继电保护实训报告

2022-07-04

国民经济的快速发展下,越来越多的行业,开始通过报告的方式,用于记录工作内容。怎么样才能写出优质的报告呢?以下是小编收集整理的《继电保护实训报告》,仅供参考,希望能够帮助到大家。

第一篇:继电保护实训报告

继电保护实验报告

第一章电力自动化及继电保护实验装置交流及直流电源操作说明

一、实验中开启及关闭交流或直流电源都在控制屏上操作。

1、开启三相交流电源的步骤为:

1)开启电源前,要检查控制屏下面“直流操作电源”的“可调电压输出”开关(右下角)及“固定电压输出”开关(左下角)都须在“关”断的位置。控制屏左侧面上安装的自耦调压器必须调在零位,即必须将调节手柄沿逆时针方向旋转到底。 2)检查无误后开启“电源总开关”,“停止”按钮指示灯亮,表示实验装置的进线已接通电源,但还不能输出电压。此时在电源输出端进行实验电路接线操作是安全的。 3)按下“启动”按钮,“启动”按钮指示灯亮,只要调节自耦调压器的手柄,在输出口u、v、w处可得到0~450v的线电压输出,并可由控制屏上方的三只交流电压表指示。当屏上的“电压指示切换”开关拨向“三相电网输入电压”时,三只电压表指示三相电网进线的线电压值;当“指示切换”开关拨向“三相调压输出电压”时,三表指示三相调压输出之值。 4)实验中如果需要改接线路,必须按下“停止”按钮以切断交流电源,保证实验操作的安全。实验完毕,须将自耦调压器调回到零位,将“直流操作电源”的两个电源开关置于“关”断位置,最后,需关断“电源总开关”。

2、开启单相交流电源的步骤为:

1)开启电源前,检查控制屏下面“单相自耦调压器”电源开关须在“关”位置,调压器必须调至零位。 2)打开“电源总开关”,按下“启动”按钮,并将“单相自耦调压器” 开关 拨到“开”位置,通过手动调节,在输出口a、x两端,可获得所需的单相交流电压。 3)实验中如果需要改接线路,必须将开关拨到“关”位置,保证操作安全。实验完毕,将调压器旋钮调回到零位,并把“直流操作电源”的开关拨回“关”位置,最后,还需关断“电源总开关”。

3、开启直流操作电源的步骤为:

1)在交流电源启动后,接通“固定直流电压输出”开关,可获得220v、1.5a不可调的直流电压输出。接通“可调直流电压输出”开关,可获得40~220v、3a可调节的直流电压输出。固定电压及可调电压值可由控制屏下方中间的直流电压表指示。当将该表下方的“电压指示切换”开关拨向“可调电压”时,指示可调电源电压的输出值,当将它拨向“固定电压”时,指示输出固定的电源电压值。 2)“可调直流电源”是采用脉宽调制型开关稳压电源,输入端接有滤波用的大电容,为了不使过大的充电电流损坏电源电路,采用了限流延时保护电路。所以本电源在开机时,约需有3~4秒钟的延时后,进入正常的输出。

3)可调直流稳压输出设有过压和过流保护告警指示电路。当输出电压调得过高时(超过240v),会自动切断电路,使输出为零,并告警指示。只有将电压调低(约240v以下),并按“过压复位”按钮后,能自动恢复正常输出。当负载电流过大(即负载电阻过小),超过3a时,也会自动切断电路,并告警指示,此时若要恢复输出,只要调小负载电流(即调大负载电阻)即可。有时候在开机时出现过流告警,这说明在开机时负载电流太大,需要降低负载电流。若在空载下开机,发生过流告警,这是由于气温或湿度明显变化,造成光电耦合器til117漏电使过流保护起控点改变所致,一般经过空载开机(即开启交流电源后,再开启“可调直流电源”开关)预热几十分钟,即可停止告警,恢复正常。

第二章、电力自动化及继电保护实验的基本要求和安全操作规程

一、实验的基本要求

电力自动化及继电保护实验的目的在于培养学生掌握基本的实验方法与操作技能。培养学生学会根据实验目的,实验内容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所需数据,进行电路工作状态的分析研究,得出必要结论,从而完成实验报告。在整个实验过程中,必须集中精力,及时认真做好实验。现按实验过程提出下列基本要求。

1、实验前的准备

实验前应复习教科书有关章节内容,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题(有些内容可到实验室对照实验设备进行预习,熟悉组件的编号,使用及其规定值等)。

实验前应写好预习报告,经教师检查认为确实做好了实验前的准备,方可开始实验。

认真作好实验前的准备工作,对于培养学生独立工作能力,提高实验质量和保护实验设备、人身的安全等都具有相当重要的作用。

2、实验的进行 1)建立小组,合理分工

每次实验都以小组为单位进行,每组由2~3人组成,实验进行中的接线、负载、电压或电流调节、记录数据等工作每人应有明确的分工,以保证实验操作的协调,使记录的数据准确可靠。 2)选择组件和仪表

实验前先熟悉该次实验所用的组件,记录继电器铭牌数据和选择合适的仪表量程,然后依次排列组件和仪表,便于测取数据。 3)按图接线

根据实验线路图及所选组件、仪表,按图接线,接线要力求简单明了,接线原则应是先接串联主回路,再接并联支路。为方便检查线路的正确性,实验线路图中的直流回路、交流回路、控制回路等应分别用不同颜色的导线连接。 4)试运行

在正式实验开始之前,先熟悉仪表,然后按一定规范起动继电保护电路,观察所有仪表是否正常。如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。 5)测取数据

预习时对继电器及其保护装置的试验方法及所测数据的大小作到心中有数。正式实验时,根据实验步骤逐次测取数据。 6)认真负责,实验有始有终

实验完毕,须将数据交指导老师审阅。经指导老师认可后,才允许拆线,并把实验所用的组件、导线及仪器等物品整理好,放至原位。

3、实验报告

实验报告是根据实测数据和在实验中观察发现的问题,经过自己分析研究或分析讨论后写出的实验总结和心得体会。实验报告要简明扼要、字迹清楚、图表整洁、结论明确。实验报告包括以下内容: 1)实验名称、专业班级、学号、姓名、实验日期。 2)列出实验中所用组件的名称及编号,继电器铭牌数据等。

3)列出实验项目并绘出实验时所用的线路图,并注明仪表量程,电阻器阻值。 4)数据的整理和计算

5)解答各个实验的思考题,部分思考题在实验前要进行抽查提问,作为学生实验预习成绩中的一部分。 6)根据数据说明实验结果与理论是否符合,可对某些问题提出一些自己的见解并最后写出结论。实验报告应写在一定规格的报告纸上,保持整洁。 7)每次实验每人独立完成一份报告,按时送交指导老师批阅。

二、 实验安全操作规程

为了按时完成电力自动化及继电保护实验,确保实验时人身安全与设备安全,要严格遵守如下规定的安全操作规程:

1、实验时,人体不可接触带电线路。

2、接线或拆线都必须在切断电源的情况下进行。

3、学生独立完成接线或改接线路后必须经指导老师检查和允许,并使组内其它同学引起注意后方可接通电源。实验中如发生事故,应立即切断电源,经查清问题和妥善处理故障后,才能继续进行实验。

4、通电前应先检查所有仪表量程是否符合要求,是否有短路回路存在,以免损坏仪表或电源。

5、总电源或实验台控制屏上的电源应由实验指导教师来控制,其他人员只能经指导教师允许后方可操作,不得自行合闸。 第三章电力自动化及继电保护实验与考核内容(必做部分)

实验一 电磁型电流继电器实验

一、实验目的

熟悉dl型电流继电器的实际结构、工作原理、基本特性;掌握动作电流值及其相关参数的整定方法。掌握实验用相关设备。

二、预习与思考

1、电流继电器的返回系数为什么恒小于1?

2、动作电流、返回电流和返回系数的定义是什么?

3、实验结果如返回系数不符合要求,你能正确地进行调整吗?

4、返回系数在设计继电保护装置中有何重要用途?

三、原理说明 dl—20c系列电流继电器用于反映发电机、变压器及输电线路短路和过负荷的继电保护装置中。dl—20c系列继电器的内部接线图见图1一1。继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。过电流继电器:当电流升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。继电器的铭牌刻度值是按电流继电器两线圈串联时标注的指示值等于整定值;若上继电器两线圈作并联则整定值为指示值的2倍。转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作值。

图1一1电流继电器内部接线图

四、实验设备

1、绝缘测试

五、验步骤和要求

单个继电器在新安装投入使用前或经过解体检修后,必须进行绝缘测试,对于额定电压为100伏及以上者,应用1000伏兆欧表测定绝缘电阻;对于额定电压为100 伏以下者,则应用500伏兆欧表测定绝缘电阻。测定绝缘电阻时,应根据继电器的具体接线情况,注意把不能承受高压的元件(如半导体元件、电容器等)从回路中断开或将其短路。本实验是用1000伏兆欧表测定导电回路对铁芯的绝缘电阻及不连接的两回路间的绝缘电阻,要求如下: 1)全部端子对铁芯或底座的绝缘电阻应不小于50兆欧。 2)各线圈对触点及各触点间的绝缘电阻应不小于50兆欧。 3)各线圈间绝缘电阻应不小于50兆欧。

4)将测得的数据记入表1—1,并做出绝缘测试结论。 表1—1 绝缘电阻测定记录表

注:上表①③⑤⑥为继电器引出的接线端号码,铁芯指继电器内部的导磁体。

2、整定点的动作值、返回值及返回系数测试

实验接线图1-2为电流继电器实验接线, 实验参数电流值可用单相自耦调压器、变流器、变阻器等设备进行调节。实验中每位学生要注意培养自己的实践操作能力,调节中要注意使参数平滑变化。

图1-2电流继电器实验接线图

3、电流继电器的动作电流和返回电流测试

a、选择zb11继电器组件中的dl—24c/6型电流继电器,确定动作值并进行初步整定。本实验整定值为2a及

4a的两种工作状态见表1-2。

b、根据整定值要求对继电器线圈确定接线方式(串联或并联);查表1-5。 c、按图1--2接线,检查无误后,调节自耦调压器及变阻器,增大输出电流,使继电器动作。读取能使继电器动作的最小电流值,即使常开触点由断开变成闭合的最小电流,记入表1-2;动作电流用idj表示。继电器动作后,反向调节自耦调压器及变阻器降低输出电流,使触点开始返回至原来位置时的最大电流称为返回电流,用ifj表示,读取此值并记入表1--2,并计算返回系数;继电器的返回系数是返回电流与动作电流的比值,用kf 表示。kf=ifj/idj 过电流继电器的返回系数在0.85~0.9之间。当小于0.85或大于0.9时,应进行调整。 表1-2电流继电器实验结果记录表

2、继电器技术数据:电流继电器见表1-4

3、动作时间:过电流继电器在1.2倍整定值时,动作时间不大于0.15秒;在3倍整定值时,动作时间不大于0.03秒。低电压继电器在0.5倍整定值时,动作时间不大于0.15秒。

4、接点断开容量:在电压不大于250伏,电流不大于2安时的直流有感负荷电路(时间常数不大于53103秒)中断开容量为40瓦;在交流电路中为200伏安。

5、重量:约为0.5公斤。

七、实验报告

实验结束后,针对过电流继电器实验要求及相应动作值、返回值、返回系数的具体整定方法,按实验报告编写的格式和要求及时写出电流继电器、电压继电器实验报告和本次实验的体会,并书面解答本实验思考题。 表1--4

实验二 电磁型电流继电器和电压继电器实验

一、实验目的

dy型电压继电器的实际结构、工作原理、基本特性;掌握动作电流值、动作电压值及其相关参数的整定方法。

二、预习与思考

1、电压继电器的返回系数的范围是多少?

2、动作电流(压)、返回电流(压)和返回系数的定义是什么?

3、实验结果如返回系数不符合要求,你能正确地进行调整吗?

4、返回系数在设计继电保护装置中有何重要用途?

三、原理说明

dy—20c系列电压继电器用于反映发电机、变压器及输电线路的电压升高(过电压保护)或电压降低(低电压起动)的继电保护装置中。dy—20c系列继电器的内部接线图见图2一1。上述继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。 过电压继电器:当电压升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。 低电压继电器:当电压降低至整定电压时,继电器立即动作,常开触点断开,常闭触点闭合。

继电器的铭牌刻度值是按电压继电器两线圈并联时标注的指示值等于整定值;若上述串联时,则整定值为指示值的2倍。转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作值。

图2一1电流继电器内部接线图

四、实验设备

五、验步骤和要求

1、绝缘测试

单个继电器在新安装投入使用前或经过解体检修后,必须进行绝缘测试,对于额定电压为100伏及以上者,应用1000伏兆欧表测定绝缘电阻;对于额定电压为100 伏以下者,则应用500伏兆欧表测定绝缘电阻。 测定绝缘电阻时,应根据继电器的具体接线情况,注意把不能承受高压的元件(如半导体元件、电容器等)从回路中断开或将其短路。本实验是用1000伏兆欧表测定导电回路对铁芯的绝缘电阻及不连接的两回路间的绝缘电阻,要求如下: 1)全部端子对铁芯或底座的绝缘电阻应不小于50兆欧。 2)各线圈对触点及各触点间的绝缘电阻应不小于50兆欧。 3)各线圈间绝缘电阻应不小于50兆欧。

4)将测得的数据记入表2—1,并做出绝缘测试结论。 表2—1 绝缘电阻测定记录表

注:上表①③⑤⑥为继电器引出的接线端号码,铁芯指继电器内部的导磁体。

2、整定点的动作值、返回值、返回系数测试及过压继电器的动作电压、返回电压测试 a、选择zb15型继电器组件中的dy—28c/160型过电压继电器,确定动作值为1.5倍的额定电压,即实验参数取150v并进行初步整定。

b、根据整定值要求确定继电器线圈的接线方式,查表1-6。

c、按图2--2接线。检查无误后,调节自耦调压器,分别读取能使继电器动作的最小电压udj及使继电器返回的最高电压ufj,记入表1-3并计算返回系数kf。返回系数的含义与电流继电器的相同。返回系数不应小于0.85,当大于0.9时,也应进行调整。

图2--2过电压继电器实验接线图

低电压继电器的动作电压和返回电压测试 a、选择zb15继电器组件中的dy—28c/160型低电压继电器,确定动作值为0.7倍的额定电压,即实验参数取70v并进行初步整定。

b、根据整定值要求确定继电器线圈的接线方式,查表2-5。

c、按图2--3接线,调节自耦调压器,增大输出电压,先对继电器加100伏电压,然后逐步降低电压,至继电器舌片开始跌落时的电压称为动作电压udj,再升高电压至舌片开始被吸上时的电压称为返回电压ufj,将所取得的数值记入表1-3并计算返回系数。返回系数kf为: udj 图2-3 低电压继电器实验接线图

低电压继电器的返回系数不大于1.2,用于强行励磁时不应大于1.06。

以上实验,要求平稳单方向地调节电流或电压实验参数值,并应注意舌片转动情况。如遇到舌片有中途停顿或其他不正常现象时,应检查轴承有无污垢、触点位置是否正常、舌片与电磁铁有无相碰等现象存在。

动作值与返回值的测量应重复三次,每次测量值与整定值的误差不应大于±3%。否则应检查轴承和轴尖。在实验中,除了测试整定点的技术参数外,还应进行刻度检验。

用整定电流的1.2倍或额定电压1.1倍进行冲击试验后,复试定值,与整定值的误差不应超过±3%。否则应检查可动部分的支架与调整机构是否有问题,或线圈内部是否层间短路等。 返回系数的调整

返回系数不满足要求时应予以调整。影响返回系数的因素较多,如轴间的光洁度、轴承清洁情况、静触点位置等。但影响较显著的是舌片端部与磁极间的间隙和舌片的位置。返回系数的调整方法有:

a、调整舌片的起始角和终止角:

调节继电器右下方的舌片起始位置限制螺杆,以改变舌片起始位置角,此时只能改变动作电流,而对返回电流几乎没有影响。故可用改变舌片的起始角来调整动作电流和返回系数。舌片起始位置离开磁极的距离愈大,返回系数愈小,反之,返回系数愈大。

调节继电器右上方的舌片终止位置限制螺杆,以改变舌片终止位置角,此时只能改变返回电流而对动作电流则无影响。故可用改变舌片的终止角来调整返回电流和返回系数。舌片终止角与磁极的间隙愈大,返回系数愈大;反之,返回系数愈小。 b、不调整舌片的起始角和终止角位置,而变更舌片两端的弯曲程度以改变舌片与

磁极间的距离,也能达到调整返回系数的目的。该距离越大返回系数也越大;反之返回系数越小。 c、适当调整触点压力也能改变返回系数,但应注意触点压力不宜过小。 动作值的调整 a、继电器的整定指示器在最大刻度值附近时,主要调整舌片的起始位置,以改变 动作值,为此可调整右下方的舌片起始位置限制螺杆。当动作值偏小时,调节限制螺杆 使舌片的起始位置远离磁极;反之则靠近磁极。

b、继电器的整定指示器在最小刻度值附近时,主要调整弹簧,以改变动作值。 c、适当调整触点压力也能改变动作值,但应注意触点压力不宜过小。

3、触点工作可靠性检验

应着重检查和消除触点的振动。

(1)过电流或过电压继电器触点振动的消除

a、如整定值设在刻度盘始端,当试验电流(或电压)接近于动作值或整定值时,发现触点振动可用以下

方法消除。

静触点弹片太硬或弹片厚度和弹性不均,容易在不同的振动频率下引起弹片的振动,或由于弹片不能随继电器本身抖动而自由弯曲,以至接触不良产生火花。此时应更换弹片。静触点弹片弯曲不正确,在继电器动作时,静触点可能将动触点桥弹回而 产生振动。此时可用镊子将静触点弹片适当调整。如果可动触点桥摆动角度过大,以致引起触点不容许的振动时,可将触点桥的限制钩加以适当弯曲消除之。变更触点相遇角度也能减小触点的振动和抖动。此角度一般约为 55°~65°。

b、当用大电流(或高电压)检查时产生振动,其原因和消除方法如下:

当触点弹片较薄以致弹性过弱,在继电器动作时由于触点弹片过度弯曲,很容易使舌片与限制螺杆相碰而弹回,造成触点振动。继电器通过大电流时,可能使触点弹片变形,造成振动。消除方法是调整弹片的弯曲度,适当地缩短弹片的有效部分,使弹片变硬些。若用这种方法无效时,则应将静触点片更换。 在触点弹片与防振片间隙过大时,亦易使触点产生振动。此时应适当调整其间隙距离。

继电器转轴在轴承中的横向间隙过大,亦易使触点产生振动。此时应适当调整横向间隙或修理轴尖和选取与轴尖大小适应的轴承。

调整右侧限制螺杆的位置,以变更舌片的行程,使继电器触点在电流近于动作值时停止振动。然后检查当电流增大至整定电流的1.2倍时,是否有振动。

过分振动的原因也可能是触点桥对舌片的相对位置不适当所致。为此将可动触点夹片座的固定螺丝拧松,使可动触点在轴上旋转一个不大的角度,然后再将螺丝拧紧。调整时应保持足够的触点距离和触点间的共同滑行距离。

另外改变继电器纵向串动大小,也可减小振动。 (2)全电压下低电压继电器振动的消除

低电压继电器整定值都较低,而且长时间接入额定电压,由于转矩较大,继电器舌片可能按二倍电源频率振动,导致轴尖和轴承或触点的磨损。因此需要细致地调整,以消除振动。其方法如下: a、按上述消除触点振动的方法来调整静触点弹片和触点位置,或调整纵向串动的大小以消除振动。

b、将继电器右上方舌片终止位置的限制螺杆向外拧,直到继电器在全电压下舌片不与该螺杆相碰为止。此时应注意触点桥与静触点有无卡住,返回系数是否合乎要求。

c、在额定电压下,松开铝框架的固定螺丝,上下移动铝框架调整磁间隙,以找到一个触点振动最小的铝框架位置,再将铝框架固定,也就是人为地使舌片和磁极间的上 下间隙不均匀(一般是上间隙大于下间隙)来消除振动。但应注意该间隙不得小于0.5毫米,并防止舌片在动作过程中卡塞。 d、仅有常闭触点的继电器,可使舌片的起始位置移近磁极下面,以减小振动。 e、若振动仍未消除,则可以将舌片转轴取下,将舌片端部向内弯曲。 (3)电压继电器触点应满足下列要求 a、在额定电压下,继电器触点应无振动。 b、低电压继电器,当

从额定电压均匀下降到动作电压和零值时,触点应无振动和鸟啄现象。 c、过电压继电器,以1.05倍动作电压和1.1倍额定电压冲击

时,触点应无振动和鸟啄现象。 表2-2电压继电器实验结果记录表

六、技术数据

电流继电器触点应满

以1.05倍动作电流或保护出现的最大故障电流冲击时,触点应无振动和鸟啄现象。

1、继电器触点系统的组合形式见表2-3。 表2-3 2、继电器技术数据:电压继电器见表2-4

3、动作时间:过电流(或电压)继电器在1.2倍整定值时,动作时间不大于0.15秒;在3倍整定值时,动作

时间不大于0.03秒。低电压继电器在0.5倍整定值时,动作时间不大于0.15秒。

4、接点断开容量:在电压不大于250伏,电流不大于2安时的直流有感负荷电路(时间常数不大于53103秒)

中断开容量为40瓦;在交流电路中为200伏安。

5、重量:约为0.5公斤。

七、实验报告

实验结束后,针对过电流、过电压、低电压继电器实验要求及相应动作值、返回值、返回系数的具体整定方法,按实验报告编写的格式和要求及时写出电流继电器、电压继电器实验报告和本次实验的体会,并书面解答本实验思考题。

表2-4

实验三 电磁型时间继电器实验

一、实验目的

熟悉ds—20系列时间继电器的实际结构,工作原理,基本特性,掌握时限的整定和试验调整方法。

二、预习与思考

1、绝缘测试时发现绝缘电阻下降,且不符合要求,是什么原因引起的?

2、影响起动电压、返回电压的因素是什么?

3、在某一整定点的动作时间测定,所测得数值大于(或小于)该点的整定时间,并超出允许误差时,将用

什么方法进行调整?

4、根据你所学的知识说明时间继电器常用在哪些继电保护装置及自动化电路中?

三、原理说明

ds—20系列时间继电器用于各种继电保护和自动控制线路中,使被控制元件按时限控制原则进行动作。 ds—20系列时间继电器是带有延时机构的吸入式电磁继电器,其中ds—21~ds—24 是内附热稳定限流电

阻型时间继电器(线圈适于短时工作),ds—21/c~ds—24/c是外附热稳定限流电阻型时间继电器(线圈适于长时工作)。ds—25~28是交流时间继电器。 r ds-21~22时间继电器正面内部接线图

该继电器具有一付瞬时转换触点,一付滑动主触点和一付终止主触点。继电器内部接线见图3-1。

ds-21/c~22/c时间继电器正面内部接线图

图3-1 时间继电器内部接线图

当加电压于线圈两端时,衔铁克服塔形弹簧的反作用力被吸入,瞬时常开触点闭合,常闭触点断开,同时延时机构开始启动,先闭合滑动常开主触点,再延时后闭合终止常开主触点,从而得到所需延时,当线圈断电时,在塔形弹簧作用下,使衔铁和延时机构立刻返回原位。从电压加于线圈的瞬间起到延时闭合常开主触点止,这段时间就是继电器的延时时间,可通过整定螺钉来移动静接点位置进行调整,并由螺钉下的指针在刻度盘上指示要设定的时限。

四、实验设备

五、实习步骤和要求

1、内部结构检查

(1)观察继电器内部结构,检查各零件是否完好,各螺丝固定是否牢固,焊接质量及线头压接应保持良好。 (2)衔铁部分检查

手按衔铁使其缓慢动作应无明显磨擦,放手后靠塔形弹簧返回应灵活自如,否则应检查衔铁在黄铜套管内的活动情况,塔形弹簧在任何位置不许有重迭现象。 (3)时间机构检查

当衔铁压入时,时间机构开始走动,在到达刻度盘终止位置,即触点闭合为止的整个动作过程中应走动均匀,不得有忽快忽慢,跳动或中途卡住现象,如发现上述不正常现象,应先调整钟摆轴承螺丝,若无效可在老师指导下将钟表机构解体检查。 (4)接点检查

a、当用手压入衔铁时,瞬时转换触点中的常闭触点○181○7应断开,常开触点○171○6应闭合。

b、时间整定螺丝整定在刻度盘上的任一位置,用手压入衔铁后经过所整定的时间,动触点应在距离静触点首端的1/3处开始接触静触点,并在其上滑行到1/2处,即中心点停止。可靠地闭合静触点,释放衔铁时,应无卡涩现象,动触点也应返回原位。

c、动触点和静触点应清洁无变形或烧损,否则应打磨修理。

2、绝缘测试

用1000伏兆欧表测试导电回路对铁芯或磁导体的绝缘电阻及互不连接的回路之间的绝缘电阻,并将测得数据记入表3-1进行比较,做出绝缘测试结论。(绝缘电阻测试要求同实验一)

3、动作电压,返回电压测试

实验接线见图3-2,选用zb13挂箱的ds—23型时间继电器,整定范围(2.5s~10s) 动作电压ud的测试

按图2-2接好线,将可变电阻r置于输出电压最小位置,合上s1及s2,调节可变电阻r使输出电压由

最小位置慢慢地升高到时间继电器的衔铁完全被吸入为止,可变电阻r保持不变,断开开关s1,然后迅速合上开关s1,以冲击方式使继电器动作,如不能动作,再调整可变电阻r,增大输出电压,用冲击方式使继电器衔铁瞬时完全被吸入的最低冲击电压即为继电器的最低动作电压ud,断开开关s1,将动作电压ud填入表2--3内。ud应不大于70%ued(154v)。

对于ds—21/c~24/c型应不大于75%ued,ds--25~ds--28型应不大于85%ued。

图3-2 时间继电器实验接线图

注:测试上表第

6、7项绝缘电阻时 ,ds--23型时间继电器的时间整定螺钉均固定10s位置。

表3-1 ds-23型时间继电器绝缘测试记录表

返回电压uf的测试

合上s

1、s2加大电压至额定值220v,然后渐渐的调节可变电阻r降低输出电压,使电压降低到触点开启即继电器的衔铁返回到原来位置的最高电压即为uf,断开开关s1,将uf填入表2-3内。应使uf不低于0.05倍额定电压(11v)。

若动作电压过高,则检查返回弹簧力量是否过强,衔铁在黄铜套管内摩擦是否过大,衔铁是否生锈或有污垢,线圈是否有匝间短路现象。 若返回电压过低 ,检查摩擦是否过大,返回弹簧力量是否过弱。

4、动作时间测定

动作时间测定的目的是检查时间继电器的控制延时动作的准确程度,也能间接发现时间继电器的机械部分所存在的问题。

测定是在额定电压下,取所试验继电器允许时限整定范围内的大、中、小四点的整定时间值(见表2-2),在每点测定三次,其误差应符合表3—2。 用电秒表测定动作时间的实验接线见图3—2。 表3—2

按图3-2接好线后,将继电器定时标度放在较小刻度上(合上开关s

1、s2,调节可变电阻器r,使加

在继电器上的电压为额定电压ued(本实验所用时间继电器额定电压为直流220v)拉开s2,合上电秒表工作电源开关,并将电秒表复位,然后投入s2,使继电器与电秒表同时起动,继电器动作后经一定时限,触点(5)(6)闭合。将电秒表控制端“i”和“ii”短接,秒表停止记数,此时电秒表所指示的时间就是继电器的延时时间,把测得数据填入表3-3中,每一整定时间刻度应测定三次,取三次平均值作为该刻度的动作值。然后将定时标度分别置于中间刻度5s、7.5s及最大刻度10s上,按上述方法各重复三次,求平均值。动作时限应和刻度值相符,允许误差不得超过表3-2中的规定值,若误差大于规定时,可调节钟表机构摆轮上弹簧的松紧程度,具体应在教师指导下进行。

表3-3时间继电器实验记录

六、技术数据

ds—20系列时间继电器的有关技术数据编入表2--4中,供参考。 表2-4 为确保动作时间的精确测定,合上电秒表电源开关后应稍停片刻,然

后再合s2。秒表上的工作选择开关“k”应置于“连续”状态。

七、 实验报告

实验结束后,结合时间继电器的各项测试内容及时限整定的具体方法,按实验报告编写的格式和要求及时写出时间继电器实验报告和本次实验体会,并书面解答本实验的思考题。

实验四 中间继电器实验

一、实验目的

中间继电器种类很多,目前国内生产的就有二十多个系列,数百种产品。本实验选择了具有代表性的三个系列中的四种中间继电器进行实验测试,希望能通过本次实验熟悉中间继电器的实际结构、工作原理、基本特性,掌握对各类中间继电器的测试和调整方法。

二、预习与思考

1、为什么目前在一些保护屏上广泛采用dz-30b系列中间继电器,它与dz-10系列中间继电器比较有那些特点?

2、具有保持绕组的中间继电器为什么要进行极性检验?如何判明各绕组的同极性端子。

3、使用中间继电器一般根据哪几个指标进行选择?

4、发电厂、变电所的继电保护及自动装置中常用哪几种中间继电器?

三、原理说明 dz—30b、 dzb—10b、dzs--10b系列中间继电器用于直流操作的各种继电保护和自动控制线路中,作为辅助继电器以增加接点数量和接点容量。

1、dz—30b为电磁式瞬时动作继电器。当电压加在线圈两端时,衔铁向闭合位置运动,此时常开触点闭合,常闭触点断开。断开电源时,衔铁在接触片的反弹力下,返回到原始状态,常开触点断开,常闭触点闭合。继电器内部接线见图4—1 图4—1 dz-30b中间继电器内部接线图

2、dzb—10b系列是具有保持绕组的中间继电器,它基于电磁原理工作,按不同要求在同一铁芯上绕有两个以上的线圈,其中dzb-11b、12b、13b为电压启动、电流保持型;dzb-14b为电流启动、电压保持型。该继电器为瞬时动作继电器。当动作电压(或电流)加在线圈两端时,衔铁向闭合位置运动,此时,常开触点闭合,常闭触点断开,断开启动电源时,由于电压(或电流)保持绕组的磁场的存在所以衔铁仍然闭合,只有保持绕组断电后,衔铁在接触片的反弹力作用下返回到原始状态,常开触点断开,常闭触点闭合。继电器内部接线见图4—2。

3、dzs—10b系列是带有时限的中间继电器,它基于电磁原理工作。继电器分为动作延时和返回延时两种,本系列中的dzs—11b、13b为动作延时,dzs—12b、14b为返回延时继电器。在这种继电器线圈的上面或下面装有阻尼环,当线圈通电或断电时,阻尼环中感应电流所产生的磁通会阻碍主磁通的增加或减少,由此获得继电器动作延时或返回延时。继电器结构图见附图4—3,内部接线见图4—4。

图4—2 dzb-10b中间继电器内部接线图

图4—3 dzs-10b中间继电器结构图

图4—4 dzs-10b中间继电器内部接线图

四、实验设备

五、实验步骤和要求

1、内部结构及触点检查:

方法与实验二相同,但中间继电器接点较多,故在进行检查时应特别注意: (1)触点应在正位接触,各对触点应同时接触同时离开。 (2)触点接触后应有足够的压力和共同的行程,使其接触良好。 (3)转换触点在切换过程中应能满足保护使用上的要求。

2、线圈直流电阻测量:

用电桥或万用表的电阻档测量继电器线圈的直流电阻,将测得数值填入表4-4,并与表4-1,4-2,4-3中所对应继电器的额定技术数据进行比较,实测值不应超过制造 厂规定值的±10%。

3、绝缘测试

用1000伏兆欧表测试全部端子对铁心的绝缘电阻应不小于50兆欧;各绕组间的绝缘电阻应不小于10兆欧;绕组对接点及各接点间的绝缘电阻应不小于50兆欧。将测得数据填入表4--4。

4、继电器动作值与返回值检验:

实验接线见图4—

5、4-

6、4-

7、4-8。实验时调整可变电阻r、r

1、r2逐步增大输出电压(或电流),使继电器动作,然后断开开关s或s1,再瞬间合上开关s或s1看继电器能否动作,如不能动作,调节可变电阻加大输出电压(或电流)。在给继电器突然加入电压(或电流)时,使衔铁完全被吸入的最低电压(或电流)值,即为动作电压(电流)值,记入表4-4。继电器的动作电压不应大于额定电压的70%。动作电流不应大于其额定电流。出口中间继电器动作电压应为其额定电压的50%~70%。

图4—5电压起动型实验接线图

然后调整可变电阻r,减少电压(电流),使继电器的衔铁返回到原始位置的最大电压(电流)值即为返回值。记入表4—4。对于dz—30b及dzs—10b系列中间继电器返回电压不应小于额定电压的5%。对于dzb—10b系中间继电器的返回电压(电流)值不应小于额定值的2%。

5、保持值测试:

对于dzb—10b系列具有保持绕组的中间继电器,应测量保持线圈的保持值,试验接线见图4—

6、图4--7:

图4—6电流起动型电压保持型实验接线图

实验时,先闭合开关经s

1、s2,在动作线圈加入额定电压(电流)使继电器动作后,调整保持线圈回路的电流(电压),测出断开开关s2后,继电器能保持住的最小电流(电压),此即为继电器最小保持值,记入表4-4。电流保持型线圈的最小保持值不应大于额定电流的80%。电压保持型线圈的最小保持值不得大于额定电压的65%。但也不得过小,以免返回不可靠。

继电器的动作,返回和保持值与其要求的数值相差较大时,可以调整弹簧的拉力或者调整衔铁限制机构,以改变衔铁与铁心的气隙,使其达到要求。

继电器经过调整后,应重测动作值,返回值和保持值。

6、极性检验

带有保持线圈的中间继电器,新安装或线圈重绕后应作极性检验,以判明各线圈的同极性端子。线圈

极性可在保持值试验时判明,也可单独作极性试验予以判定。线圈极性应与制造厂所标极性一致。

7、返回时间测定

测定返回时间的实验接线见图4—8

图4—8测定继电器返回时间实验接线图 1)测定返回延时时间的注意事项:

实验接线可根据所用电秒表型式而定,但要求在测试时操作闸刀应保证触头同时接触与断开(可用瞬时中间继电器的触点来代替闸刀),以减少测量误差。

(1)、在额定电压下测定具有延时返回的中间继电器的返回时间时,对于经常通电的延时返回中间继电器,应

在热状态下测定其返回时间。

(2)、对于延时返回时间要求严格的继电器,应在80%及100%额定电压下测定返回时间。

(3)、在特殊需要的情况下,可测定瞬时动作中间继电器的动作时间和返回时间,可测定用于切换回路中的中

间继电器有关触点的切换时间,但一般情况下不测定。 2)测定返回延时时间步骤

按图4—8接好线,检查无误后,合上开关s,将电秒表复位,调整可变电阻r,增大输出电压,使其达到被测继电器的额定电压,

这时中间继电器dz-31b的常闭触点○8○9瞬时断开,中间继电器dzs-12b的常开触点○4

○5瞬时闭合,电秒表不计时。断开开关s,二继电器失电,继电器dz-31b的返回常闭触点○8○9复位闭合,电秒表开始计时,经一定延时后,中间继电器dzs-12b的常开触点断开,电秒表中止计时,此时,电秒表所指示时间即为继电器的返回延时时间,记入表4--4。 3)返回时间的调整方法

电磁式中间继电器的线圈在接入或断开电源时,由于线圈电感的影响,电流按指数律增长或衰减。铁芯中的涡流亦能抑制线圈中的电流增长或衰减,导致继电器的延时特性。返回时间一般采用下述方法进行调整: a、在圆柱铁芯根部套上较多的铜质阻尼环。 b、使用与阻尼环起同样作用的阻尼线圈。 c、减小继电器衔铁与铁芯间的间隙。 d、减少反作用弹簧的拉力。

阻尼环阻尼作用的大小是由时间常数t=l/r决定的,因所用阻尼环只有一匝,故电感不大,为了尽量减少电阻,就必须使用导电性能好和截面大的材料制造。阻尼环感应的电流所产生的磁通,与阻尼环放置位置有关,装在铁芯端部靠近气隙处时延时动作的作用大,装在铁芯根部则延时返回的作用大,可视具体情况进行调整。调整后应重测继电器的动作,返回和保持值。

六、技术数据

中间继电器的额定技术数据及触点形式列入表4—

1、4—

2、4—

3、供参考。 表4-1z--30系列中间继电器额定技术数据及触点形式:

表4-2(a)dzb-10b系列延时中间继电器延时方式和触点形式:

表4—2(b)dzb-10b系列延时中间继电器额定技术数据:

表4—3 dzb—10b系列中间继电器额定技术数据及触点形式:

七、实验报告

实验结束后认真总结,针对实验中四种继电器的具体测试方法,按要求及时写出中间继电器实验报告和本次实验体会,并书面解答本实验的思考题

表4—4 中间继电器实验记录表 实验五 6~10kv线路过电流保护实验

一、实验目的

1、掌握过流保护的电路原理,深入认识继电保护、自动装置的二次原理接线图和展开接线图。

2、学会识别本实验中继电保护实际设备与原理接线图和展开接线图的对应关系,为以后各项实验打下良好的基础。

3、进行实际接线操作, 掌握过流保护的整定调试和动作试验方法。

二、预习与思考

1、参阅有关教材做好预习,根据本次实验内容,参考图5-

1、图5-2设计并绘制过电流保护实验接线图,参照图5-3。

2、为什么要选定主要继电器的动作值,并且进行整定?

3、过电流保护中哪一种继电器属于测量元件?

三、原理说明

电力自动化与继电保护设备称为二次设备,二次设备经导线或控制电缆以一定的方式与其他电气设备相连接的电路称为二次回路,或叫二次接线。二次电路图中的原理接线图和展开接线图是广泛应用的两种二次接线图。它是以两种不同的型式表示同一套继电保护电路。

1、原理接线图

原理接线图用来表示继电保护和自动装置的工作原理。所有的电器都以整体的形式绘在一张图上,相互联系的电流回路、电压电路和直流回路都综合在一起,为了表明这种回路对一次回路的作用,将一次回路的有关部分也画在原理接线图里,这样就能对这个回路有一个明确的整体概念。图5—1表示6~10kv线路的过电流保护原理接线图,这也是最基本的继电保护电路。

从图中可以看出,整套保护装置由五只继电器组成,电流继电器

3、4的线圈接于a、c两相电流互感器的二次线圈回路中,即两相两继电器式接线。当发生三相短路或任意两相短路时,流过继电器的电流超过整定值,其常开触点闭合,接通了时间继电器5的线圈回路,直流电源电压加在时间继电器5的线圈上,使其起动,经过一定时限后其延时触点闭合,接通信号继电器6和保护出口中间继电器7的线圈回路、二继电器同时起动,信号继电器6触点闭合,发出6-10kv过流保护动作信号并自保持,中间继电器7起动后把断路器的辅助触点8和跳闸线圈9二者串联接到直流电源中,跳闸线圈9通电,跳闸电铁磁励磁,脱扣机构动作,使断路器跳闸,切断故障电路,断路器1跳闸后,辅助触点8分开,切断跳闸回路。

原理接线图主要用来表示继电保护和自动装置的工作原理和构成这套装置所需要的设备,它可作为二次回路设计的原始依据。由于原理接线图上各元件之间的联系是用整体连接表示的,没有画出它们的内部接线和引出端子的编号、回路的编号;直流仅标明电源的极性,没有标出从何熔断器下引出;信号部分在图中仅标出“至信号”,无具体接线。因此,只有原理接线图是不能进行二次回路施工的,还要其他一些二次图纸配合才可,而展开接线图就是其中的一种。

2、展开接线图

展开接线图是将整个电路图按交流电流回路、交流电压回路和直流回路分别画成几个彼此独立的部分,仪表和电器的电流线圈、电压线圈和触点要分开画在不同的回路里,为了避免混淆,属于同一元件的线圈和触点采用相同的文字符号。

展开接线图一般是分成交流电流回路、交流电压回路、直流操作回路和信号回路等几个主要组成部分。每一部分又分成若干行,交流回路按a、b、c的相序,直流回路按继电器的动作顺序各行从上至下排列。每一行中各元件的线圈和触点按实际连接顺序排列,每一回

路的右侧标有文字说明。

展开接线图中的图形符号和文字标号是按国家统一规定的图形符号和文字标号来表示的。

二次接线图中所有开关电器和继电器的触点都按照它们的正常状态来表示,即指开关电器在非动作状态和继电器线圈断电的状态。因此,所谓的常开(动合)触点就是继电器线圈不通电时,该触点断开,常闭(动断)触点则相反。

1—断路器; 2—电流互感器;

3、4—电流继电器; 5—时间继电器; 6—信号继电器; 7—保护出口中间继电器;8-断路器的辅助触点;9—跳闸线圈。

图5—2是根据图5—1所示的原理接线图而绘制的展开接线图。左侧是保护回路展开图,右侧是示意图。从中可看出,展开接线图由交流电流回路、直流操作回路和信号回路三部分组成。交流电流回路由电流互感器1lh的二次绕组供电,电流互感器仅装在a、c两相上,其二次绕组各接入一个电流继电器线圈,然后用一根公共线引回构成不完全星形接线。a

411、c411和n411为回路编号。 1lha 1lj a411 1lhb c411 2lj c相过流公共线a相过流

交流电流回路

n411 时间继电器 回路

直流操作回路 1lh保护表计

信号继电器中间继电器回路信号回路

保护出口电动分闸回路

路示意图 qs—隔离开关;qf—断路器;1lh、2lh—电流互感器;1lj、2lj—电流继电器; sj—时间继电器;xj—信号继电器;bcj-保护出口中间继电器;tq—跳闸线圈。

图5—2 6~10kv线路过电流保护展开图

直流操作回路中,画在两侧的竖线表示正、负电源,向上的箭头及编号101和102表示它们分别是从控制回路(+)(-)的熔断器fu1和fu2下面引来。横线条中上面两行为时间继电器起动回路,第三行为信号继电器和中间继电器起动回路,第四行为信号指示回路,第五行为跳闸回路。

3.实验原理说明

实验线路见图5-3,过电流保护的动作顺序如下:当调节单相自耦调压器和变阻器r,模拟被保护线路发生过电流时,电流继电器lj动作(注:实验中交流电流回路采用单相式),其常开触点闭合,接通时间继电器sj的线圈回路,sj则动作,经过一定时限后,其延时触点闭合,接通信号继电器xj和保护出口中间继电器bcj的线圈回路,bcj动作,常开触点闭合,接通了跳闸回路,(因断路器qf在合闸状态,其常开触点qf是闭合的)。于是跳闸线圈tq中有电流流过,使断路器跳闸,切断短路电流。同时,xj动作并自保持,接通光字牌gp,则光字牌亮,显示“6-10kv过流保护动作指示”。通过实验接线整定调试后,我们会深切体会到:展开接线图表达较为清晰,易于阅读,便于了解整套装置的动作程序和工作原理,特别在复杂电路中,其优点更为突出。

四、实验设备

五、实验步骤和要求

1、选择电流继电器的动作值(确定线圈接线方式)和时间继电器的动作时限。(例:设额定运行时的工作电流为3a,选择dl-24c/6型电流继电器,整定动作值4.2a;选择ds-22型时间继电器整定动作时限2.5s;也可根据老师要求进行整定。)

2、参照实验指导书中实验一和实验二的调试方法分别对电流继电器和时间继电器进行元件整定调试。

3、按图5—3过电流保护实验接线图进行接线。

4、将单相调压器,变流器,限流电阻,交流电流表等连接组成电流形成回路,将电流输出端接入电流继电器的线圈。

5、检查上述接线和设备,确定无误后,根据实验原理说明加入电流,进行保护动作试验,并认真观察动作过程,做好记录,深入理解各个继电器在该保护电路中的作用和动作次序。

六、注意事项

注意事项详见操作规程,希望每一位学生集中思想,注意观察,确保实验操作过程中的每一个环节的正确性和安全性。

图5—3 6~10kv线路过电流保护实验接线图

七、实验报告

1、本内容安装调试及动作试验结束后要认真进行分析总结,按实验报告要求及时写出过电

流保护的实验报告。

2、叙述过电流保护整定,试验的操作步骤。

3、分析说明过电流保护装置的实际应用和保护范围。

4、通过本实验谈谈你对实际设备与原理接线图和展开接线图对应关系的认识。

5、书面解答本实验的思考题。

一、实验目的

1、掌握发电机低电压起动过电流保护和过负荷保护的工作原理、整定值计算方法和调试技术。

2、理解发电机低电压起动过电流保护和过负荷保护的原理图,展开图及其保护装置中各继电器的功用。

3、学会发电机低电压起动过电流保护及过负荷保护的安装接线操作技术及整组实验方法。

二、预习与思考

1、根据本次实验要求,参考图6-

1、图6-2设计并绘制单相式发电机低电压起动过电流保护及过负荷保护实验接线图。

2、为什么要设置电压回路断线信号?

3、二个时间继电器如何配合?

4、低压起动过电流保护中哪几种继电器属于测量元件?

5、过负荷保护中哪个继电器是测量元件?

三、原理说明

1、低电压起动过电流保护

图6—1 发电机低电压起动过电流保护及过负荷保护原理图

由于发电机的负荷电流通常比较大,以致过电流保护装置反应外部故障时的灵敏度可能很低,为了提高灵敏度,对过电流保护采用低电压起动,使保护能有效地区分最大负荷电流与外部故障二种不同的情况,见图6—

1、图6—2。因为发电机在最大负荷电流下工作时,电压降低甚小,而外部元件(如输电线路、升压变压器等)发生短路故障时,电压则剧烈降低。利用这一特点,发电机过流保护采用低电压起动后就可以不去考虑避开最大负荷电流,而只要按发电机的正常工作电流整定保护装置的起动电流,从而使得保护装置的起动电流减小,灵敏度相应提高。

考虑到发电机是系统中最重要的元件,为了提高过流保护装置的可靠性,保护实验电路采用三相式接线。

为了使过流保护对发电机内部故障起后备保护作用,过电流保护所用的电流互感器应装设在发电机定子三相线圈中性点侧的各相引出线上。为了保证发电机在未并入系统前或与系统解列以后发生短路时,保护装置仍能正确工作,电压继电器应从装设在发电机出口处的电压互感器上取得电压,在实际保护接线中这些要点必须掌握。

在本保护中,当电压互感器二次回路断线时,低电压继电器起动中间继电器9,发出断线信号即中间继电器9同时起到交流电压回路断线监视作用。低电压起动过电流保护装置的动作电流idz,bh按下式整定: kk idz.bh= -----------ifh,e (6—1) kh 式中:kk——可靠系数,一般取1.15~1.25。 kh——返回系数,为0.85。 ifh,e——发电机折算到电流互感器二次测的额定负荷电流。

保护装置的低电压起动值,应躲开电动机自起动时发电机母线上的最低电压,一般

可以取:

udz,bh=(0.5~0.6)ue(6-2) 式中ue——发电机折算到电压互感器二次测的额定电压。

保护装置的动作时限应比连接在发电机电压母线上其它元件的保护装置的最大时限t max 还要大一个到两个时限级差△t,即

t = t max +(1~2)△t (6—3)

在有分段母线的情况下,保护装置通常分两段时限,保护装置动作后,以较小的时限作用于主变压器断路器、分段断路器和母联断路器(例:图6-1中12sj整定2秒),以较大的时限作用于发电机断路器和自动灭磁开关(例:图6-1中的10sj整定2.5秒),这样,当相邻发电机电压母线或高压母线发生故障并且相应的保护装置拒绝动作时,本段发电机的低压过流保护先将主变断路器、分段断路器和母联断开,使本段母线与故障部分分开,仍可保证本段母线的可靠供电,这是低电压起动过电流保护在动作时限配合必须注意的问题。 ab c 控制电源小母线熔 断 器

低电压起动的过流保护

过负荷保护

主开关跳闸

mk跳闸图6—2 发电机低电压起动过电流保护及过负荷保护展开图

2、过负荷保护

由于低电压起动的过流保护不能反应过负荷,因此还需同时装一套过负荷保护,见图6-1。保护由电流继电器1和时间继电器2组成。由于短时间的过负荷不致于使发电机遭到破坏,一般不需要将发电机断开,在发电厂中过负荷保护只作用于信号。由于过负荷的对称性,过负荷保护只需在一相中装设,过负荷保护与过电流保护可共用一组电流互感器。 保护的动作电流按下式整定: kk idz,bh= ---------------- ifh.e (6—4) kh 式中:kk——可靠系数,采用1.05 kh——返回系数,为0.85 ifh.e——发电机折算到电流电感器二次测额定电流

为了防止发电机外部元件短路时,过负荷保护发生误动作,因此过负荷保护动作时间应大于发电机过流保护的动作时间。实际运行中,为了在出现能自行消除的短时过负荷时不致发出信号,通常过负荷保护的动作时间整定为9~10秒。(例:图6-1中的2sj整定9秒)

1、选择电压、电流继电器动作值(确定接线方式),选择时间继电器的动作时间及动作时间配合系数。(例:选择dl-24c/0.6型为过负荷电流继电器,整定动作值为0.6a;ds -2s型为过负荷时间继电器整定动作时限为9秒;选择dl-24c/2为过流继电器,整定动作值为0.71a;ds-22型为过流时间继电器整定动作时限为2.5秒;选择dy-28c/160为低电压起动继电器,整定起动值为60v。也可根据教师要求由实验指导书中公式计算确定。)

2、对实验用的电压继电器、电流继电器、时间继电器进行整定调试。方法同上。

3、按图6-3发电机低电压启动过电流保护及过负荷保护实验接线图进行接线。

4、组合连接电流形成回路和电压形成回路,并将电流调试信号和电压调试信号分别接入电流继电器(过电流及过负荷回路)和电压继电器的相应端子。

5、检查上述接线和设备,确定无误后,逐步调整电流和电压进行动作试验,观察动作过程做好记录,分析理解各个继电器在本保护电路中的作用、动作顺序和时限配合

六、注意事项

注意事项详见操作规程,实验操作中严禁将电压调试信号误接入电流回路,实验中要集中思想、注意观察低电压起动过电流保护各个器件的工作情况,确保实验操作过程中的每一个环节的正确性。

图6—3 低电压起动过电流保护及过负荷保护实验接线图

七、实验报告

在整定调试及动作试验结束后,针对低电压起动过电流保护的主要整定方法和动作特性进行分析,及时写出实验报告,将测试记录结果填入表6-1中,并书面解答本实验思考题。

实验七 自动重合闸前加速保护实验

一、实验目的

1、熟悉自动重合闸前加速保护的原理接线。

2、理解自动重合闸前加速保护的组成型式,技术特性,掌握其实验操作方法。

二、预习和思考

1、图7-2中各个继电器的功用是什么?

2、在重合闸动作前是由哪几个继电器及其触点共同作用,实现前加速保护。

3、重合于永久性故障,保护再次起动,此时由哪几个继电器及其触点共同作用,恢复有选择性地再次切除故障的?

4、为什么加速继电器要具有延时返回的特点?

5、在前加速保护电路中,重合闸装置动作后,为什么jsj继电器要通过1lj的常开触点、jsj自身延时返回的常开触点进行自保持?

6、在输电线路重合闸电路中,采用前加速时,jsj是由什么触点起动的?

7、请分析自动重合闸前加速保护的优缺点。

三、原理说明

重合闸前加速保护是当线路上发生故障时,靠近电源侧的保护首先无选择性地瞬时动作使断路器跳闸,而后再借助自动重合闸来纠正这种非选择性动作。

重合闸前加速保护的动作原理可由图7-1说明,线路x-1上装有无选择性的电流速断保护1和过流保护2,线路x-2上装有过流保护4,zch仅装在靠近电源的线路x-1上。无选择性电流速断保护1的动作电流,按线路末端短路时的短路电流来整定,动作不带延时。过流保护

2、4的动作时限按阶梯原则整定,即t2>t4。 图 7-1 自动重合闸前加速保护原理说明图

当任何线路、母线(i除外)或变压器高压侧发生故障时,装在变电所i的无选择性电流速断保护1总是首先动作,不带延时地将1qf跳开,而后zch动作再将1qf重合,若所发生的故障是暂时性的,则重合成功,恢复供电;若故障为永久性的,由于电流速断已由zch的动作退出工作,因此,此时只有各过流保护再次起动,有选择性地切除故障。图7-2示出了zch前加速保护的原理接线图。其中1lj是电流速断,2lj是过流保护。从该图可以清楚地看出,线路x-1故障时,首先速断保护的1lj动作,其接点闭合,经jsj的常闭接点不带时限地动作于断路器使其跳闸,随后断路器辅助触点起动重合闸继电器,将断路器重合。重合闸动作的同时,起动加速继电器jsj,其常闭接点打开,若此时线路故障还存在,但因jsj的常闭接点已打开,只能由过流保护继电器2lj及sj带时限有选择性地动作于断路器跳闸,再次切除故障。

自动重合闸前加速保护有利于迅速消除故障,从而提高了重合闸的成功率,另外还具有只需装一套zch的优点。其缺点是增加了1qf的动作次数,一旦1qf或zch拒绝动作将会扩大停电范围。

图 7-2 自动重合闸前加速保护原理接线图

1、根据过电流保护的要求整定2lj的动作电流值,和sj的动作时限(例:取2lj动作电流为1a,sj为1.5s)。

2、根据速断保护的要求整定1lj的动作电流(例:取1lj动作电流为3a)。

3、根据时间继电器、加速继电器、保护出口继电器的技术参数选择相应的操作电源。

4、按图7-2自动重合闸前加速保护原理接线图分别绘制展开图和安装图,然后进行安装接线。

5、检查“前加速保护”接线的正确性,确定无误后,接入相应直流操作电源。

6、此时重合闸装置未启动,加速继电器jsj未动作。调节交流电流回路,给电流继电器输入一个大于整定值的电流,模拟线路xl-1故障,观察前加速动作情况,加速跳闸后重合闸启动,图7-3中用开关s1闭合模拟zch出口接点zj3的闭合来起动jsj,jsj常闭触 点打开。

7、模拟故障继续存在,但由于jsj常闭触点已经打开,所以只能由过电流保护2lj和sj带时限有选择性地进行跳闸,切除故障。

六、注意事项 在

操作试

理解自动重合闸前加速保护的电路原理,在操作过程中要集中思想进行正确接线,严格按照操作规程的要求,加入试验电流,进行动作试验,要确保实验中每一环节的正确性和安全性。

七、实验报告

分析前加速保护动作特性,结合上述思考题写出报告。

表7-1 i=

交流电流

回路

直流操作电源

保护

无时限电流速断保护

过流保护

数字式电秒表

前加速继电器起 动回路

操作及信

模拟起动前加速

自动重合闸动

作指示

号回路

保护出口及电动 分闸回路信号继电器指示 灯回路

信号继电器复归 回路

过电流保护动作 指示

图7—3 自动重合闸前加速保护实验接线图

实验八 自动重合闸后加速保护实验

一、实验目的

1、熟悉自动重合闸后加速保护的接线原理。

2、理解自动重合闸后加速保护的组成形式、技术特性,掌握其实验操作方法。

二、预习与思考

1、图8-2中各个继电器的功用是什么?

2、当线路发生故障时,由哪几个继电器及其触点首先按正常的继电保护动作时限有选择性地作用于断路器跳闸?

3、重合于持续性故障时,保护再次起动,此时由哪几个继电器及其触点共同作用,实现后加速?

4、在输电线路重合闸电路中,采用后加速时,加速回路中接入了jsj的什么触点?为什么?

5、请分析自动重合闸后加速保护的优缺点?

三、原理说明

重合闸后加速保护是当线路上发生故障时,首先按正常的继电保护动作,带时限有选择性地动作于断路器跳闸,然后zch动作将断路器重合,同时zch的动作将过流保护的时限

解除。这样,当断路器重合于永久性故障线路时,电流保护将无时限地作用于断路器跳闸。

实现后加速的方法是,在被保护各条线路上都装设有选择性的保护和自动重合闸装置,见图8-1。zch后加速保护的原理接线见图8-2。

线路故障时,由于延时返回继电器jsj尚未动作,其常开触点仍断开, 图8-1 自动重合闸后加速保护原理说明图

电流继电器lj动作后,起动时间继电器sj,经一定延时后,其接点闭合,起动出口中间继电器bcj,使qf跳闸。qf跳闸后,zch动作发出合闸脉冲。在发出合闸脉冲的同时,重合闸出口元件zj3的常开触点闭合。起动继电器jsj,见图8-2,jsj动作后,其触点闭合。若故障为持续性故障,则保护第二次动作时,经jsj的触点直接起动bcj而使断路器瞬时跳闸。

图8-2 自动重合闸后加速保护原理接线图

自动重合闸后加速保护可以防止事故扩大,但第一次保护动作仍有时限,因而也影响了zch的动作效果,另外后加速必须在每条线路上都装设一套zch装置,投资较大。

五、实验步骤和操作方法

1、根据过流保护的要求整定lj的动作电流和sj的动作时限。

2、由加速继电器、保护出口继电器和时间继电器的参数选择相应的操作电源。

3、按图8-3自动重合闸后加速保护实验接线图进行安装接线。

4、检查“后加速保护”接线的正确性,确定无误后,接入相应直流操作电源。

5、模拟线路故障,给电流继电器lj加入一个大于整定值的电流,此时加速继电器jsj未起动,因此lj起动sj,sj经过一定时限后起动bcj,使断路器跳闸,同时经xj发信号。

6、断路器跳闸后,重合闸发出合闸脉冲的同时,由出口元件触点zj起动jsj(图8-2中用开关s1闭合替代zch出口接点zj的闭合起动jsj),jsj动作后其延时断开的常开触点闭合,实现后加速。

7、模拟持续性故障,观察后加速动作情况。

六、注意事项

在操作前必须熟悉自动重合闸后加速保护的电路原理,在操作过程中要进行正确的安装接线,严格按照操作规程的要求,加入试验电流,进行动作试验,要确保实验过程的安全正确。

七、实验报告

分析后加速保护的动作特性,结合上述思考题写出实验报告。

交流电流

回路

图8-3 自动重合闸后加速保护实验接线图

实验九 电流综合保护实验

一、概 述

以上各实验中,我们学习了各种常规继电器、特殊继电器的结构、原理、电气特性,以及由它们所组成的各种保护电路、信号回路。并通过大量实验训练,加深了对原理的理解,提高了动手能力。但是实际中的电力自动化继电保护及自动装置中并不是由单一的保护电路、信号回路就能够实现所有的功能,而应根据不同保护对象及其对负荷供电的重要性,综合考虑继电保护动作后,如何与自动重合闸配合,重合闸采用前加速还是后加速等。因此本实验装置设计考虑了由前面所述实验电路,进行组合构成综合性实验电路进行提高实验技能训练。

本实验就是过电流保护电路与自动重合闸装置组成的综合实验实例,希望它对学生有所启发,并让学生认真思考如何将所学的各种继电保护电路、信号回路、自动重合闸装置等内容进行科学组合,构成综合实用的保护体系。希望它对进一步提高学生理论结合实际的能力有所帮助。

二、实验目的

熟悉过流保护与三相自动重合闸的电路原理,实际接线,逻辑功能, 掌握其基本特性和实验整定方法。

三、原理说明

三相自动重合闸主要由dh--3型重合闸继电器、跳跃闭锁继电器tbj、加速继电器jsj、信号继电器xj、切换片qp等元件所组成。

dh--3型重合闸继电器为一只组合式继电器,内中包括一只时间元件sj、一只中间元件zj、一只电容c、一只信号灯xd、充电电阻4r、放电电阻6r、时间元件附加电阻5r、指示灯附加电阻17r等,见图9—1虚线框内所示。线路断路器控制开关采用小型控制开关(lwx1—w2.2.40/f6),其接点动作图见表9—1(为了提高实验效果,便于分析各种工作状态,本实验设计采用单接点转换开关分别替代控制开关的各对接点,见zb7组合挂箱)。

1、实验原理

①三相自动重合闸采用“不对位”启动方式

利用控制开关触点kk12--9与断路器触点qf3“不对位”判别正常跳闸或事故跳闸。 正常跳闸时:控制开关处于“跳闸后”位置,kk12—9触点断开,虽然qf3在断路器跳闸后闭合,szch也不起动。

事故跳闸时:控制开关处于“合闸后”位置,kk12--9闭合,故在断路器跳闸后qf3触点接通而使szch起动。

②利用电容c充电时间较长实现szch只动作一次。

适当选择电容c和充电电阻4r的参数,使充电至zj电压线圈动作,约需15~20s,

当重合不成功或在手动合闸到故障线路时,因电容c充电时间不够,故szch不会第二次合闸。

③手动跳闸时闭锁szch 利用kk10--9在“跳闸后”位置时闭合,构成电容经c经6r和kk10--9放电回路,实现手动跳闸时闭锁szch。 ④szch动作时间的整定可根据计算确定的重合闸时间,利用时间元件sj来整定szch动作时间常数。 ⑤自动复归

利用断路器辅助触点qf1在动作后自动切断zj自保持电流线圈,使szch复归;qf3触点使sj复归;电容c重新充电,经15~20s,szch又处于准备状态。 ⑥与继电保护的配合 在szch发出重合闸脉冲的同时,重合闸触点zj3使加速继电器jsj励磁,由jsj触点实现后加速保护。(根据需要也可实现前加速) ⑦szch的试验及动作信号

利用切换片qp可将出口切至试验信号灯bd,进行szch完好性试验。 ⑧电路能灵活地投切szch. 利用bk开关可方便的投入使用szch或撤出szch ⑨szch动作时由信号继电器xj发出信号。

2、动作过程 ①准备状态

在断路器投入之前,控制开关kk10-9处于“跳后”接通位置,这时加于电容c上的电压近似于电阻4r、6r串联电路在6r上的分压值,即 r6r uc≈-------- uz r6r +r4r 式中,uz--直流操作电源电压(本实验为220v) 因r6r≤r4r(r4r约为几兆欧,而r6r只有几百欧),故uc≈0。

在断路器合闸后,控制开关接点kk10-9处于“合后”断开位置,电容c即开始充电,经15~20秒充足电,szch处于准备状态,信号灯xd亮。 ②szch动作过程

断路器因线路事故跳闸,其辅助触点qf3闭合。因控制开关处于“合后”位置,kk12-9接通。符合“不对位原则”,故szch起动。首先时间继电器sj励磁。sj1瞬时断开触点用于自动接入电阻5r,降低sj线圈电流,保证sj线圈的热稳定;sj2延时闭合触点用于接通电容c对zj电压线圈的放电回路,故zj动作,发出重合闸脉冲。重合成功之后,由断路器辅助触点qf1和qf3分别使zj、sj复归;电容c重新充电,再次处于准备状态,完成一个重合闸循环。

zj采用带有电流自保持的中间继电器,是因为电容c放电过程很快,一般小于0.01秒,如无自保持回路,则可能在电容电压衰减后撤消重合闸命令,重合过程半途而废; 有了电流自保持回路,则zj一旦动作,就能保证命令执行。在重合闸出口回路使用zj

1、zj2多触点串联,是为增强断弧能力,防止触点粘接。 ③szch重合不成功过程

当重合到持续性故障线路时,继电保护再次动作使断路器跳闸,如果szch与保护配合采用zch后加速保护,则第二次跳闸是瞬时的。断路器再次跳闸后,szch启动回路再次接通,sj又再次启动,其延时闭合触点又接通c对电压线圈zj放电回路,但这时c充电不足,故szch不动作。

要指出的是:虽然sj2闭合时,直流操作电源电压会经过4r、sj

2、zj电压线圈形成通路,但由于4r阻值很大(约几兆欧),而zj电压线圈电阻只有几千欧,zj电压线圈承受分压值很小,故zj不会动作。

3、参数整定 (1)、重合闸动作时限重合动作时限,原则上越短越好, 但必须满足以下要求: 大于故障点反游离时间, 即: tdz+ thz > tyl 或 tdz= tyl - thz+△t (9—1) 式中:tdz --重合闸动作时限 tyl --故障点去游离时间 thz --断路器合闸时间

△t --时间裕度,一般取0.3~0.4秒. 大于断路器绝缘恢复具备再次合闸时间, 即: tdz≥tzb2c 或 tdz=tzb2c + △t (9—2) 式中 tzb2c--断路器绝缘恢复具备重合所需时间, 包括触头周围绝缘油绝缘强度的恢复和操作机构复原所需时间. 大于本线路电源侧最大动作时限的继电保护时间, 即

tdz+ thz > tf 或 tdz= tf+ thz+△t (9 —3) 式中 tf--最大动作时限的线路保护的返回时间; thz--见式(9—1). 大于环形网或平行线路对可靠地切除故障所要求时间,即 tm2zx+ ttz2m+ thz2m+tdz> tn2zd+ttz2n+tyl 或 tdz=tn2zd+ttz2n+tyl-(tm2zx+ttz2m+thz2m)+△t (9—4) 式中t n2zd --线路对侧(n侧)保护最大时限, 可取第ii.段保护时限0.5秒; tm2zx--线路对侧(m侧)保护最小时限, 可取第.i段保护时限; ttz2m ttz2n—m、n侧断路器跳闸时间;thz2m--m侧断路器合闸时间; tyl--故障点反游离时间;△t --时间裕度. 【实例】假设输电线路两侧均采用相同的油断路器, 断路器的工作参数: ttz =0.1s, thz=0.8s, tyl=0.2s, △t=0.4s重合闸动作时间为 tdz= 0.5 + 0.1+ 0.2-0-0.1-0.8 +0.4= 0.3s 为可靠地切除故障,提高重合闸成功率,单侧电源szch的动作时限一般取0.8~1.5s, 因此本实验重合闸动作时间整定1.5s。 ( 2 )、重合闸复归时间

重合闸复归时间是指电容c充电到继电器zj动作电压所需的时间。其必须满足以下要求: ①、重合失败,由后备保护再次跳闸,不会发生第二次合闸,由下式条件保证,即: tdz2j +ttz+tdz+thz

【实例】设直流电源电压uz=220v,zj动作电压udz.j=115v,充电电阻4r=3.4mω,电容c=8uf,则 uz 220 tf=rcln-------=3,400,00038310-6ln-------- = 27.2ln2.09 = 20s uz-udz2j220-115 重合闸复归时间(即电容器充电到中间元件动作所必须电压的时间)的测定按实验十八中的图18—2进行如果要调整szch复归时间,一般不改变c和4r,而是调整zj的动作电压udz2j ,调整继电器反作用弹簧力。

(3)、后加速继电器jsj的复归时间

后加速继电器jsj的复归时间是指继电器失去励磁后触点延时返回的时间,应大于保护动作时间和断路器跳闸时间之和,即

tf>tdz2j+ttz (9—6) 式中 tf—复归时间jsj tdz2j—保护动作时间 ttz—断路器跳闸时间 【实例】设tdz2.j=0.1s,ttz=0.1s,则tf>0.1+0.1=0.2s,一般取0.3~0.4s 后加速继电器jsj失励后触点延时返回时间,按实验四中图4--8接线测定。

五、实验步骤和操作方法

1、根据参数整定原则确定过流保护与重合闸继电器的动作值,并进行整定,本实验可整定过流保护的电流起动值为3a,过流保护的动作时限为2秒,重合闸继电器动作时间为1.5秒。

2、按图9—1(a)和图9—1(b)过流保护与三相自动重合闸综合实验接线图进行安装接线。

3、检查实验接线的正确性,确定无误后,连接相应的直流操作电源。

4、模拟输电线路发生暂时性故障启动重合闸。

①、见图21—1(b)调节可调变阻器r1和rf,使二变阻器接入电路的电阻为最大阻值,r1=12.6ω, rf =110ω。然后闭合短路开关qa,合上断路器qf和单相交流电源开关k,调节单相自耦调压器和可调变阻器r1,使交流电流表上的指示值为3.5a。给电流继电器加入一个大于启动值的电流。断开短路开关qa,调节可调变阻器rf,慢慢减小rf阻值,使交流电流表上的读数为额定电流2a。此时输电线路处于正常供电状态。 ②、根据控制开关kk触点动作图表,将控制开关kk切换于“合闸后”位置,即(9) --(12)接点闭合,合上bk开关(1)--(2)接点闭合,投入重合闸继电器,经过20秒,重合闸继电器指示灯亮,表明重合闸继电器中的电容c已储能完毕,装置已处在准备动作状态。

③、闭合短路开关qa,当断路器跳闸后,迅速断开短路开关qa,随后重合闸装置将进

行自动重合。这期间要注意观察过流保护和三相自动重合闸的动作全过程。整个动作过程完成后要及时进行分析,写出动作流程。

5、模拟输电线路发生永久性故障的动作过程。操作方法同4,不同之处是短路开关qa闭合后不断开。

四、实验设备

图9—1 电流保护综合实验交流侧接线图

图9—2 电流保护综合实验直流侧接线图

六、实验分析与操作接线的考核内容

1、如何将重合闸继电器动作时间整定为1.5秒,如何将过流保护电流继电器lj的动作电流整定为3a和过流保护动作时间为2秒。

2、假定重合闸装置已处在准备动作状态,分析下列情况下的动作行为并写出实验步骤和操

作方法,绘制实验记录表,并进行实验操作,由教师考核评分。 (1)、当线路上发生暂时性故障时; (2)、当线路上发生永久性故障时; (3)、手动跳闸时; (4)、当线路上存在永久性故障而手动合闸时; (5)、用kk手动合闸10秒钟后线路出现故障; (6)、用kk手动合闸25秒钟后线路出现故障; (7)、线路上多次出现雷击故障时(相当于每隔25秒出现一次暂时性故障); (8)、闭锁自动重合闸后,线路出现永久性或暂时性故障时。

3、防跳继电器的作用

(1)投入防跳继电器使线路出现永久性故障而zj

1、zj2触点不能自动断开时(即使继电器

处于动作状态);

(2)切除防跳继电器使线路出现永久性故障而zj

1、zj2触点不能自动断开时。

4、重合闸和继电保护之间配合工作 分别测量加速继电器在不加速,后加速位置而线路出现永久性故障和暂时性故障的故

障切除时间;根据实验结果分析比较重合闸,后加速及不加速的优缺点。

七、实验报告

1、分析上列各实验的动作行为。

2、本重合闸装置采用什么起动方式?它有哪些起动元件?

3、根据图9—

1、2的实验展开图画出原理图。

第二篇:电力系统继电保护学习报告

《电力系统继电保护》学习报告

题目: 电力系统输电线路的电流电压保护

院 电气工程学院

级 电气103班

学生姓名

刘欣

号 100303080

指导教师

程海军

讲师

日期:2013年 12月20日

目 录

第1章 概述 ..................................................................................................................................... 1

1.1 电力系统电压电流保护概述 ............................................................................................ 1 第2章继电保护概念及要求 ........................................................................................................... 2

2.1继电保护概念 ..................................................................................................................... 2 2.2继电保护装置的基本要求 ................................................................................................. 2 第3章电力系统电压电流保护 ....................................................................................................... 3

一、无时限电流速断保护 ....................................................................................................... 3

二、带时限电流保护 ............................................................................................................... 3

三、定时限过电流保护 ........................................................................................................... 4 第4章 总结 ..................................................................................................................................... 5

第1章 概述

1.1 电力系统电压电流保护概述

电力系统的输、配线路因各种原因可能会发生相间或相地短路故障因此必须有相应的保护装置来反映这些故障并控制故障线路的断路器使其跳闸以切除故障.对各种不同电压等级的线路应该装设不同的相间短路和接地短路的保护。对于 3KV 及以上的电力设备和线路的短路故障,应有主保护和后备保护;对于电压等级在 220KV 及以上的线路,应考虑或者必须装设双重化的主保护,对于整个线路的故障,应无延时控制其短路器跳闸。线路的相间短路、接地短路保护有:电流电压保护,方向电流电压保护,接地零序流电压保护,距离保护和纵联保护等。电力系统中线路的电流电压保护包括:带方向判别和不带方向判别的相间短路电流电压保护,带方向判别和不带方向判别的接地短路电流电压保护。他们分别是用于双电源网络、单电源环形网络及单电源辐射网络的线路上切除相间或接地短路故障。

根据线路故障对主、后备保护的要求,线路相间短路的电流电压保护有三种:第一,无时限电流速断保护;第二,带时限电流速断保护;第三,定时限过电流保护。这三种相间短路电流电压保护分别称为相间短路电流保护第Ⅰ段、第Ⅱ段和第Ⅲ段。其中第Ⅰ、Ⅱ段作为线路主保护,第Ⅲ段作为本线路主保护的后备保护和相邻线路或元件的远后备保护。第Ⅰ、Ⅱ、Ⅲ段统称为线路相间短路的三段式电流电压保护。

第2章继电保护概念及要求

2.1继电保护概念

在电力系统运行中,外界因素(如雷击、鸟害呢)、内部因素(绝缘老化,损坏等)及操作等,都可能引起各种故障及不正常运行的状态出现,常见的故障有:单相接地;三相接地;两相接地;相间短路;短路等。电力系统非正常运行状态有:过负荷,过电压,非全相运行,振荡,次同步谐振,同步发电机短时失磁异步运行等。

电力系统继电保护和安全自动装置是在电力系统发生故障和不正常运行情况时,用于快速切除故障,消除不正常状况的重要自动化技术和设备。电力系统发生故障或危及其安全运行的事件时,他们能及时发出告警信号,或直接发出跳闸命令以终止事件。

2.2继电保护装置的基本要求

1.选择性

电力系统发生故障时,继电保护的动作应当具有选择件,它仅将故障部分切除能继续运行.尽量缩小中断供电的范围。

2.动作迅速

电力系统发生故障后,要求继电保护装置尽快的动作.切除故障部分,这样做的好处(1)系统电压恢复得快,减少对广大用户的影响。

(2)电气设备损坏程度减轻。

(3)防止故障扩大,对高压电网来说,快速切除故障更为必要,否则会引起电力系统振荡甚至失去稳定。

(4)有利于电弧闪络处的绝缘强度恢复.当电源切除后又自动重新合上(即采用白动重合闸装置)再送电时容易获得成功(即提高了自动重合闸的成功率)。

3.灵敏性

灵敏性是指继电保护装置反应故障的能力,一般以灵敏系数的大小来衡量。 4.安全性和可靠性

(1)选用确当的保护原理,在可能条件下尽量简化接线,减少元器件的数量和触点的数量。

(2)提高保护装置所选用的器件质量和工艺水平,并有必要的抗干扰措施。 (3)提高保护装置安装和调试的质量,并加强维护和管理。

2

第3章电力系统电压电流保护

一、无时限电流速断保护

无时限电流速断保护的作用是保证在任何情况下只切除本线路故障。若忽略本线路的电阻分量,则归算至断路器1QF处的系统等效电源的相电势为Es,等效电源的阻抗最大值为Xsmax,最小值为Xsmin,故障点至1QF保护安装处的距离为L,每公里电抗为x1,则故障点最大短路电流和两相短路时最小电流分别为:

IkmaxEs

XsminX1LIkminEs3 XsmaxX1L2断路器1QF处无时限电流速断保护的动作电流整定值为:

IIIopK1relIkbmax

Krel电流保护I段可靠系数,大于1,可取1.2~1.3 I灵敏度要求 Ksenlmin100%15% lab

二、带时限电流保护

带时限电流速断保护的主要作用,可以确定其电流测量元件的整流值必须遵循如下两条:

1.在任何情况下,带时限电流速断保护均能保护线路全长,为此必须延伸到相邻的下一线。

2.为保证下一线路出口出短路时保护的选择性,本线路带时限电流速断保护在动作时间和动作电流两个方面均和相邻线路的无时限电流速断保护配合。

3

电流和动作时间整定如下:

IIIIIIopK1relIop2/Kbmin

tIIop1tIop2t

对于灵敏度检验,当发现灵敏度不合格时,将采取降档措施,与相应的保护的二段相配合再次进行计算,直到灵敏度合格为止。

三、定时限过电流保护

定时限过电流保护的作用是作本线路主保护的今后备保护,并作相邻下一线路的后备保护。因此它的保护范围要求超过相邻线路的末端。 整定要求:

1. 在正常运行并伴有电动机自启动儿流过保护的最大负荷电流时,该保护不动作。

2. 非故障线路的定时限过电流保护在外部股长切除后,且下一母线有电动机启动而流过最大负荷电流时,应能可靠返回。

4

第4章 总结

本次学习报告主要是针对输电线路电流电压保护进行学习。随着电力系统规模的不断扩大,对电力系统安全性、可靠性、高效性运行的要求越来越高,继电保护应运而生,本文对继电保护各项参数进行了计算,以及安装了方向保护元件实现方向保护,并对其系统保护的算法进行记录。本文章首先是对电力系统继电保护进行了简单的介绍,然后对电流电压保护做了概述和简单的计算,然后给出了三段式电流保护的原理图,绘制出了电流三段式保护的原理接线图、交、直流展开图及信号回路展开图,电流三段式保护的原理接线图、交、直流展开图及信号回路展开图。经过这次系统的学习,已经基本掌握输电线路电流电压保护的基本原理,为将来的学习打下量好的基础。

5

参考文献

[1] 天津大学编,电力系统继电保护原理,北京,电力工业出版社,1980年 [2] 华中工学院编,电力系统继电保护原理与运行,北京,电力工业出版社,1981年 [3] 吕继绍主编,继电保护整定计算与实验,武汉,华中工学院出版社,1983年 [4] 刘天琪.邱晓燕主编,电力系统分析理论,北京,科学出版社2004年 [5] 陈丽新,杨光宇主编,电力系统分析,北京,中国电力出版社2008年 [6] 李骏年,主编,电力系统继电保护,北京,中国电力出版社,2000年

[7] 李任凤,主编,小型无人值班变电站实用技术指南,北京,中国水利水电出版设,2000年

[8] 王士政,主编,电网调度自动化与配网技术,北京,中国水利水电出版社,2003年 [9] 电力系统自动化杂志社,电力系统自动化,江苏,中国杂志社出版,2006年 [10] 华中工学院,电力系统继电保护原理与运行,北京,电力工业出版社,1988年 [11] 何仰赞,温增银主编,《电力系统分析》,上册,华中科技大学出版社2002.1年 [12] 何仰赞,温增银主编,《电力系统分析》,下册,华中科技大学出版社2002.1年 [13] 哈尔滨大电机研究所 期刊 大电机技术 哈尔滨大电机研究所2010年

[14] 李朝安,主编,发电厂及电力系统的经济运行,新疆,新疆人民出版社,1985年 [15]周荣光,主编,电力系统故障分析,北京,清华大学出版社,1988年

6

第三篇:主变压器继电保护毕业设计开题报告

开题报告

1.课题名称:

200MW发电机组主变压器继电保护

2.总述:

我的选题是200MW发电机组主变压器继电保护,我选择这个课题的目的是通过对这个设计的完成来了解有关发电机组主变压器的继电保护,掌握这方面的技能,我通过对本方面资料的查询得知电力系统的飞速发展对继电保护不断提出新的要求,电子技术、计算机技术与通信技术的飞速发展又为继电保护技术的发展不断地注入了新的活力,因此,继电保护技术得天独厚,在40余年的时间里完成了发展的4个历史阶段。 建国后,我国继电保护学科、继电保护设计、继电器制造工业和继电保护技术队伍从无到有,在大约10年的时间里走过了先进国家半个世纪走过的道路。50年代,我国工程技术人员创造性地吸收、消化、把握了国外先进的继电保护设备性能和运行技术[1],建成了一支具有深厚继电保护理论造诣和丰富运行经验的继电保护技术队伍,对全国继电保护技术队伍的建立和成长起了指导作用。阿城继电器厂引进消化了当时国外先进的继电器制造技术,建立了我国自己的继电器制造业。因而在60年代中我国已建成了继电保护研究、设计、制造、运行和教学的完整体系。这是机电式继电保护繁荣的时代,为我国继电保护技术的发展奠定了坚实基础。我国从70年代末即已开始了计算机继电保护的研究[4],高等院校和科研院所起着先导的作用。华中理工大学、东南大学、华北电力学院、西安交通大学、天津大学、上海交通大学、重庆大学和南京电力自动化研究院都相继研制了不同原理、不同型式的微机保护装置。1984年原华北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用[5],揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。自1996年至今不同原理、不同机型的微机线路和主设备保护各具特色,为电力系统提供了一批新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果。可以说从90年代开始我国继电保护技术已进入了微机保护的时代。因此我要运用我所学到的相关知识(电力系统继电保护、电力系统分析、发电厂电气部分、电路、电力系统微机保护、、、、、、)去完成这个任务。

3、设计要求:

大量查找资料,撰写开题报告,进行短路电流计算,主变压器保护配置及整定,撰写设计说明书,绘制变压器保护图纸。

4、设计的主要内容与技术参数:

技术参数:中型凝汽式火电厂扩建项目:200MW机组:发电机型号:QFSN-200-2型,200MW,15.75KV;COS&=0.85,Xd’’=14.13%;变压器型号:SFP9-240000 / 220;220KV侧采用双母线形式。 220KV系统参数:最大运行方式X1=X2=0.02130,X2=0.04045,最小运行方式X1=X2=0.03342,X0=0.07526(SB=1000MVA;UB=UAV);

5、课题研究的目的和意义:

随着电力系统的高速发展和计算机技术、通信技术的进步,继电保护技术面临着进一步发展的趋势。国内外继电保护技术发展的趋势为:计算机化,网络化,保护、控制、测量、数据通信一体化和人工智能化,这对继电保护工提出了艰巨的任务,也开辟了活动的广阔天地。

6、课题研究的目标:

要能完成对200MW发电机组主变压器的保护,完成这个保护要对本保护有几个要求:(1)选择性: 选择性是指保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。(2)速动性:速动性是指尽可能快地切除故障 ,短路时快速切除故障,可以缩小故障范围,减轻短路引起的破坏程度,减小对用户工作的影响,提高电力系统的稳定性。(3)灵敏性: 灵敏性是指对保护范围内发生故障或不正常运行状态的反应能力。保护装置的灵敏性,通常用灵敏系数来衡量,灵敏系数越大,则保护的灵敏度就越高,反之就越低。(4)可靠性: 可靠性是指在规定的保护范围内发生了属于它应该动作的故障时,它不应该拒绝动作,而在其他不属于它应该动作的情况下,则不应该误动作。

7. 毕业设计工作计划:

(1)查找资料(1-2周) (2)撰写开题报告(3周) (3)短路电流的计算(4-5周)

(4)变压器保护配置及整定计算(6-11周) (5)撰写设计说明书(12-13周) (6)绘制变压器继电保护图纸(14-15周) (7)准备论文答辩(16周)

******大学

本科生毕业设计开题报告

论文设计题目: 作者所在学院: 作者所在专业: 作者所在班级: 作 者

姓 名: 作 者

学 号: 指导教师姓名: 接受任务日期: 完成任务日期:

第四篇:继电保护考核

为保证龙南电网安全运行,激发各级继电保护专业管理人员、技术人员的工作积极性,加大继电保护工作的管理力度,实现继电保护工作的可控在控,特制定本奖励考核办法:

一、奖惩人员范围

检修公司及调度所有关继电保护人员(包括主任、分管副主任、分管专工、检修公司继电保护班全体人员、调度所整定计算人员),实行考核。

二、奖惩细则

1、公司所属变电站内全部继电保护装置正确动作率99.6%以上,每升高一个千分点奖励上述人员人均200元,正确动作率低于99.6%,一次性扣罚上述人员人均200元。

2、全年内不发生继电保护“三误”事故,奖励检修分公司8000元,奖励调度所2000元,奖励变电运行工区2000元。若发生继电保护“三误”事故,按公司“安全生产奖惩细则”等有关文件进行考核。

3、全年继电保护装置正确动作率99.8%以上,不发生继电保护“三误”事故,一次性奖励生技部2000元。

4、新建、扩建、改造工程项目,充分考虑继电保护及安全自动装置的完善,工作有遗漏或完成不好,扣责任部门500元。

5、所购置的继电保护及安全自动装置,生产厂家必须有上级部门颁发的三证,并经生技部及运行、检修单位认可。如有不按规定购置而进入电网者,发现一次扣有关责任单位500元。

6、各部门上报的各项继电保护资料,必须在规定期限内统计上报,每延迟一天,扣责任单位100元,以此类推。

三、本办法由生产技术部负责检查并考核。

四、本办法由公司考评委员会负责解释。

第五篇:继电保护知识

二次回路的定义

[编辑本段]

由二次设备互相连接,构成对一次设备进行监测、控制、调节和保护的电气回路称为二次回路。

在词典中的解释:

在电气系统中由互感器的次级绕组、测量监视仪器、继电器、自动装置等通过控制电缆联成的电路。用以控制、保护、调节、测量和监视一次回路中各参数和各元件的工作状况。

用于监视测量表计、控制操作信号、继电保护和自动装置等所组成电气连接的回路均称为二次回路或称二次接线。

二次回路的组成

[编辑本段]

指对一次设备的工作进行监视、控制、测量、调节和保护,所配置的如:测量仪表、继电器、控制和信号元件,自动装置、继电保护装置、电流、电压互感器等,按一定的要求连接在一起所构成的电气回路,称为二次接线或称为二次回路。

一次回路的组成由发电机、变压器、电力电缆、断路器、隔离开关、电压、电流互感器、避雷器等构成的电路,称为一次接线或称为主接线。

二次回路的分类

[编辑本段]

A、按电源性质分:交流电流回路---由电流互感器(TA)二次侧供电给测量仪表及继电器的电流线圈等所有电流元件的全部回路。

交流电压回路---由电压互感器(TV)二次侧及三相五柱电压互感器开口三角经升压变压器转换为220V供电给测量仪表及继电器等所有电压线圈以及信号电源等。

直流回路---使用所变输出经变压、整流后的直流电源。蓄电池---适用于大、中型变、配电所,投资成本高,占地面积大。

B、按用途区分:测量回路、继电保护回路、开关控制及信号回路、断路器和隔离开关的电气闭锁

回路、操作电源回路。

操动回路---包括从操动(作)电源到断路器分、合闸线圈之间的所有有关元件,如:熔断器、控制开关、中间继电器的触点和线圈、接线端子等。

信号回路---包括光字牌回路、音响回路(警铃、电笛),是由信号继电器及保护元件到中央信号盘或由操动机构到中央信号盘。

二次回路识图

[编辑本段]

常用的继电保护接线图包括:继电保护的原理接线圈、二次回路原理展开图、施工图(又称背面接线图)、盘面布置图。

(1)、看图:

A、"先看一次,后看二次"。一次:断路器、隔离开关、电流、电压互感器、变压器等。了解这些设备的功能及常用的保护方式,如变压器一般需要装过电流保护、电流速断保护、过负荷保护等,掌握各种保护的基本原理;再查找

一、二次设备的转换、传递元件,一次变化对二次变化的影响等。

B、"看完交流,看直流"。指先看二次接线图的交流回路,以及电气量变化的特点,再由交流量的"因"查找出直流回路的"果"。一般交流回路较简单。

C、"交流看电源、直流找线圈"。指交流回路一般从电源入手,包含交流电流、交流电压回路两部分;先找出由哪个电流互感器或哪一组电压互感器供电(电流源、电压源),变换的电流、电压量所起的作用,它们与直流回路的关系、相应的电气量由哪些继电器反映出来。

D、"线圈对应查触头,触头连成一条线"。指找出继电器的线圈后,再找出与其相应的触头所在的回路,一般由触头再连成另一回路;此回路中又可能串接有其它的继电器线圈,由其它继电器的线圈又引起它的触头接通另一回路,直至完成二次回路预先设置的逻辑功能。E、"上下左右顺序看,屏外设备接着连"。主要针对展开图、端子排图及屏后设备安装图。原则上由上向下、由左向右看,同时结合屏外的设备一起看。

(2)、原理图:对于与二次回路直接相连的一次接线部分绘成三线形式,而其余部分则以单线图表达。原理图多用于对继电保护装置和自动装置的原理学习和分析或作为二次回路设计的原始依据。

A、原理图的仪表和继电器都是以整体形式的设备图形符号表示的,但不画出其内部的电路图,只画出触点的连接。

B、原理图是将二次部分的电流回路、电压回路、直流回路和一次回路图绘制在一起;特点是能使读图人对整个装置的构成有一个整体的概念,并可清楚地了解二次回路各设备间的电气联系和动作原理。

C、缺点:对二次接线的某些细节表示不全面,没有元件的内部接线。端子排号码和回路编号、导线的表示仅一部分,并且只标出直流电源的极性等。

(3)、展开图:展开图和原理图是同一接线的两种表达方式。"直观性好"

A、将二次回路的设备展开表示,分成交流电流、交流电压回路,直流回路,信号回路。

B、将不同的设备按电路要求连接,形成各自独立的电路。

C、同一设备(电器元件)的线圈、触点,采用相同的文字符号表示,同类设备较多时,采用数字序号。

D、展开图的右侧以文字说明回路的用途。

E、展开图中所有元器件的触点都以常态表示,即没有发生动作。

(4)、安装接线图(屏背面接线图):以展开图、屏面布置图、端子排图为依据。(由制造厂绘制)

A、屏背面展开图---以屏的结构在安装接线图上展开为平面图来表示。屏背面部分装设仪表、控制开关、信号设备和继电器;屏侧面装设端子排;屏顶的背面或侧面装设小母线、熔断器、附加电阻、小刀开关、警铃、蜂鸣器等。

B、屏上设备布置的一般规定---最上为继电器,中为中间继电器,时间继电器,下部为经常需要调试的继电器(方向、差动、重合闸等),最下面为信号继电器,连接片以及光字牌,信号灯,按钮,控制开关等。

C、保护和控制屏面图上的二次设备,均按照由左向右、自上而下的顺序编号,并标出文字符号;文字符号与展开图、原理图上的符号一致;在屏面图的旁边列出屏上的设备表(设备表中注明该设备的顺序编号、符号、名称、型号、技术参数、数量等);如设备装在屏后(如电阻、熔断器等),在设备表的备注栏内注明。

D、在安装接线图上表示二次设备---屏背面接线图中,设备的左右方向正好与屏面布置图相反(背视图);屏后看不见的二次设备轮廓线用虚线画出;稍复杂的设备内部接线(如各种继电器)也画出,电流表、功率表则不画;各设备的内部引出端子(螺钉),用一小圆圈画出并注明端子的编号。

(5)、接线端子---连接同一屏(除特殊信号联络外)上不同设备电路。

A、试验端子---用于需要投入试验仪器的电流回路时可用到,主要利用它可校验电流回路中的仪表和继电器的准确度,可保证电流互感器的二次侧在测试中不会开路且又不必松动原来的接线。

B、连接试验端子---同时具备连接端子和试验端子的功能,常用于需要彼此连接的电流试验回路中。

C、特殊端子---用于需要很方便地开断回路的场合。

(6)、配电应用电缆截面积(铜芯):

电流回路≥2.5MM2,长度较长时应≥4~6MM

2电压回路、控制回路、信号回路≥1.5MM2

上一篇:家电导购员的培训下一篇:酒店保安规章制度

本站热搜