塞缸)部位,每个缸有

(三)个润滑头。

12、二位三通阀有(2)个,二位二通阀有6个。13.预脱硅原矿浆的主要成份为(铝士矿)、(石灰)、(循环母液)。

37.泵房岗位的岗位职责。

答:1)在主控室的指挥下,完成好原料磨送来的高固含原矿浆的预脱硅工作。

2)负责协助主控室在隔膜泵进口用预脱硅后的矿浆和碱液调配送来的补充循环母液调整矿浆。

3)负责将调整合格的矿浆用隔膜泵送入高压溶出机组。4)配合主控室完成将冷凝水送往沉降工序热水槽。

5)负责所辖区域内设备的操作、维护、保养和仪表工器具、照明、安全环保设施和原材料的使用管理和辖区的卫生。

6)负责脱硅地坪、隔膜泵房的污水输送工作。7)认真填写操作记录和交接班记录。

8)做好隔膜泵进口放射源的巡检记录工作。

溶出岗位试题

1、溶出有多少台压煮器?其中加热段反应温度为多少? 答:一共有9台压煮器,加热段要求温度260---270℃。2.加热段压煮器用什么蒸汽加热,一次水去了哪里?

答:用6.3Mpa新蒸汽加热,加热后的冷凝水由相应冷凝水罐进入高闪槽,由

高闪自压进入热电或热水站。

3.加热段套管要求出口温度是多少?其蒸汽来源是哪里?

答:加热段Ra112出口温度要求240——260℃,由热电来6.3Mpa主蒸汽加热。

4.Rp是铝酸纳溶液中所含的氧化铝与苛性碱的比叫 Rp=AO/Nk

5.拜耳法生产氧化铝有哪些优势? 流程简单,产品质量好、成本低。6.TiO2有什么危害?

TiO2在一水硬铝石表面生成一层致密的保护膜,阻碍其溶出,使溶出率下降,还含在加热管束表面形成结疤。7.名词解释

理论溶出率

理论上矿石中可以溶出的AL2O3量与矿石中AL2O3量之比称为理论溶出率。8.实际溶出率

在溶出时,实际溶出的AL2O3量与矿石中AL2O3量之比称为实际溶出率。9.相对溶出率?

实际溶出率与理论溶出率之比称为相对溶出率。

η=[(A/S矿-A/S赤)/(A/S矿-1)]×100% 10.氧化铁在溶出过程中参与反应吗? 不参与,它直接进入赤泥。

9.影响铝土矿溶出过程的因素有哪些? a.溶出温度

b.循环母液浓度及Rp值 c.矿石细度

d.石灰石添加量 e.搅拌强度。

f.溶出反应停留时间 10.添加石灰有什么作用?

a.石灰与Na2CO3发生苛化反应

b.石灰与TiO2反应生成CaTiO3,有利于溶出。11.溶出温度应达到多少? 265℃

12.溶出反应应停留多长时间? 265℃下停留80分钟。

13.循环碱液温度及浓度要求范围? 80℃,245±5g/l

14.单管用什么介质加热? 闪蒸槽出来的乏气。

15.闪蒸槽减压装置是什么? 节流孔板

16.闪蒸槽耐磨锥有什么作用?

缓冲料浆对壳体及出料管的冲击磨损。17.闪蒸槽的工作原理是什么?

通过压力的变化,使料浆沸点温度发生变化,达到汽液分离,使料浆迅速沸腾蒸发,以达到降温、降压、回收热量的目的。18.套管预热器有没有排蒸汽不凝性气体管?

答:有,一种连续排放,直接排向大气。

19、溶出器检修完毕为什么要进行打压试验? 检查溶出器各部位有无泄漏点。

20、为什么要排放套管蒸汽不凝性气体?

不凝性气体阻碍热交换,排除后增大了热交换面积,使热能得到充分利用。

21、机组启动前和停车前为什么要填充碱液?

因为料浆溶液容易沉淀,造成管道堵塞、结疤,碱液中没有固体颗粒不易沉淀,用碱液冲刷后使管道畅通,提高加热效果。

22、排溶出器不凝气应怎样开阀?

先将第一道阀开全,再缓慢开第二道阀。

23、机组出现超压有哪些原因? a.温度太高 b.空罐 c.出料不畅。

24、套管前后压差大的原因? 套管内结疤严重。

25、高压溶出的生产任务是什么?

将拜耳法原矿浆经预脱硅后加入循环母液用隔膜泵送入溶出,用新蒸汽间接加热到265℃,保温60-80min使矿浆中的氧化铝和苛性钠发生溶出反应,生成铝酸钠溶液,经闪蒸槽降压降温后送入稀释槽,在稀释槽添加一次洗液稀释后用泵送往分离沉降槽。

26、什么是溶出料浆的稀释?

高压溶出后的高浓度料浆和一次洗液混合就是稀释。

27、稀释后的料浆有什么变化?

溶液中的SiO2被进一步脱除而进入赤泥,提高溶液的A/S,溶液的浓度粘度下降。

28、高压溶出的进料量为什么有最低流量限制? a.因为套管内料浆的流速有最低值1.5米/秒,低于此值料浆容易出现沉淀。b.首级孔板确定以后,就要求有相应的流量,否则机组压力达不到265℃温度的饱和汽压以上,将造成料浆沸腾。

29、哪些原因能引起机组压力高? A.首级料浆闪蒸孔板堵 c.反应温度高

d.机组出料管堵 e.压缩空气窜入机组内 30、套管预热温度低的原因?

a.机组温度低,造成出料温度低,闪蒸乏汽量不足。b.套管内、外管结疤严重 c.冷凝水排出不畅 d.闪蒸槽乏汽带料

31、末级溶出器振动的原因?

a.机组进料量小造成机组压力低,料浆在机组内沸腾。b.反应温度高料浆沸腾

c.首级闪蒸孔板磨损严重或脱落

32、料浆闪蒸槽的乏汽带料的原因? a.机组压力、温度低 b.料浆闪蒸槽液位高 c.出料系统有问题 d.汽液分离器失效

e.料浆闪蒸孔板不合适

33、溶出器安全阀开启的原因? a.溶出器压力高 b.机组出料管堵

c.安全阀性能变差

34、料浆闪蒸槽的安全阀开启的原因? a.料浆闪蒸槽的压力高 b.料浆闪蒸槽的出料管堵 c.安全阀性能变差

35、料浆闪蒸槽的出料管堵的原因? a.结疤块或杂物堵 b.碳碱结晶堵 c.机组压力低 d.停车时料未放干净 e.原矿浆粒度粗

36、料浆闪蒸槽的孔板堵的原因? a.机组掉结疤块堵 b.杂物堵

37、机组进料前,为什么必须关闭所有的放料阀?

避免隔离阀门关不严发生泄露。

38、在打开高压阀门时必须注意什么? 高压阀门开关顺序是什么?

眼睛不能正视,缓慢打开。高压阀门开关顺序是:先全开密封阀,再缓慢打开耐磨阀;先关耐磨阀,再关密封阀。

39、高压溶出有哪些放射性同位素?它们起什么作用? a.闪蒸槽料位测定,共13个:

b.料浆密度测定,隔膜泵进口1个,稀释后泵出口1个。40、机组开车前的流程准备有哪些? a.预脱硅的料浆流程,包括隔膜泵流程

b.各放料阀及不凝性气体排放阀要关闭 c.料浆流程除出料阀关闭外,其余要畅通 d.蒸汽流程及蒸汽冷凝水流程 e.稀释泵流程

41、提高满罐率有哪些重要性?

a.能增加溶出器的有效容积和利用率,延长停留反应时间 b.增加料浆和蒸汽的有效热交换面积 42.溶出液稀释后为什么Rp会降低?

因为在分离洗涤过程中发生水解作用,使用于稀释的一次洗液Rp降低,另外,由于加入了低Rp的白洗,也会使Rp降低,所以溶出液稀释后Rp 会降低。

43.高压溶出主控室岗位职责

1、主控室是本车间所有岗位的指挥中心。负责集中操作所管辖的设备,或根据生产情况指挥其它岗位操作工操作设备。控制本车间生产产量,质量完成情况并负有全面责任。

2、主控室实行主操负责制。另外配1-2名助手,助手的主要任务是负责巡检,帮助主操准确判断处理问题,共同完成生产任务。必要时协助岗位操作工处理生产设备维护保养,环境清洁卫生,工器具保管,认真进行巡检,设备开停车的准备和善后处理等工作。

3、主控室人员必须全面熟悉本工序的工艺流程,设备能力,生产指标和操作务件。对主控室的集中操作及其它岗位的开停车方法了如指掌,对本工序的生产控制方法和事故处理方法要全面掌握。

4、上班期间,要坚守岗位,对本工序生产要进行集中控制。发出正确无误的指令,助手要每2小时到现场巡检一次(特殊情况除外)。

5、正确使用监测,控制仪表,不好用时要及时提出,保证监测准确,控制自如。

6、对本工序的设备使用运行,备用等情况做到心中有数。

7、搞好交接班工作。

8、及时记录化验分析结果。

9、负责认真按技术规程,上级下达的操作条件及技术指标进行操作和控制。

10、负责对附属岗位人员进行技术指导。

11、负责提出设备,仪表的检修意见。

12、严格执行各项规章制度。

44.压煮器搅拌起什么作用?

答:1)使料浆充分混合,加剧了颗粒间的接触;2)使料浆和管束充分接触,提高加热效果;3)防止料浆沉淀;4)对管束进行冲刷,减少管束表面结疤的形成,对管束起到保护作用。45.提高满罐率有哪些重要性?

能增加压煮器容积利用率,延长停留时间、使料浆和蒸汽的热交换面积增大、料位高可保护管束不被损坏。

46.离心泵的性能参数包括哪些:流量、扬程、转速、轴功率、和效率。

47、离心泵有哪几部分组成?

离心泵包括电机、联轴器、转子、机封、泵体。

48、离心泵的流量是什么?

指泵在单位时间内排出的液体的体积,用Q表示。

49、污水泵就点检哪些内容?

电机的电流、温度、声音、联轴器的橡胶块、间隙、皮带的数量、松紧程度、轴承的润滑、温度、声音、振动、地脚是否紧固、上料情况。

50、离心泵开车前需作好哪些准备工作?

检查电机绝缘是否合格;泵出口管道是否和选管路、槽相对应;紧固件有无松动;冷却水供给状态,泵体上排放也是否畅通,泵体上的供水嘴到位牢固;轴承润滑良好;防护罩安全牢固;各阀门考克灵活好用;电源电压电流是否正常;机械密封良好,不泄漏;攀车一周以上,转动灵活;检查相关仪表,电气。

51、试叙述离心泵的工作原理?

当用电机带动叶轮高速转动时,充满在泵体内的液体在离心力的作用下,从叶轮轮中心被抛向叶轮的外缘。在此过程中,液体获得了能量,提高了静压能,同时由于流速增大,动能也增加了。液体离天了叶轮进入泵壳,由于流体的流道逐渐增宽,液体速度逐渐降低,便使其中部分动能转变为静压能,这样又进一步提了高了液体的静压能,于是液体以较高的压强进入压出导管。当液体从叶片中抛出时,中心就造成了低压,而液面外的压强较此处大,在这种压强差的推动下,液体就经吸入导管,源源不断地进入泵内。当叶轮不断的旋转时,液体就能连续不断地从叶轮中心吸入,并能以一定的压强连续不断地排出,输送到所需的地方去。52.降低赤泥铝硅比的措施:

1、强化溶出条件,提高溶出温度(保持265度);

2、提高循环碱液中苛性碱浓度,保证苛性碱浓度在245G/L;

3、控制原矿浆的细度和过量的石灰加入量。

53.预热套管用什么介质加热?

答:闪蒸槽Nt102-110来的乏汽,机组开车时没有乏汽,预热套管用30bar蒸汽加热。

54.搅拌轴采用(填料)、(注油)密封方式。

55.循环母液主要成分是(铝酸钠溶液)和(NaOH)。

56.添加石灰的作用:消除含钛矿物的有害作用;促进针铁矿转变为赤铁矿,改善赤泥的沉降性能;活化一水硬铝厂的溶出反应;生成水化石榴石,降低碱耗。

57.正常运行过程中,应对压煮器做哪些方面的检查:检查搅拌运转状态是否正常,检查振动、噪音、检查电机的电流电压、检查轴承温度、检查减速机油位油温、检查各润滑点润滑情况、检查搅拌轴各点注油情况、检查皮带运行状态、检查压煮器的温度、压力是否符合要求、检查各法兰密封面是否泄漏。

58.拜尔法生产的原理:用苛性碱溶液在一定温度,一定压力条件下溶出铝土矿,氧倾铝被溶出制得铝酸钠溶液,铝酸钠溶液净化后经过降温、添加晶种、搅拌分解析出氢氧化铝,析出的氢氧化铝经分离、洗涤、焙浇后得到氧

化铝。种分母液经蒸发调配后循环溶出下一批铝土矿。

59.七交五不接:

七交(交生产)、(交指标)、(交设备及检修情况)、(交环境卫生)、(交原始记录)、(交工器具齐全)、(交安全生产)。五不接包括(设备问题没处理不接)、(安全隐患没查清不接)、(卫生不干净不接)、(地沟不畅通不接)、(原始记录不清不接)。60.如何判断压煮器管束破?

答: 将蒸汽冷凝水隔离,当有料浆从冷凝水管中排出时,就是管束破,另外,管束破后压煮器筒体压力,温度升高,冷凝水温度升高。61.如何判断预热套管破?

答:二次水带料,闪蒸槽料位不高,打开该套管进入冷凝水罐的排水阀,当有生料浆从排水阀排出时,就是预热套管破;另外,预热套管破后,该套管的冷凝水罐压力升高,料位升高,安全阀动作,喷出料浆;化验从从排水阀排出的料浆,aK值较高。62.如何判断反应套管破?

篇3:拜耳法生产氧化铝中Rp值的控制

关键词:Rp值,氧化铝,溶出,分解

拜耳法生产氧化铝中Rp值的控制对氧化铝生产影响非常的大, 合理控制Rp值不仅能节省能源和原料, 还能产出质量较好的产品。拜耳法中两个比较重要的环节, 溶出和分解, 对Rp值的确定尤其重要。

溶出工序简介及溶出矿浆Rp值的确定:

溶出工序简介:溶出工序是把循环母液 (苛碱) 、铝土矿 (一水硬铝石) 和石灰按照一定的比例配合成矿浆, 先通过脱硅工序, 把矿浆加热到100℃左右, 通过4个小时的保温停留, 脱出矿石中的钠硅渣等杂质, 再加循环母液用隔膜泵把矿浆送入高压溶出机组, 利用闪蒸二次汽预热矿浆到220℃左右, 再用电厂新蒸汽把矿浆加热到260℃左右 (此时反应釜中的压力在4Mp左右) 。在此温度和压力条件下反应45min到60min就可使矿浆反应生成铝酸钠溶液。

反应的化学式为:铝土矿和苛碱反应生成铝酸钠溶液和硅酸钠Al2O3.n H2O+Na OH+aq.Na A (OH) 4+n Hl 2O+aq

从上面的反应可以看出矿石中的1kg铝就需要0.608kg的苛碱和它反应, 即他们的Rp值为1.645, 但是铝土矿中的铝不是全部能反应生成铝酸钠溶液, 一部分是不反应的, 这就需要确定合适的溶出矿浆Rp值。

溶出矿浆Rp值的确定:溶出工序中, 若是Rp值控制太低, 碱的循环效率低, 单位产能下降, 造成能源的浪费;溶出Rp值偏高时, 溶出效果变差, 氧化铝回收率下降, 造成铝土矿资源的浪费。生产过程中, 要围绕一定的溶出Rp值值组织生产, 从而获得最佳的生产效果。

溶出Rp值的确定是通过实验获得的。即用一定量工业循环母液在指定小高压釜中逐渐加入铝土矿 (一水硬铝石矿的加热温度为260℃, 压力为3.9~4.2Mp, 溶出时间一般不少于0.5小时。) 。当矿石的配量少时, Al2O3溶出率虽达到理论值, 溶出液仍未被Al2O3饱和, 若继续加入Al2O3其Rp值会继续增加。继续增加Al2O3的量, 当Rp值的值不再增加时, 其溶出液就为Al2O3的饱和溶液, 此Rp值也就是溶液在此条件下的平衡Rp值, 即为Rp值平。矿石的溶出率也随着矿石量的增加而降低。在此条件下Rp值平一般在1.13~1.17之间1。

分解工序简介及分解精液Rp值的确定

分解工序简介:晶种分解就是将铝酸钠溶液降温并加入氢氧化铝作为晶种并进行搅拌, 使其析出氢氧化铝的过程。它是拜耳法生产氧化铝的关键工序之一。它对产品的产量、质量以及全厂的技术经济指标有着重大的影响。晶种分解除得到氢氧化铝外, 也会得到苛性比值较高的种分母液, 种分母液经蒸发后作为溶出铝土矿的循环母液, 从而构成拜耳法生产氧化铝的闭路循环。

精种分解是从叶滤机出来的精液经冷却后, 进入晶种分解槽并加入晶种进行搅拌分解, 经分离所得的氢氧化铝除返回一部分做晶种外, 其余部分经洗涤制得合格氧化铝的过程。

分解精液Rp值的确定:在分解工序中, 分解精液的Rp值涉及到分解精液的过饱和度, 是影响分解速度、Al2O3产出率、成品氧化铝粒度和强度的最主要因素。

分解精液Al2O3浓度110g/L, 分解初温60℃, 终温36℃

由分解精液Rp值对分解率的影响图可以看出, 在相同分解时间内分解精液Rp值越高分解率越高。因此提高分解精液Rp值是强化晶种分解的最有效的途径。

当精液Rp值不变时, Na2O浓度超过最佳值时, 会使产出率降低, 并得到较细和强度较低的产品。当Rp值增加时, Na2O的最佳浓度值也增加。

提高分解精液Rp值对生产的影响

由此可见提高精液Rp值对晶种分解时有利的。但是精液Rp值的提高不是没限度的, 它受到溶出条件和赤泥分离技术的限制, 不可能太高。现在生产中, 为了追求高产出率, 溶出Rp值一般都控制在1.17左右, 有的已经达到1.24, 溶出温度也都控制在260℃以上, 但是溶出率明显降低, 造成铝土矿的浪费。

根据以上分析, 要想在有限的溶出Rp值条件下得到更高的分解精液Rp值, 就需要在溶出后, 分解前的工序中提高溶出液Rp值, 制得高度过饱和溶液, 这样不仅不影响溶出率, 同时也保证了产品的质量, 并提高了产出率。

从原料车间来的矿浆, 经过溶出机组高温、高压溶出后再通过十级闪蒸, 末级闪蒸温度在140℃左右, 苛碱浓度在270 g/l左右, 压力1—2bar, 在此条件下溶出三水铝石的矿条件是十分充足的, 因此在末级闪蒸中加入一定量的三水铝石再次溶出, 制得Rp值更高的溶出矿浆, 这不仅提高了生产系统的产能, 还提高了分解精液的分解效率和产品质量。

由表1可以看出在稀释矿浆中是可以溶出三水铝石的。因此在末级闪蒸中溶出三水铝石是提高精液Rp值的有效途径。

结语

○1拜耳法生产氧化铝中溶出矿浆的Rp值控制太低, 碱的循环效率低, 单位产能下降, 造成能源的浪费;溶出Rp值值偏高会使溶出效果变差, 氧化铝回收率下降, 造成铝土矿资源的浪费。它一般控制在1.13—1.17之间得到较理想的值。

○2而铝酸钠溶液分解中, 分解精液Rp值越高, 过饱和度越大, 分解效率和产品质量就越高。

○3在末级闪蒸中加入三水铝石溶出, 不仅不影响矿石溶出率, 并且提高了精液Rp值, 提高了精液的分解效率和产品质量。同时它如同增加了一条生产线, 提高了产能。

参考文献

【1】王晓刚.国外高速铁路建设及发展趋势[J].世纪, 1825.

篇4:拜耳法氧化铝生产中的有机物

关键词:拜耳法;氧化铝;能耗;溶出工序;蒸发工序

中图分类号:TF80 文献标识码:A 文章编号:1009-2374(2013)20-0090-02

1 拜耳法生产氧化铝

1.1 拜耳法生产氧化铝的原理

拜耳法是生产氧化铝的主要的工业方法。它的原理是基于拜耳在1889年和1892年分别提出的两个基本原理,它们分别是:(1)种子分解法原理:采用氢氧化铝晶粒作为铝酸钠溶液分解的种子;(2)溶出工艺原理:在氢氧化钠溶液中,铝土矿所含的氧化铝能溶解为铝酸钠。现在工业生产上所用的拜耳法生产氧化铝的工艺也是基于上述两个基本原理的:将铝土矿中的氧化铝用强碱溶液溶解,从而得到铝化钠溶液,再对上述溶液降温、加晶种、搅拌,分解出氢氧化铝,同时分解后氢氧化钠碱溶液作为母液,再通过加压溶解新一批的铝土矿,此交替过程可由下式清楚地表示出来:

1.2 拜耳法生产氧化铝的工艺过程

各个工厂应用拜耳法生产氧化铝的工艺因为铝土矿的具体成分的不同而稍有差别,但是基本流程是相同的,包括的主要生产过程为:(1)将铝矿粉碎后与氢氧化钠按一定比例混合,经过细磨制得原矿浆;(2)在溶出器设备中,高温、高压、高碱的环境下处理原矿浆,使氧化铝溶出;(3)稀释压煮矿浆,在沉降槽中分离赤泥和铝酸钠溶液;(4)过滤纯化分离后的铝酸钠溶液,冷却、加晶种、结晶析出氢氧化铝;(5)将所得氢氧化铝进行分类:细粒的作为晶种,送往分解槽,粗粒的进行焙烧;(6)高温焙烧氢氧化铝得到氧化铝;(7)蒸发分解母液到一定浓度,补加一部分苛性碱再进行配料,为下一批生产做准备。

2 拜耳法生产氧化铝的能耗分析

分析上述生产流程可知:拜耳法生产氧化铝的工艺过程主要采用的能源包括:蒸汽、电、水、压缩空气、燃料。这些能源所用的量的比例如下表1所示:

依据表1可以看出:蒸汽消耗所占比例是最大的,所以说,减少蒸汽量对于拜耳法氧化铝生产过程中的节能具有十分重大的意义。并且,在生产过程中,预处理、溶出、蒸发、氢氧化铝过滤、分离洗涤赤泥等各个工序中都用到了蒸汽消耗,所以下面对各工序中所消耗的蒸汽量进行比较,从而找到节能的切入点。

依据表2可以看出:在蒸汽的消耗中,溶出和蒸发两个过程就占到了67%,是蒸汽消耗的主要工序,所以要想降低整个过程的能源消耗,可以从降低溶出和蒸发两个工序的蒸汽消耗方面考虑。

3 拜耳法生产氧化铝的节能措施

从上述能耗分析可知:溶出工序和蒸发工序的蒸汽消耗是整个拜耳法氧化铝生产过程中最大的一部分能量消耗,所以,降低溶出工序和蒸发工序的蒸汽消耗,能有效地降低整个生产过程的能耗。所以下面主要对溶出和蒸发工序进行节能分析,并结合其他重要工序,讨论拜耳法生产氧化铝的节能措施。

3.1 溶出工序的节能

溶出工序是将矿浆中氧化铝充分溶出的过程,在此过程中利用的是新蒸汽加热,并且产生的二次蒸汽再去预热其他低温矿浆。在此过程中可以采取的节能措施为:(1)提高热源与矿浆的传热效率:通过增大传热系数和尽量减少管道结疤来提高传热速度。传热系数可以通过套管预热、外层蒸汽和控制浆流速度等方法来增大,管道结疤可以通过一定的清洗技术(例如:高压清洗或化学清洗)来定期清理;(2)提高热量的循环率:这就要求对闪蒸降温过程中所产生的二次蒸汽要进行充分的利用,可以通过两方面来达到目的,一是增加闪蒸级数,二是把握好闪蒸过程中的料位,控制好闪蒸过程的压力,从而提高闪蒸操作水平;(3)提高溶出效率:通过增加反应釜的个数和延长溶出时间来实现。

在实行溶出工序节能的措施前,必须先保证溶出效果,因为这样能有效地预防沉降跑浑的现象。影响溶出效果的因素包括:反应时间、溶出温度、循环母液浓度、搅拌强度、矿石的粒度等。

3.2 蒸发工序的节能措施

蒸发工序中所消耗的能量来源于新蒸汽,此过程是蒸发浓缩分解母液再重新循环利用。在此工序中可以采取的节能措施为:(1)通过最优化的方法确定蒸发效数:蒸发效数越多,单位蒸水量所消耗的新蒸汽越少,从这方面来说,蒸发效数的增加使得新蒸汽的经济性增大。但是,在蒸发效数增大的同时,所需的蒸发器的数量也增多,这就使得设备投资增大,所以,蒸发效数对设备投资费用的影响与对新蒸汽的影响是相悖的,所以,应该充分考虑未来能源的价格趋势与当前设备的投资,通过最优化的方法来确定蒸发效数;(2)使母液和精液之间能够充分的换热:这样就使得热量交换可以在母液和精制液体之间进行,节省了蒸汽消耗;(3)增加高效的闪蒸装置:闪蒸设备的增加可以提高蒸汽的利用率。拜耳法生产氧化铝可以根据原料的不同,来适当增加闪蒸装置,采用蒸发器和闪蒸器结合的方式,来提高蒸发器的产能,从而降低能耗;(4)采用超声波防垢技术:超声波可以粉碎垢质、改善成垢物质的流变性、在垢质和管壁间产生剪切力使垢质脱落。所以采用超声波技术可以有效地减少蒸发过程中的积垢,使蒸发器的使用周期加长,提高产能。

3.3 其他工序的节能措施

在分离与洗涤赤泥的工序中,减少赤泥洗水,就能提高溶出矿浆的碱液浓度,这既能降低沉降过程中氧化铝的水解损失,也使母液的浓缩度减小,这就能降低蒸发工序负荷,减少所用蒸汽量;在焙烧工序中,氢氧化铝要经过焙烧炉的焙烧才能脱去水得到氧化铝。当前所用焙烧炉多为气体悬浮焙烧炉和循环流态化焙烧炉,已经能很高效地使用热量了,但是焙烧炉排放大量的高温的烟气,这些烟气的热量占焙烧所消耗的总烟量的30%以上,所以,合理地利用这些烟气能很好地节约能耗,这些烟气可以为其他工序提供热量。

4 结语

溶出工序和蒸发工序的蒸汽消耗约占到总能耗的40%,是能量消耗中最大的一部分,所以,减少这部分能耗能有效地降低拜耳法氧化铝生产过程的能量消耗,降低生产成本。本文提出了一些可行的措施,希望相关工作者能够继续加强对此方面的研究,力求将能耗降到最低,使企业获得最大的利润。

参考文献

[1] 王占兴,李志国,肖枫.拜耳法生产氧化铝过程中几个节能措施分析[J].轻金属,2011,(5):22-24.

[2] 吕瑞.拜耳法氧化铝生产节能探讨[J].当代化工,2012,(5):509-512.

[3] 侯鑫.拜耳法氧化铝溶出的原理和工艺[J].应用技术,2013,(3):197-198.

[4] 王莉红.浅析提高拜耳法循环效率的措施[J].工艺节能,2011,(4):29-32.

篇5:拜耳法氧化铝溶出的原理和工艺

1 拜耳法生产氧化铝的原理

基本原理是拜耳法精心研究出来的。他在1889年的第一专利谈到用氢氧化铝的晶粒作为种子, 使铝酸钠溶液分解, 也就是种子分解法。1892年提出第二个专利系统地闸述了铝土矿所含氧化铝可以在氢氧化钠溶液中溶解成铝酸钠的原理, 也就是今天所采用的溶出工艺方法。此法用在处理低硅铝土矿, 特别是处理三水铝石型优质铝土矿, 其经济效果远非其他生产方法所能比拟。直到现在工业生产上实际使用的拜耳法工艺还是以上述两个基本原理为依据。为了纪念拜耳称之为拜耳法。原理归纳如下。

用苛性碱溶液溶出铝土矿中氧化铝而制得铝酸钠溶液, 采用溶液降温、加晶种、搅拌的条件下, 从溶液中分解出氢氧化铝, 将分解后母液 (主NaOH) 经蒸发用来溶出新的一批铝土矿, 溶出过程是在加压下进行的。拜耳法的实质也就是下一反应在不同的条件下交替进行:

2 拜耳法生产氧化铝的工艺

由于各地铝土矿成份和结构的不同所以采用的技术条件各有特点, 各个工厂的具体工艺流程也常有差别。拜耳法处理一水硬铝石型铝土矿的基本流程如图1所示。

拜耳法生产氧化铝有原矿浆制备, 高压溶出, 压煮矿浆稀释及赤泥分离和洗涤、晶种分解、氢氧化铝分级和洗涤、氢氧化铝焙烧、母液蒸发及苏打苛化等主要生产工序。

2.1 原矿浆制备

首先将铝矿破碎到符合要求的粒度≤25mm (如果处理一水硬铝石型铝土矿需加少量的石灰大约7%~9%) , 与含有游离的NaOH的循环母液按一定比例配合一道送入湿磨内进行细磨, 制成合格的原矿浆, 并在矿浆槽内预热和贮存。

2.2 高压溶出

原矿浆经预热 (预脱硅) 后进压煮器组 (或管道溶出器设备) , 在高温、高压、高碱下溶出。铝土矿内所含氧化铝溶解成铝酸钠进入溶液, 面氧化铁和氧化钛以及大部分的二氧化硅等杂质进入固相残渣即赤泥中。溶出所得矿浆称压煮矿浆, 经自蒸发器减压降温后送入稀释槽 (溶出后槽) 。

2.3 压煮矿浆的稀释及赤泥洗涤及分离

压煮矿浆含氧化铝浓度高, 为了便于赤泥沉降分离和下一步晶种分解, 首先加入赤泥

洗液将压煮矿浆进行稀释 (称赤泥浆液) , 然后利用沉降槽进行赤泥与铝酸钠溶液的分离。分离后的赤泥经过几次洗涤回收所含的附碱后排到赤泥堆场 (国外有的排入深海) , 赤泥洗液用来稀释下一批压煮矿浆。

2.4 晶种分解

分离后铝酸钠溶液 (生产上称粗液) 经过进一步过滤净化泵在国际市场上的份额很低, 即使国外生产的水泵成本较高, 价格较高, 但是国外市场更愿后制得精液, 经过板式热交换器冷却到一定温度, 在添加晶种的条件下进行分解, 结晶析出氢氧化铝。

2.5氢氧化铝的取得

分解后所得的氢氧化铝浆液铝厂设有沉降槽进行分级, 由旋流筛进行分级, 细粒Al (OH) 3作为晶种, 送往分解槽做种子。粗粒Al (OH) 3经过过滤分离和洗涤, 取得Al (OH) 3送往焙烧工序进行焙烧。分离溶液称之为分解母液, 经板式热交换器送到蒸发工序进行浓缩 (脱水) 。Al (OH) 3洗液送到沉降槽作为洗液。

我厂Al (OH) 3的取得, 不经过沉降槽和旋流筛进行分级, 而直接用平盘过滤机取得成品Al (OH) 3, 再送去焙烧成氧化铝。用圆筒式过滤机取得Al (OH) 3作为种子, 送往种子分解槽进行种子分解。

2.6 氢氧化铝焙烧

Al (OH) 3含有部分附着水和结晶水, 经过高温焙烧后在1000℃以上的温度进行, 先脱附着水后脱结晶水, 并进行一系列的晶相转变, 制得含有一定α-Al2O3和γ-Al2O3的商品氧化铝。

2.7 母液蒸发和苏打苛化

预热后的分解母液经板式降膜蒸发器浓缩后, 得到符合要求浓度的循环母液, 补加一部分苛性碱返回管磨 (或格子磨) 进行配料, 准备溶出下一批铝土矿, 周而复始地进行。

母液蒸发过程中有一部分Na2CO3˙H2O结晶析出, 为了回收这部分碱, 将Na2CO3˙H2O与水解后加石灰配成石灰乳进行苛化使生成NaOH送入洗涤沉降槽。

参考文献

[1]王立峰, 卢成江.土木工程结构试验与检测技术[M].北京:科学出版社, 2010.

本文来自 360文秘网(www.360wenmi.com),转载请保留网址和出处

【拜耳法氧化铝生产中的有机物】相关文章:

拜耳法生产氧化铝流程04-20

拜耳销售经理04-18

拜耳产品简介05-04

拜耳公司简介docx04-21

拜耳医药销售实习生面试全经历04-11

上一篇:开采下一篇:爱情不值钱说说

本站热搜

    相关推荐