光伏并网发电监控系统

2022-11-22

第一篇:光伏并网发电监控系统

企业厂房屋顶光伏发电系统

一、概述:

通过太阳能电池方阵将太阳能辐射能转换为电能的发电站称为太阳能光伏电站。太阳能光伏电站按照运行方式可分为离网光伏电站和并网光伏电站。

1)与公共电网相联接且共同承担供电任务的光伏电站称为并网光伏电站。它是太阳能光伏发电进入大规模商业化发电阶段、成为电力工业组成部分的重要发展方向,是当今世界太阳能光伏发电技术发展的主流趋势。并网系统由太阳能电池方阵、系统控制器、并网逆变器等组成。

2)未与公共电网相联接独立供电的太阳能光伏电站称为离网光伏电站。主要应用于远离公共电网的无电地区和一些特殊场所,如为边远偏僻农村、牧区、海岛、高原、沙漠的农牧渔民提供照明、看电视、听广播等基本的生活用电,为通信中继站、沿海与内河航标、输油输气管道阴极保护、气象电站、公路道班以及边防哨所等特殊处所提供电源。独立系统由太阳电池方阵、系统控制器、蓄电池组、直流/交流逆变器等组成。

二、结构特点:

1.安装便捷,节约安装成本 2.无以伦比的持久耐候性能

3.安全可靠,承受极端气候, 遵循当地载荷规范

三、详细说明: 技术参数

屋面类型:斜坡屋面或平屋面 安装倾角: 0 60 可调 雪压:1.4 KN/m2 风速:60 m/s 设计标准:AS/NZS 1170, DIN 1055, IBC 2006, etc. 组件类型: 有框或者无框 排列方式 :横向或竖向 质保年限 : 15 年

四、企业厂房建设屋顶光伏发电系统的好处:

1、利用闲置屋顶地面等,盘活固定资产增加企业收益。

2、为企业节省峰值电费(白天峰值发电最多),余电部分可以上网出售。

3、降低工厂内部温度,增加工作舒适性和夏天降温的成本。

4、可以较好的完成规定的节能减排指标。

5、不受资源分布地域的限制,利用建筑屋面的优势安全可靠,无噪声,无污染。

6、采用就近用户侧接入,不必远距离运输,避免长距离输电线路的损失。

7、太阳能发电系统建设周期短,获取能源花费的时间短方便灵活,可以根据负荷的增减,任意添加或减少太阳能方阵,避免浪费。

8、较好的投资收益,至少可以运行25年。不用燃料,运行成本低,发电过程中不易产生污染废弃物,是理想的清洁能源。

第二篇:光伏发电系统逆变器的设计

摘 要:本文根据光伏电池阵列和逆变电路的特点,研究比较了常见的光伏逆变器拓扑结构,本文针对光伏发电系统,设计了一种并网逆变器。选择由前级DC-DC电路和后级DC-AC电路组成的双极式系统;比较分析了各种DC-DC电路最终选择了Boost电路作为升压电路,后级的DC-AC电路采用了基本全桥逆变器。在设计光伏并网逆变器的基础上,利用Matlab对系统的各个控制环节以及主电路进行了仿真,最终验证了控制的正确定性。

【关键词】Boost电路 电流跟踪 逆变器

1 逆变器或电源控制器(PCU)在并网太阳能发电系统中起着非常重要的作用

PCU的主要作用就是将发电系统中产生的直流电转换为可以入网的标准交流电,当供电部门中止供电的时候,PCU会自动切断电源。当太阳能光伏发电系统输出的电能超过系统负载实际所需的电量时,将多余的电量传输给公共电网。在阴雨天或者夜晚,太阳能光伏发电系统输出的电能小于系统负荷实际所需的电能,可通过公共电网补充系统负载所需要的电能。同时也要保证在公共电网故障或者维修的时候,太阳能光伏发电系统将不会把电能亏送到公共电网上,以使系统运行稳定可靠。如图1所示。

2 Boost电路工作原理

为了满足并网的要求,升压电路需要将光伏阵列的输出电压上升为比电网峰值更高的直流电压。图2为Boost的电路结构。其中US为输入电压,VT为开关管,C为储能电容,L为升压电感。VT为快速开关管,使用PWM控制。

根据升压电感电流的连续与否,Boost有两种工作方式,连续和断续状态。为了保证电能质量,光伏并网系统中要求Boost必须工作在连续状态,这样才能保证输出电流不为脉冲状态。Boost电路有两个工作过程,储能和放电。我们选择Boost变换器为二级非隔离型逆变器的DC-DC环节变换器。选择全桥逆变器为DC-AC电路。其主电路结构如下:

采用的光伏并网系统主电路如图3所示,并网逆变器选用两级式非隔离型。本系统中的前级DC/DC 升压电路选择Boost电路,后级为全桥逆变电路。

我们选择开关频率为fs=12.8kHz,所以逆变器输出电压的实际载频率为2fs=25.6kHz。我们采用DSP作为实现控制的硬件结构,使用TMS320LF2407DSP芯片作为本文控制系统核心。

3 基于DSP的并网控制系统

并网系统的整体硬件结构框图如图4所示。

逆变器数字并网控制系统以TMS320LF2407芯片为控制核心,充分利用了DSP的硬件资源,如全比较单元PWM1/2,PWM3/4,捕获口CAP2,A/D采样,以及外部中断XINT1等。LF2407芯片采集外部电压、电流信号并进行A/D转换,通过DSP内部的控制算法计算PWM脉宽,控制逆变器桥臂开关开通或关断,锁定电网电压的频率和相位,控制输出电流单位功率因数并网。

4 全桥逆变器控制方式和PI整定

我们采用三角波比较的方式对逆变器进行控制,并利用PI整定作为放大器。PI的参数决定了三角波控制方式的跟踪特性,三角波载波的频率越高,输出波形谐波更易滤除。加入PI整定环节后的三角波控制方式如图5。

本文将光伏系统设置为二阶系统,其目的是提高光伏发电系统的动态性能,提高响应速度。并利用最佳的二阶系统工程方式对PI参数进行整定

PI 参数整定后光伏发电系统开环传递函数为:

加入PI 调节能大幅度提升动态性性能,系统响应速度加快。其中Tpwm=78us

我们选择了单极性调制作为逆变器的调制方式,那么必须获得逆变器的输出参考电流才能对系统进行调制,逆变器的参考电流由电网电压和系统的输出功率等条件获得。

参考电流的获取过程原理如图6。

Upv光伏发电系统Boost输出直流电压,Ipv光伏发电系统Boost输出直流电流,Ugird是电网电压的有效值,Ppv是光伏器件的输出功率。其中Ppv=Upv×Ipv,在不考虑电路损耗的情况下IERF=Ppv/Ugird。光伏电池的最大功率输出保持在3200W 左右,与电网电压平均幅值220v 相除,得到逆变器输出电流的幅值,幅值乘以正弦,即得到给定电流。

5 仿真结果

我们利用Matlab对控制方式和电路进行了仿真。

电流采样仿真如图7所示。

电流采样的结果如图8。其中上幅为采样电流;下幅为d-q转换后的dv和电压波形对比。

逆变器仿真

逆变器的仿真结构如图9。逆变器仿真结果如10所示。

图10中第一层示出采样电流波形,第二层示出逆变器的电流,第三幅为电网电压波形。由图可以看出,逆变转变后的电流波形与电网电压同相。

6 结论

本文针对光伏发电系统设计了一种并网逆变器,重点选择和研究了主电路和控制方法,选择了主电路的拓扑结构,设计了前级的Boost和后级的全桥逆变电路,分析了主电路各个部分的工作原理,并对主电路各个器件参数进行了计算。

参考文献

[1]王爱超.光伏发电系统中单相并网逆变器的研究[D].曲阜:曲阜师范大学,2012.96-105.

[2]日本光发电协会编,刘树民,宏伟译.太阳能光伏发电系统的设计与施工[M].北京:科学出版社,2006:58-72.

[3]赵争鸣,陈剑,孙晓瑛.太阳能光伏发电最大功率点跟踪系统[M].北京:电子工业出版社,2011:389-400.

作者简介

赵若静(1985-),女,山西省临汾市人。现为山西农业大学信息学院教师。研究方向为信号处理。

作者单位

山西农业大学信息学院 山西省太谷县市 030800

第三篇:河南太阳能光伏发电系统投资回报比分析/光伏补贴政策

河南全省各地平均日照时间是2200-3000小时,河南省为太阳能资源三类地区,为我国太阳能资源中等类型地区,年太阳辐射总量为5000-5850MJ/m2,相当于日辐射量3.8-4.5KWh/m2。

太阳能发电量:

按河南当地计算,5KW家用屋顶太阳能电站系统,它的平均日发电量20千瓦时,一年发电总量约7000千瓦时。

政策补贴:

根据目前国家补贴政策为度电0.42元,则地方补贴根据当地政策给予补贴,各省市也不尽相同,补贴政策为执行20年

工商业用电电价(算上国家0.42元补贴,地方暂无补贴) 工业用电:

达到高峰电价:度电收费在1.168—1.273元,回收成本在4.1—4.4年左右

达到尖峰电价(1千伏以上):度电收费在1.312—1.371元,回收成本在3.8—4年左右 商业用电:

用电量较少企业,针对小型工厂、饭店、医院、商业门店等

1、用电电压在1千伏以下:目前电价在0.8252元/度,回收成本在5.5年左右

2、用电电价在1—10千伏:目前电价在0.7912元/度,回收成本在5.7年左右

3、用电电价在35千伏以上:目前电价在0.7582元/度,回收成本在5.9年左右

一般商业用电:用电量较高企业,针对大型工厂、盈利机构等,度电收费在1元以上,全部自用回收成本在4.9年左右,甚至更短

一般商业用电:度电电价在0.9—1元左右,度电回收成本在4.9—5.26年左右 农业用电:

度电收费在0.466—0.484元,回收成本在8年左右

农业深井及高扬程排灌:度电收费在0.446—0.464元,回收成本在8年左右

投资回报:

家用、屋顶按阶梯电价算(算上国家0.42元补贴,若地方暂无补贴): 第一档(月):

180度以下,收费标准在0.56元/度

推荐安装1KW-2KW发电设备,投资1—2万元左右,全部自用成本回收年限7年左右,全部出售给电网公司成本回收年限(按卖电0.43元/度算)8年左右。 综述:成本回收年限在7—8年左右 第二档(月):

180度—260度,收费标准在0.61元/度

推荐安装2KW-3KW发电设备,投资2—3万元左右,全部自用成本回收年限6.7年左右,全部出售给电网公司成本回收年限(按卖电0.43元/度算)8年左右 综述:成本回收年限在6.7—8年左右 第三档(月):

260度以上,收费标准在0.86元/度

推荐安装3KW以上发电设备,投资3万元以上,全部自用成本回收年限在5.5年左右,全部出售给电网公司成本回收年限(按卖电0.43元/度算)8年左右 综述:成本回收年限在5.5—8年左右

备注:以上数据仅供参考,具体以当地实际情况为准!

主要设备:

组件:250W 多晶硅组件(可选单晶组件,价格另议)

逆变器:三相双路逆变器1台 (可选微型逆变器,价格另议) 支架:1套(根据屋顶实际尺寸设计定制) 电缆:光伏专用直流和交流电缆1套

配电箱:1台(含空关和断路器等) 其他:其他主辅料。

安装施工:派专业安装人员3-20人。

安装区域: 河南郑州及周边地区都可以安排专业技术人员赴现场安装。

安装太阳能发电系统的优势: 可自我调节“体温”

这些太阳能板铺设在屋顶上让屋顶有了自我调节“体温”的能力。根据经验,铺设了太阳能板的屋顶,夏日平均气温比未铺设的降低7℃-8℃;有效遮阳的建筑,夏日平均气温降低2℃-3℃。建筑的温度因此得到了有效的调控,空调能耗可以节省40%-60%,建筑的节能效益也不言而喻。

第四篇:光伏发电系统逆变器产品安全性能认证实施规则

产品安全性能认证实施规则 CQC/RYXXX-2009 光伏发电系统逆变器产品 安全性能认证实施规则 Implementation Rules for Safety and Performance Certification of

Power Converters for use in Photovoltaic Power Systems

2009年6月30日发布 2009年6月30日实施 中国质量认证中心

为了保证CQC标志产品认证工作顺利开展,确保认证各项工作符合ISO/IEC导则6

5、IAF对导则65的解释文件、认可准则相关文件要求,以及CQC产品认证质量手册、程序文件,使各项相关活动得以规范有序进行,制定本特殊规则。 制定单位:中国质量认证中心

深圳电子产品质量检测中心 主要起草人:王克勤 谢玉章 康巍

CQC/RY232-2005 光伏发电系统逆变器

1.适用范围 本认证实施规则适用于光伏系统用、输入侧的直流电压不超过1500VDC,交流电路侧的开路输出电压不超过1000VAC的直流-交流逆变器和控制器/逆变器一体机产品,包括并网连接式和脱网式逆变器。本规则必须与《CQC标志认证通用规则》一起使用。

2. 认证模式 光伏发电系统逆变器的安全性能认证模式为:产品型式试验+初次工厂检查+获证后监督。 认证的基本环节包括: a. 认证的申请 b. 产品型式试验 c. 初始工厂检查 d. 认证结果评价与批准 e. 获证后的监督 f. 复审 3.认证申请 3.1认证单元划分 原则上以制造商申请的产品型号(功率容量)作为申请单元,一个型号作为一个认证单元。由若干功率逆变器单元并联扩展组成的系统则可按并联扩展后的系统型号作为申请单元,也可按照基本功率单元申请认证。 型号相同但生产场地不同的产品也不能作为同一申请单元,但是型式试验项目可减免。 3.2申请认证提交资料 3.2.1申请资料 a. 正式申请书(网络填写申请书后打印或下载空白申请书填写) b. 工厂检查调查表(首次申请时) 3.2.2证明资料 a. 申请人、制造商、生产厂的注册证明如营业执照、组织机构代码(首次申请时) b. 申请人为销售者、进口商时,还须提交销售者和生产者、进口商和生产者订立的相关合同副本 c. 代理人的授权委托书(如有) d. 有效的监督检查报告或工厂检查报告(如有) e. 其他需要的文件 3.2.3提供与产品有关的资料 a. 产品总装图、电器原理图、线路图、产品说明书等 b. 电参数表 c. 关键零部件/元器件清单 d. 同一申请单元内各个型号产品之间的差异说明 e. CB测试证书、CB测试报告(申请人持CB测试证书申请时)

4.型式试验 4.1样品 4.1.1送样原则

第1页 共9页

CQC/RY232-2005 光伏发电系统逆变器 CQC

从申请认证单元中选取代表性样品。 申请单元中只有一个型号的,送本型号的样品。 以系列产品申请认证时,应从系列产品中选取具有代表性的产品作为主检产品,主检产品应该是该系列产品中对性能影响最不利的产品,其余型号产品为附检产品,其样品为附检样品。每个申请单元至少送交一个样品。 由若干功率逆变器单元并联扩展组成的逆变器系统应至少送主单元和从单元样品各一个。通常情况下,不需要为孤岛防护措施测试和电网接口特性测试单独提供样品。如果电网接口特性测试不符合要求,申请人可以申请追加样品测试,追加样品应为二台,如其中一个或以上样品的追加测试仍不合格,则判不满足该标准要求。 4.1.2 现场试验

因样品功率超大(例如,输出功率大于100kW)、使用光伏阵列作为试验的实际输入等极端条件或特殊情况时,可以安排部分项目或者全部项目现场测试。试验室可以利用企业现场测试设备和设施,或将试验室测试仪器、设备带到现场进行测试。检测机构工程师负责监测现场测试数据并对数据负责,现场测试程序应符合CQC 或检测机构的现场测试规定或程序。 4.1.3样品及资料处置 试验结束并出具试验报告后,有关试验记录和相关资料由检测机构保存,样品按CQC有关规定处置。 4.2型式试验 4.2.1依据标准 光伏发电系统逆变器申请方可以按以下标准申请产品认证: IEC62109.1-2008《太阳能光伏电源系统用功率逆变器-安全要求》 IEC62116-2008《并网光伏逆变器孤岛防护措施试验》 GB/T 19939-2005《光伏(PV)系统电网接口特性》 CNCA/CTS0004:2009认证技术规范要求 4.2.3试验方法

并网逆变器需进行4.2.1条规定的检验标准的全部项目,脱网逆变器只需要进行IEC62109.1《太阳能光伏电源系统用功率逆变器-安全要求》标准中规定的所有项目。 4.2.4型式试验时限 一般为30个工作日(因检测项目不合格,企业进行整改和重新检验的时间不计算在内)。从收到样品和检测费用算起。 4.2.5判定 型式试验应符合光伏发电系统逆变器标准IEC62109.1-2008 或IEC62116-2008 和/或GB/T 19939-2005的要求。产品如有部分试验项目不符合标准的要求,允许申请人整改后重新提交样品进行试验。重新试验的样品数量和试验项目视不合格情况由检测机构决定,整改期限不应超过6个月。 任何1项不符合标准要求时,则判定该认证单元产品不符合认证要求。 4.2.6 型式试验报告 由CQC指定的检测机构对样品进行试验,并按规定格式出具试验报告。认证批准后,检测机构负责给申请人寄送一份试验报告。

第2页 共9页

CQC/RY232-2005 光伏发电系统逆变器 4.

3关键零部件/元器件要求 关键零部件/元器件见附件2。为确保获证产品的一致性,关键零部件/元器件的技术参数、规格型号、制造商、生产厂发生变更时,持证人应及时提出变更申请,并送样进行试验(或提供书面资料确认),经CQC批准后方可在获证产品中使用。 5.初始工厂检查

5.1检查内容 工厂检查的内容为工厂质量保证能力和产品一致性检查。

5.1.1 工厂质量保证能力检查 按CQC/F001-2009《CQC标志认证工厂质量保证能力要求》和附件1《光伏发电系统逆变器安全性能认证工厂质量控制检验要求》进行检查。 5.1.2产品一致性检查 工厂检查时,应在生产现场检查申请认证产品的一致性,重点核查以下内容。 1)认证产品的标识应与型式试验报告上所标明的信息一致; 2)认证产品的结构应与型式试验报告中一致; 3)认证产品所用的关键零部件应与型式试验报告中一致; 4)若涉及多系列产品,则每系列产品应至少抽取一个规格型号做一致性检查。工厂检查时,对产品安全性能可采取现场见证试验。 5.1.3工厂质量保证能力检查和产品一致性检查应覆盖申请认证的所有产品和加工场所。 5.2初始工厂检查时间 一般情况下,产品型式试验合格后,再进行初始工厂检查。必要时,产品型式试验和工厂检查也可同时进行。工厂检查原则上应在产品型式试验结束后一年内完成,否则应重新进行产品型式试验。初始工厂检查时,工厂应生产申请认证范围内的产品。 工厂检查人日数根据所申请认证产品的复杂程度及工厂的生产规模来确定,具体人日数见表1。如果·申请单元数以及单元内规格型号较多,可增加0.5-2人日。 ·表1 初始工厂检查人·日数 生产规模 100人以下 100人及以上 人日数 2 3 同类产品已经获得CQC颁发的CCC证书或自愿证书的情况需要减免检查人日数,可视情况减少1个人日。 5.3初始工厂检查结论 检查组负责报告检查结论。工厂检查结论为不通过的,检查组直接向CQC报告。工厂检查存在不符合项时,工厂应在规定期限内完成整改,CQC采取适当方式对整改结果进行验证。未能按期完成整改的或整改不通过的,按工厂检查不通过处理。 6.认证结果评价与批准 6.1认证结果评价与批准 CQC组织对型式试验、工厂检查结论进行综合评价。评价合格后,向申请人颁发产品认证证书,每一个申请认证单元颁发一份认证证书。 6.2 认证时限 在完成产品型式试验和工厂检查后,对符合认证要求的,一般情况下在30天内出具认证证书。 6.3认证终止 第3页 共9页

CQC/RY232-2005 光伏发电系统逆变器 当型式试验不合格或工厂检查不通过,CQC做出不合格决定,终止认证。终止认证后如要继续申请认证,重新申请认证。 7.获证后的监督 获证后监督的内容包括工厂产品质量保证能力的监督检查+获证产品一致性检查。 7.1监督检查时间 7.1.1监督检查频次 一般情况下,初始工厂检查结束后12个月内应安排监督,每次监督检查间隔不超过12个月。若发生下述情况之一可增加监督频次: 1)获证产品出现严重质量问题或用户提出严重投诉并经查实为持证人责任的; 2)CQC有足够理由对获证产品与认证依据标准的符合性提出质疑时; 3)有足够信息表明制造商、生产厂由于变更组织机构、生产条件、质量管理体系等而可能影响产品符合性或一致性时。 7.1.2监督检查人日数 根据所申请认证产品的复杂程度及工厂的生产规模来确定,具体人日数见表2。如果申请单元数以及单元内规格型号较多,可增加0.5-1人日。 表2 监督检查检查人·日数

生产规模 100人以下 100人及以上 人日数 1 2

7.2监督检查的内容 CQC根据CQC/F001-2009《CQC标志认证工厂质量保证能力要求》,对工厂进行监督检查。3,4,5,9及CQC标志和认证证书的使用情况,是每次监督检查的必查项目。其他项目可以选查,证书有效期内至少覆盖CQC/F001-2009中规定的全部条款。 获证产品一致性检查的内容与工厂初始检查时的产品一致性检查内容基本相同。 按照附件2《光伏发电系统逆变器安全性能认证工厂质量控制检验要求》对产品质量检测进行核查。 7.3监督检查结论 检查组负责报告监督检查结论。监督检查结论为不通过的,检查组直接向CQC报告。监督检查存在不符合项时,工厂应在规定期限内完成整改,CQC采取适当方式对整改结果进行验证。未能按期完成整改的或整改不通过,按监督检查不通过处理。 7.4结果评价 CQC组织对监督检查结论进行评价,评价合格的,认证证书持续有效。当监督检查不通过时,按照9.3规定执行。 8. 复审 有效期满前6个月提交复审申请,进行型式试验和工厂检查。型式试验由申请人按CQC要求送样,进行部分项目检测,必要时进行全项目检测。复审工厂检查人日数根据所申请认证产品的复杂程度及工厂的生产规模来确定,具体人日数见表3。如果申请单元数以及单元内规格型号较多,可增加0.5-1人日。) 表3 复审工厂检查人·日数 生产规模 100人以下 100人及以上 人日数 2 3 9. 认证证书

第4页 共9页

CQC/RY232-2005 光伏发电系统逆变器 9.

1认证证书的保持

9.1.1证书的有效性 本规则覆盖产品的认证证书有效期为4年,证书有效性通过定期的监督维持。 9.1.2认证产品的变更 9.1.2.1变更的申请 证书上的内容发生变化时,或产品中涉及安全和/或性能的设计、结构参数、外形、关键零部件/元器件发生变更时,或CQC规定的其他事项发生变更时,证书持有者应向CQC提出变更申请。 9.1.2.2变更评价和批准 CQC根据变更的内容和提供的资料进行评价,确定是否可以变更。如需安排试验和/或工厂检查,则试验合格和/或工厂检查通过后方能进行变更。原则上,应以最初进行产品型式试验的认证产品为变更评价的基础。试验和工厂检查按CQC相关规定执行。 对符合要求的,批准变更。换发新证书的,新证书的编号、批准有效日期保持不变,并注明换证日期。

9.2认证证书覆盖产品的扩展 9.2.1扩展程序 认证证书持有者需要增加与已经获得认证的产品为同一认证单元的产品认证范围时,应从认证申请开始办理手续,并说明扩展要求。CQC核查扩展产品与原认证产品的一致性,确认原认证结果对扩展产品的有效性,针对差异和/或扩展的范围做补充试验和/或工厂检查,对符合要求的,根据认证证书持有者的要求单独颁发认证证书或换发认证证书。 原则上,应以最初进行产品型式试验的认证产品为扩展评价的基础。 9.2.2样品要求 证书持有者应先提供扩展产品的有关技术资料,需要送样时,证书持有者应按本规则第4章的要求选送样品供核查或进行差异试验。 9.3认证证书的暂停、恢复、注销和撤销 证书的使用应符合CQC有关证书管理规定的要求。当证书持有者违反认证有关规定或认证产品达不到认证要求时,CQC按有关规定对认证证书做出相应的暂停、撤消和注销的处理,并将处理结果进行公告。证书持有者可以向CQC申请暂停、注销其持有的认证证书。 证书暂停期间,证书持有者如果需要恢复认证证书,应在规定的暂停期限内向CQC提出恢复申请,CQC按有关规定进行恢复处理。否则,CQC将撤消或注销被暂停的认证证书。 10. 产品认证标志的使用 证书持有者应按CQC有关规定使用标志。申请备案或购买标志。 10.1准许使用的标志样式

10.2变形认证标志的使用 不允许使用变形认证标志。 10.3加施方式

第5页 共9页

CQC/RY232-2005 光伏发电系统逆变器 采用标准规格标志(标签)、模制式、丝印式或铭牌印刷四种方式中任何一种。 10.4加施位置 应在产品本体明显位置(或说明书/包装)上加施认证标志。 11.收费 认证费用按CQC有关规定收取。 第6页 共9页

CQC/RY232-2005 光伏发电系统逆变器

附件

1 光伏发电系统逆变器CQC标志认认证工厂质量控制检验要求

产品 确认 例行 认证依据标准 检验项目 名称 检验 检验 设备外观,铭牌信息,警告标识 1次/年 √ 文件资料 1次/年 沙尘防护试验 1次/年 浸水试验 1次/年 脉冲试验 1次/年 耐电强度试验 1次/年 √ 局部放电试验 1次/年 IEC62109.1 保护接地试验 1次/年 √ 接触电流试验 1次/年 √ 多重电压设备试验 1次/年 运动物体机械危害防护试验 1次/年 光伏发材料阻燃试验 1次/年 电系统逆变器 声压危害防护试验 1次/年 电机过热保护 1次/年 过温保护装置 1次/年 IEC62116 孤岛防护措施 1次/年 电压,频率 1次/年 √ 闪变 1次/年 直流注入分量 1次/年 √ GB/T 19939- 2005 正常频率工作范围 1次/年 √ 谐波和波形畸变 1次/年 √ 功率因数 1次/年 CNCA/CTS000 4:2009 注: 1.例行检验是在生产的最终阶段对生产线上的产品进行的100%检验,通常检验后,除包装和加贴标签外,不再进一步加工。确认检验是为验证产品持续符合标准要求进行的抽样检验,确认试验应按标准的规定进行; 2.例行检验允许用经验证后确定的等效、快速的方法进行; 3.确认检验时,若工厂不具备测试设备,可委托试验室试验。

第7页 共9页

CQC/RY232-2005 光伏发电系统逆变器

附件

2 光伏发电系统逆变器性能有影响的主要零部件 元件/材料名称 制 造 厂 型 号 技术数据 相关认证情况 电源线

插头电源线

熔断器

热保护器 PCB 变压器

X类电容器

Y类电容器 电源滤波器

电源开关

保护开关 瞬态高压抑制器

输入输出耦合器

电动机

电源电压选择器 蓄电池 注:以上主要零部件仅为参考,以薄膜光伏组件实际组成为准。 第8页 共9页

CQC/RY232-2005 光伏发电系统逆变器 申请人声明 本组织保证该产品描述中产品设计参数及关键零部件/元器件等与相应申请认证产品保持一致。 获证后,本组织保证获证产品只配用经CQC确认的上述关键零部件/元器件。如果关键零部件/元器件需进行变更(增加、替换),本组织将向CQC提出变更申请,未经CQC的认可,不擅自变更使用,以确保该规格型号始终符合产品认证要求。 申请人 : 公章 日期: 年 月 日

第9页 共9页

第五篇:第7章 太阳能光伏发电系统的安装施工与检查测试

太阳能光伏发电系统是涉及多种专业领域的高科技发电系统,不仅要进行合理可靠、经济实用的优化设计,选用高质量的设备、部件,还必须进行认真、规范的安装施工和检测调试。系统容量越大,电流电压越高,安装调试工作就越重要。否则,轻则会影响光伏发电系 统的发电效率,造成资源浪费,重则会频繁发生故障,甚至损坏设备。另外还要特别注意在 安装施工和检测全过程中的人身安全、设备安全、电气安全、结构安全及工程安全问题,做到规范施工、安全作业,安装施工人员要通过专业技术培训合格,并在专业工程技术人员的现场指导和参与下进行作业。 7.1 太阳能光伏发电系统的安装施工

太阳能光伏发电系统的安装施工分为两大类,是太阳能电池方阵在屋顶或地面的安装,及配电柜、逆变器、避雷系统等电器设备的安装;二是太阳能电池组件间的连线及各设备之 间的连接线路铺设施工。光伏发电系统安装施工的主要内容如图7-1所示。

7.1.1 太阳能光伏发电系统的安装施工 1.安装位置的确定

在光伏发电系统设计时,就要在计划施工的现场进行勘测,确定安装方式和位置,测量安装场地的尺寸,确定电池组件方阵的朝向方位角和倾斜角。太阳能电池方阵的安装地点不能有建筑物或树木等遮挡物,如实在无法避免,也要保证太阳能方阵在上午9 时到下午16时能接收到阳光 。太阳能电池方阵与方阵的间距等都应严格按照设计要求确定。 2.电池方阵基础与支架的施工

首先进行场地平整挖坑,按设计要求的位置制作浇注光伏电池方阵的支架基础。基础预埋件要平整牢固。

当要在屋顶安装电池方阵时,要使基座预埋件与屋顶主体结构的钢筋牢固焊接或连接, 如果受到结构限制无法进行焊接或连接的,应采取措施加大基座与屋顶的附着力,并采用面介绍的铁线拉紧法或支架延长固定法等加以部分按照国家标准《屋面工程质量验收规范》渗水、漏雨现象发生。

太阳能电池方阵支架应釆用热镀锌钢材或普通角钢制作,沿海地区可考虑采用不诱钢等 耐腐蚀钢材制作。支架的焊接制作质量要符合国家标准《钢结构工程施工质量验收规范》(GB 50205-2001)的要求。普通钢材支架的全部及热镀锌钢材支架的焊接部位,要进行涂防锈漆等防腐处理。太阳能电池支架与基础之间应焊接或安装牢固。 3.电池组件的安装

(1)太阳能光伏电池组件在存放、搬运、安装等过程中,不得碰撞或受损,特别要注意防止组件玻璃表面及背面的背板材料受到硬物的直接冲击。 (2)组件安装前应根据组件生产厂家提供的出厂实测技术参数和曲线,对电池组件进行分组,将峰值工作电流相近的组件串联在一起,将峰值工作电压相近的组件并联在一起,以充分发挥电池方阵的整体效能。

(3)将将分好组的组件依次摆放到支架上,并用螺丝穿过支架和组件边框的固定孔,将组件与支架固定。

(4)按照方阵组件串并联的设计要求,用电缆将组件的正负极进行连接。对于接线盒直接带有连接线和连接器的组件,在连接器上都标注有正负极性,只要将连接器接插件直接插接即可。电缆连接完毕,要用绑带、钢丝卡等将电缆固定在支架上,以免长期风吹摇动造成电缆磨损或接触不良。

(5)安装中要注意方阵的正负极两输出端,不能短路,否则可能造成人身事故或引起火灾。在阳光下安装时,最好用黑塑料薄膜、包装纸片等不透光材料将太阳能电池组件遮盖, 以免输出电压过高影响连接操作或造成施工人员触电的危险。

(6)安装斜坡屋顶的建材一体化太阳能电池组件时,互相间的上下左右防雨连接结构必须严格施工,严禁漏雨、漏水,外表必须整齐美观,避免光伏组件扭曲受力。屋顶坡度超过10°时,要设置施工脚踏板,防止人员或工具物品滑落。严禁下雨天在屋顶面施工。

(7)太阳能电池组件安装完毕之后要先测量总的电流和电压,如果不合乎设计要求,就应该对各个支路分别测量。当然为了避免各个支路互相影响,在测量各个支路的电流与电压时,各个支路要相互断开。 7.1.2 光伏控制器和逆变器等电气设备的安装 1.控制器的安装

小功率控制器安装时要先连接蓄电池,再连接太阳能电池组件的输入,最后连接负载或逆变器,安装时注意正负极不要接反。中、大功率控制器安装时,由于长途运输的原因,要先检查外观有无损坏,内部连接线和螺钉有无松动等,中功率控制器可固定在墙壁或者摆放 在工作台上,大功率控制器可直接在配电室内地面安装。控制器若需要在室外安装时,必须 符合密封防潮要求。控制器接线时要将工作开关放在关的位置,先连接蓄电池组输出引线,再连接太阳能电池方阵的输出引线,在有阳光照射时闭合开关,观察是否有正常的直流电压 和充电电流,一切正常后,可进行与逆变器的连接。 2.逆变器的安装

逆变器在安装前同样要进行外观及内部线路的检查,检查无误后先将逆变器的输入开关断开,再与控制器的输出接线连接。接线时要注意分清正负极极性,并保证连接牢固。接线完毕,可接通逆变器的输入开关,待逆变器自检测正常后,如果输出无短路现象,则可以打开输出开关,检查温升情况和运行情况,使逆变器处于试运行状态。 逆变器的安装位置确定可根据其体积、重量大小分别放置在工作台面、地面等,若需要在室外安装时,必须符合密封防潮要求。 7.1.3 防雷与接地系统的安装施工 1.防雷器的安装 (1)安装方法。

防雷器的安装比较简单,防雷器模块、火花放电间隙模块及报警模块等,都可以非常方便地组合并直接安装到配电箱中标准的35mm导轨上。 (2)安装位置的确定

一般来说,防雷器都要安装在根据分区防雷理论要求确定的分区交界处。B级(III级)防雷器一般安装在电缆进入建筑物的入口处,例如安装在电源的主配电柜中。C级(II级)防雷器一般安装在分配电柜中,作为基本保护的补充。D级(I级)防雷器属于精细保护级防雷,要尽可能地靠近被保护设备端进行安装。防雷分区理论及防雷器等级是根据DIN VDE 0185和IEC 61312-1等相关标准确定的。 (3)电气连接。

防雷器的连接导线必须保持尽可能短,以避免导线的阻抗和感抗产生附加的残压降。如果现场安装时连接线长度无法小于0.5m时,则防雷器的连接方式必须使用V字形方式连接(如图7-2所示)。同时,布线时必须将防雷器的输入线和输出线尽可能地保持较远距离的排布。

另外布线时要注意将已经保护的线路和未保护的线路(包括接地线),绝对不要近距离平 行排布,它们的排布必须有一定空间距离或通过屏蔽装置进行隔离,以防止从未保护的线路 向已经保护的线路感应雷电浪涌电流。

防雷器连接线的截面积应和配电系统的相线及零线(L

1、L

2、L

2、N)的截面积相同或按照表7-1方式选取。

(4)零线和地线的连接

零线的连接可以分流相当可观的雷电流,在主配电柜中,零线的连接线截面积应不小于 16mm2,当在一些用电量较小的系统中,零线的截面积可以相应选择的较小些。防雷器接地 线的截面积一般取主电路截面积的一半,或按照表7-1方式选取。

(5)接地和等电位连接。

防雷器的接地线必须和设备的接地线或系统保护接地可靠连接。如果系统存在雷击保护等电位连接系统,防雷器的接地线最终也必须和等电位连接系统可靠连接。系统中每一个局部的等电位排也都必须和主等电位连接排可靠连接,连接线的截面积必须满足接地线的最小截面积要求。 (6)防雷器的失效保护方法。

基于电气安全的原因,任何并联安装在市电电源相对零或相对地之间的电气元件,为防止故障短路,必须在该电气元件前安装短路保护器件,例如空气开关或保险丝。防雷器也不例外,在防雷器的入线处,也必须加装空气开关或保险丝,目的是当防雷器因雷击保护击穿或因电源故障损坏时,能够及时切断损坏的防雷器与电源之间的联系,待故障防雷器修复或更换后,再将保护空气开关复位或将熔断的保险丝更换,防雷器恢复保护待命状态。

为保证短路保护器件的可靠起效,一般C级防雷器前选取安装额定电流值为32A (C类脱扣曲线)的空气开关,B级防雷器前可选择额定电流值约为63A的空气开关。

2. 接地系统的安装施工 (1)接地体的埋设

在进行配电室基础建设和太阳电池方阵基础建设的同时,在配电机房附近选择一地下无管道、无阴沟、土层较厚、潮湿的开阔地面,一字排列挖直径lm、深2m的坑2~3个(其中的1或2个坑用于埋设电气设备保护等地线的接地体,另一个坑用于单独埋设避雷针地线的接地体),坑与坑的间距应不小于3m。坑内放入专用接地体或按照第6章中介绍内容设计制作的接地体,接地体应垂直放置在坑的中央,其上端离地面的最小高度应大于等于0.7m, 放置前要先将引下线与接地体可靠连接。

将接地体放入坑中后,在其周围填充接地专用降阻剂,直至基本将接地体掩埋。填充过程中应同时向坑内注入一定的清水,以使降阻剂充分起效。最后用原土将坑填满整实。电器、设备保护等接地线的引下线最好采用截面积35mm2接地专用多股铜芯电缆连接,避雷针的引下线可用直径8mm圆钢连接。 (2)避雷针的安装。

避雷针的安装最好依附在配电室等建筑物旁边,以利于安装固定,并尽量在接地体的埋设地点附近。避雷针的高度根据要保护的范围而定,条件允许时尽量单独接地。

7.1.4 蓄电池组的安装

在小型光伏发电系统中蓄电池的安装位置应尽可能靠近太阳能电池和控制器。在中大型光伏发电系统中,蓄电池最好与控制器、逆变器及交流配电柜等分室而放。蓄电池的安装位置要保证通风良好,排水方便,防止高温,环境温度应尽量保持在10~25°C 之间。

蓄电池与地面之间应采取绝缘措施,一般可垫木板或其他绝缘物,以免蓄电池与地面短路而放电。如果蓄电池数量较多时,可以安装在蓄电池专用支架上,且支架要可靠接地。

蓄电池安装结束后,要测量蓄电池的总电压和单只电压,单只电压大小要相等。要注意的是,接线时辨别清楚正负极,保证接线质量。

蓄电池极柱与接线之间必须紧密接触,并在极柱与连接点涂一层凡士林油膜,以防天长日久腐蚀生锈造成接触不良。 7.1.5 线缆的铺设与连接

1.太阳能光伏发电系统连接线缆铺设注意事项

①不得在墙和支架的锐角边缘铺设电缆,以免切割、磨损伤害电缆绝缘层引起短路,或切断导线引起断路。 ②应为电缆提供足够的支撑和固定,防止风吹等对电缆造成机械损伤。 ③布线的松紧度要适当,过于张紧会因热胀冷缩造成断裂。

④考虑环境因素影响,线缆绝缘层应能耐受风吹、日晒、雨淋、腐蚀等。 ⑤电缆接头要特殊处理,要防止氧化和接触不良,必要时要镀锡或锡焊处理。 ⑥同一电路馈线和回线应尽可能绞合在一起。

⑦线缆外皮颜色选择要规范,如火线、零线和地线等颜色要加以区分。 ⑧线缆的截面积要与其线路工作电流相匹配,截面积过小,可能使导线发热,造成线路损耗过大,甚至使绝缘外皮熔化,产生短路甚至火灾。特别是在低电压直流电路中,线路损耗尤其明显。截面积过大,又会造成不必要的浪费。因此系统各部分线缆要根据各自通过电流的大小进行选择确定。

⑨当线缆铺设需要穿过楼面、屋面或墙面时,其防水套管与建筑主体之间的缝隙必须做好防水密封处理,建筑表面要处理光洁。 2. 线缆的铺设与连接

太阳能光伏发电系统的线缆铺设与连接主要以直流布线工程为主,而且串联、并联接线场合较多。因此施工时要特别注意正负极性。

(1)在进行光伏电池方阵与直流接线箱之间的线路连接时,所使用导线的截面积要满足最大短路电流的需要。各组件方阵串的输出引线要做编号和正负极性的标记,然后引入直流接线箱。线缆在进入接线箱或房屋穿线孔时,要做个如图7-3所示的防水弯,以防积水顺电缆进入屋内或机箱内。 (2)当太阳能电池方阵

(3)交流逆变器输出的电气方式有单相二线制、单相三线制、三相三线制和三相四线制等,连接时注意相线和零线的正确连接。

7.2 太阳能光伏发电系统的检查测试

太阳能光伏发电系统安装完毕后,需要对整个系统进行检查和必要的测试,使系统能够长期稳定的正常运行。 7.2.1 光伏发电系统的检查

光伏发电系统的检查主要是对各个电气设备、部件等进行外观检查,内容包括电池组件方阵、基础支架、接线箱、控制器、逆变器、系统并网装置和接地系统等。

1.电池组件及方阵的检查

检查组件的电池片有无裂纹、缺角和变色;表面玻璃有无破损、污物;边框有无损伤、变形等。

检查方阵外观是否平整、美观,组件是否安装牢固,引线是否接触良好,引线外皮有否破损等。检查组件或方阵支架是否有生锈和螺丝松动之处。 2. 直流接线箱和交流配电柜的检查

检查外壳有无腐蚀、生锈、变形。内部接线有无错误,接线端子有无松动,外部接线有无损伤。 3.控制器、逆变器的检查

检查外壳有无腐蚀、生锈、变形。接线端子是否松动,输入、输出接线是否正确。

4.接地系统的检查

检查接地系统是否连接良好,有无松动。连接线是否有损伤。所有接地是否为等电位连接。 5.配线电缆的检查

太阳能光伏发电系统中的电线电缆在施工过程中,很可能出现碰伤和扭曲等,这会导致绝缘被破坏以及绝缘电阻下降等。因此在工程结束后,在做上述各项检查的过程中,同时对相关配线电缆进行外观检查,通过检查确认电线电缆有无损伤。

7.2.2 光伏发电系统的测试 1. 电池方阵的测试

一般情况下,方阵组件串中的太阳能电池组件的规格和型号都是相同的,可根据电池组件生产厂商提供的技术参数,查出单块组件的开路电压,将其乘以串联的数目,应基本等于组件串两端的开路电压。 通常由36片或72片电池片制造的电池组件,其开路电压约为21V或42V左右。如有若干块太阳能电池组件串联,则其组件串两端的开路电压应约为21V或42V的整数倍。 测量太阳电池组件串两端的开路电压,是否基本符合,若相差太大,则很可能有组件损坏、极性接反或是连接处接触不良等问题。可逐个检查组件的开路电压及连接状况,找出故障。

测量太阳能电池组件串两端的短路电流,应基本符合设计要求,若相差较大,则可能有的组件性能不良,应予以更换。

若太阳电池组件串联的数目较多,可能开路电压很高,测量时要注意安全。 所有太阳电池组件串都检查合格后,进行太阳电池组件并联串的检查。在确认所有的太阳能电池组件串的开路电压基本上都相同,方可进行各串的并联。并联后电压基本不变,总的短路电流应大体等于各个组件串的短路电流之和。在测量短路电流时,也要注意安全,电流太大时可能跳火花,会造成设备或人身事故。

若有多个子方阵,均按照以上方法检查合格后,方可将各个方阵输出的正、负极接入汇流箱或控制器,然后测量方阵总的工作电流和电压等参数。 2.绝缘电阻的测试

为了了解太阳能光伏发电系统各部分的绝缘状态,判断是否可以通电,需要进行绝缘电阻测试。绝缘电阻的测试一般是在太阳能光伏系统施工安装完毕准备开始运行前、运行过程中的定期检查时以及确定出现故障时进行。

绝缘电阻测试主要包括对太阳能电池方阵以及逆变器系统电路的测试。由于太阳能电池方阵在白天始终有较高电压存在,在进行太阳电池方阵电路的绝缘电阻测试时,要准备一个能够承受太阳能电池方阵短路电流的开关,先用短路开关将太阳电池阵列的输出端短路。根据需要选用500V或1000V的绝缘电阻计(兆欧表),然后测量太阳电池阵列的各输出端子对 地间的绝缘电阻。绝缘电阻值根据对地电压的不同其标准如表7-2所示。具体测试方法如图7-4所示。当电池方阵输出端装有防雷器时,测试前要将防雷器的接地线从电路中脱开, 测试完毕后再恢复原状。

逆变器电路的绝缘电阻测试方法如图7-5所示。根据逆变器额定工作电压的不同选择500V或1000V的绝缘电阻计进行测试。

逆变器绝缘电阻测试内容主要包括输入电路的绝缘电阻测试和输出电路的绝缘电阻测试。输入电路的绝缘电阻测试时,首先将太阳能电池与接线箱分离,并分别短路直流输入电路的所有端子和交流输出电路的所有输出端子,然后分别测量输入电路与地线间的绝缘电阻。逆变器的输入、输出绝缘电阻值测定标准参照表7-2。

3. 绝缘耐压的测试

对于太阳能电池方阵和逆变器,根据要求有时需要进行绝缘耐压测试,测量太阳能电池方阵电路和逆变器电路的绝缘耐压值。测量的条件和方法与上面的绝缘电阻测试相同。

进行太阳能电池方阵电路的绝缘耐压测试时,将标准太阳电池方阵的开路电压作为最大使用电压,对太阳能电池方阵电路加上最大使用电压的1.5倍的直流电压或1倍的交流电压, 测试时间为lOmin左右,检查是否出现绝缘破坏。绝缘耐压测试时一般要将防雷器等避雷装置取下或者从电路中脱开,然后进行测试。

在对逆变器电路进行绝缘耐压测试时,测试电压与太阳能电池方阵电路的测试电压相同, 测试时间也为lOmin,检查逆变器电路是否出现绝缘破坏。 4.接地电阻的测试

接地电阻一般使用接地电阻计进行测量,接地电阻计还包括一个接地电极引线以及两个辅助电极。接地电阻的测试方法如图7-6所示。测试时要将接地电极与两个辅助电极的间隔 各为20m左右,并成直线排列。将接地电极接在接地电阻计的E端子,辅助电极接在电阻计的P端子和C端子,即可测出接地电阻值。接地电阻计有手摇式、数字式及钳型式等,详细使用方法可参考具体机型的使用说明书。

5.控制器的性能测试

对于有条件的场合最好对控制器的性能也进行一下全面检测,验证其是否符合GB/T 19064—2003规定的具体要求。

对于一般的离网光伏系统,控制器的主要功能是防止蓄电池过充电和过放电。在与光伏系统连接前,最好先对控制器单独进行测试。可使用合适的直流稳压电源,为控制器的输入端提供稳定的工作电压,并调节电压大小,验证其充满断开、恢复连接及低压断开时的电压是否符合要求。有些控制器具有输出稳压功能,可在适当范围内改变输入电压,测量输出是否保持稳定。另外还要测试控制器的最大自身耗电是否满足不超过其额定工作电流的1%的要求。

若控制器还具备智能控制、设备保护、数据采集、状态显示、故障报警等功能,也可进行适当的检测。 对于小型光伏系统或确认控制器在出厂前已经调试合格,并且在运输和安装过程中并无任何损坏,在现场也可不再进行这些测试。

上一篇:高二语文期末考试试题下一篇:光伏发电项目备案程序