直流系统蓄电池更换

2022-09-12

第一篇:直流系统蓄电池更换

变电站直流系统蓄电池组现状与维护管理方法研究

杨正盛 谢建江

1

(1.吉林省电力公司 ,2.杭州高特电子设备有限公司)

摘要: 全面详细介绍目前电力变电站直流系统蓄电池组维护现状,分析常见蓄电池组故障现象和原因分析,同时进行了如何提高蓄电池组运行管理方法的研究。

关键词:变电站、直流系统、蓄电池组、开路、浓差极化、单体电压、组端电压、浮充、均衡充电、核对性放电、内阻测试

1 概述

直流系统在变电站为控制、信号、保护、自动装置及事故照明提供可靠的直流电源,对变电站的安全运行中起着重要的作用,是变电站安全运行的保证。而蓄电池在直流系统中更为重要,在电网出现故障时,蓄电池是唯一的能源提供和保证者,因此做好蓄电池的日常维护工作,及时判别蓄电池的故障,特别是蓄电池开路故障,及时发现及时处理,对防止开关拒动及保护误动、拒动有重要作用。

随着科学技术的进步,阀控式密闭铅酸蓄电池以其重量、占地少、无酸雾污染等优点,大规模地取代了以前的防酸隔暴电池。阀控铅酸电池组在具有突出优势的同时,存在很多不足的地方,比如:容易难以测试,不能加水,对浮充电压、使用环境要求高等。因此蓄电池投入使用后,由于电池出厂前的设计、工装设备、质量控制等因素,以及浮充电压设定,使用环境温度等,会导致活性物质脱落、变坏、正极栅格腐蚀及硫化等现象,从而会使得整组电池出现容量损失,电压差不均,以及单体电池落后等情况。因此,维护规程中要求对蓄电池进行核对性容量试验和脱载试验,目的就是测知电池组的实际容量,找出落后电池,消除隐患。

2 蓄电池运行维护现状 根据国网公司《直流电源系统技术标准》要求,220kV变电站基本配置了200~300Ah两组蓄电池组及对应的充电装置;110kV变电站基本配置了200Ah或以下的一组蓄电池组;但目前,由于缺乏必要的专业仪器仪表,对蓄电池组容量测试还停留在人工检测水平上,这是一项操作繁琐、工作量大,效率极低的工作,同时造成大部分蓄电池组均未能按照规程对蓄电池进行容量测试维护。同时随着电力电网建设,变电站数量每年以15%的速度增长,而运维人员并没有随之增加,每周对蓄电池组各单体电池进行巡视,常规电池电压、蓄电池组环境等的检查,众所周知,蓄电池组端电压与容量没有直接关系,因此虽然为之付出了大量的人工,但没能取得如期的效果;同时也普遍存在蓄电池组从工程竣工交付使用后至今没有做过一次彻底容量测试象。 这几年随着对蓄电池管理维护的重视和电力电子技术的发展,智能蓄电池监测装置应运而生,部分变电站配置了充电装置集成的蓄电池在线监测设备,部分供电公司独立配置了便携式蓄电池组核对性放电设备。但是一些在线监测设备功能简单,只能监测电池电压,而且一部分精度较低,便携式的放电设备放电过程需要手工测量单体电池电压,所以已有的一些监测手段不能实现真正的自动监测、自动诊断功能。

3、蓄电池运行常见故障及原因分析 变电站蓄电池组运行过程中表现可能失效的现场浮充电压过高/过低、内阻偏大、轻度硫化、渗液爬液、壳体变形、极拄松动、失水等,而已经失效的电池经常表现为以下三种情况:

a、 蓄电池组工作时容量达不到标称容量;严重的出现个别电池放电起始就达到下限;2006

年浙江一电厂因蓄电池长期浮充,没有按直规要求维护,引起单机运行的机组孤网失压,原因为检修需要倒换厂用电时直流母线电压测量时只有170V左右(其实是个虚假的数字)引起,其实类似的问题在变电站直流系统也经常发生。其实类似蓄电池组容量不足的完全可以通过容量测试或内阻和在线的综合测试方法发现并避免问题扩大。

b、 长期浮充蓄电池组出现直流全停事故,个别电池出现开路状态;2006年吉林省延吉市出现一次变电站交流电源故障后,一次变直流蓄电池组失效,致使一次变站内控制直流瞬时消失, 1170ms用户厂侧分相电流差动保护误动,经最后核对性放电和内阻测试综合分析,其中一节单体电池开路引起了本次事故。

c、 长期浮充状态下的蓄电池出现短路现象,出现短路现象的电池往往可能会产生热失控现象。 根据众多的数据和现场经验分析,引起可能失效和已经失效的原因大多是平时维护不到位造成,一些早期失效的电池完全可以避免,分析电池失效的原因主要包括以下五种情况: a、 硫酸盐化

当电池长时间处于充电不足,浮充电压偏低,放电后未能及时补充电,电池长期搁置不 用等情况时,负极就会形成一种粗大坚硬的硫酸铅,它几乎不会溶解。若电池失水严重,

使得硫酸浓度过高,也会促使硫酸铅的快速生成。盐化的直接后果是电池容量不足,甚至电池开路。

其实导致电池硫酸盐化的原因即为电池内热力学平衡的破坏,也表现为极化现象,主要有欧姆极化和浓差极化。充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。由于硫酸盐化形成硫酸铅,而使离子移动阻力增大,即表现为欧姆极化现象。欧姆极化造成蓄电池在充电过程中的热产生。 浓度极化引起的原因为电极表面的生成物和反应物的扩散速度比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。严重硫酸盐化的蓄电池其浓度极化越严重,最严重时导致电极表面电解液浓度为0,即开路。 b、 失水 失水是导致蓄电池失效的常见故障。气体化合效率低、从电池壳体中渗出水、板栅腐蚀和自放电都会造成电池失水。若过充电电流大、浮充电压过高、环境温度过高、安全阀开阀压力低等会加速电池失水速度。当前大部分阀控式密封铅酸蓄电池组容量下降的原因,都是由电池失水造成的。通常认为当失水超过15%时,电池失效。 c、 板栅的腐蚀和变形 板栅腐蚀是限定电池寿命的重要因素。在铅酸蓄电池中,正极板栅比负极板栅厚,原因之一是蓄电池在充电时,特别是在过充电的状况下,正极板栅要被腐蚀,逐渐被氧化而失去板栅的作用。含量和体积不断增大,可使极板严重弯曲。 d、 活性物质软化

随着电池循环次数的增加,晶型由α型向β型转化。β型的晶粒相对细小,结合力较差,导致活性物质的网格结构被削弱,最终活性物质软化脱落(也称为泥化),导致电池失效。 e、 短路 除了正极板栅腐蚀变形和工艺制造的粗糙以外,导致短路的原因还包括枝状晶体的形成。当电池处于放电状态或长期搁置,负极板上易生成可溶性铅颗粒,促进枝状结晶生成,晶枝生长可穿透隔膜,造成极间短路,使得电池彻底报废。

4、几种提高蓄电池运行维护管理水平的方法 通过对蓄电池常见故障现象和原因的分析,结合多年直流运行维护工作经验,提出几种蓄电池运维管理方法。 a、 定期的检查和维护 浮充运行是蓄电池的最佳运行条件,运行时电池处于满荷电状态,检查电池极柱,安全阀是否有渗液和酸雾溢出。定期检查连接部分是否有松动 b、 正确设置电池的运行管理参数 蓄电池在浮充或均充情况下,其电压应根据不同厂家和环境温度作适当调整。

c、 定期核对性放电试验 定期核对性放电试验分两种:一种是进行全充全放,这个工作也称为活化处理或理疗性充放电;通过放电和充电过程的循环,使活性物质得到恢复。另一种在变电站蓄电池组只有一组配置的情况下,不能退出运行,只能进行半容量的核对性试验,一般放出额定容量的50%,但有很多检修人员认为,50%容量的放电测试就是0.1C10 电流放电5 个小时,其实这是错误的。因为在放电测试结束前是不知道电池实际容量的,所以,正确的50%容量的放电测试应该通过对蓄电池组放电曲线的比较,确定每次核对性放电50%容量时的电压值,从众多的放电数据中我们认为任何电池都存在这一半容量电压点,对一特定的电池组一定的放电率而言,这一半容量电压点是一相对确定的值,一般约在1.95-2.00V 之间。 我们可以利用半容量电压点来进行50%容量的核对性放电测试。具体方法如下,

电池组不退出运行,把充电机电压调低到电池组半容量电压点的保护值,如108 节电池, 对所举例电池10 小时放电率,则充电机电压调为: 108×1.987=214.6V 对无法调节充电机电压的蓄电池组,,可采用串入大功率二极管方法进行核对性放电容量测试。如图:

在空气开关或熔断器两端并联二极管,然后将空气开关或熔断器断开,此时充电回路被切断,蓄电池组电压低于充电机电压,但通过二极管的单向连接,如果交流

失电,电池仍可无间隙供电,电池组处于热备份退出状态。这时可对蓄电池组进行核对性容量测试放电。考虑到失电和整流设备故障的可能,建议最大放电容量仍为50%,监测的保护电压如前所述。

d、智能诊断分析管理系统 蓄电池失效是一个复杂的过程,是一个从量变到质变的过程,根据多年对浮充数据的综合分析,并结合核对性放电、内阻测试、均差等数据的研究,证实蓄电池失效是有规律的,浙江电力公司已在110kV以上变电站均安装了蓄电池智能监测系统,该系统具有实时监测各单体电池电压、组端电压、电流等信息,同时具有核对性放电和直流内阻测试功能。计算机管理分析软件通过变电站蓄电池智能监测系统实时数据的网络上传,数学模型对浮充、核对性放电、内阻、均差等综合数据进行人工智能分析验证,预测蓄电池运行趋势和可能存在的问题,动态的预测电池性能的变化。通过浙江地区应用该系统对实时了解电池性能是非常有依据和帮助的。 5 结束语

通过对电池失效原因的分析和多年对失效的研究,证实蓄电池失效是有规律可循的,并通过一些切实有效的管理手段,可以大大提供蓄电池运行维护水平和大幅降低蓄电池运行故障。希望本文观点对各直流系统蓄电池运行维护管理有所帮助。

[1] 潘文章. 铅酸密封蓄电池早期失效原因分析与改善方法探讨. [2] 赵利明,魏鹏飞. VRLA电池失效后的容量恢复. 蓄电池 2004(1):28-30 [3] 蓄电池运行与维护,杭州高特电子设备有限公司. 2004年11月

[4] 吴贤章,胡信国. 循环用阀控电池失效模式的研究. 电池 2003(10):299-301 [5] 王秀菊,李莉. 电力电源中蓄电池失效模式及在线监测. 电源技术 2004(12):790-793 [6] 严军华,詹庆元等. VRLA电池高倍率循环失效机理. 电池 2004(10):342-343 [7] 黄镇泽,陈红雨等. 阀控式密封铅酸蓄电池的失效与维护. 电源世界 2004(12):46-49

第二篇:直流系统技术总结报告

直流系统在变电站中主要为控制信号、继电保护、自动装臵等提供可靠的直流电源,当发生交流电源消失事故情况下为事故照明和继电保护装臵等提供直流电源。所以说直流系统可靠与否对变电站的安全运行起着至关重要的作用,也是安全运行的保证。

为了进一步提高设备的安全稳定运行,在直流系统的运行维护方面我风电厂做出如下技术措施来改善和优化设备的利用率与使用周期。

直流系统接地: 故障现象:

a) 音响报警,“直流母线故障”信号出。 b) 绝缘监察仪上有报警信号。

c) 测量直流母线正、负极对地电压不平衡。 处理方法: a) 复归音响。

b) 测量对地绝缘,判别接地极性及接地性质。

c) 询问是否有人在直流回路上工作,造成人为接地,接地时禁止在二次回路上工作。

d) 询问是否有启、停设备的操作,如有则应重点检查。 e) 对存在缺陷的设备和环境条件差的设备首先进行检查。

f) 使用绝缘监测仪检查出是哪一路接地,对故障支路瞬时停电检查接地信号是否消失,必要时对直流各路负荷采用倒负荷或瞬时停电的方法查找故障支路。

g) 倒直流负荷时,应遵行先室外,后室内;先动力,后控制;先环状,后馈线的原则,并汇报值长。

h) 若经上述操作后接地信号仍未消失,则接地点可能在整流器、蓄电池组。将两组直流母线并列运行,退出一组整流器蓄电池组运行,若接地信号消失,则接地点在该组整流器或蓄电池上。

i) 查找和处理必须由两人以上进行,处理时不得造成直流短路和另一点接地。

j) 直流系统查找接地要在值长的统一指挥下进行,如涉及到调度管辖的设备,应得到值班调度的允许才能进行。

k) 找到接地点所在范围或回路后,由检修人员进一步查找、隔离并消除

防范措施:

加强设备监视,着重对直流系统的绝缘状态、电压及电流、信号报警、自动装臵等相应指标项目进行定点巡视。并且针对电压及电流监视方面,对于交流输入电压值、充电装臵输出的电压值和电流值,蓄电池组电压值、直流母线电压值、浮充流值及绝缘电压值进行相应的巡视;同时对于直流系统的各种信号灯、报警装臵;检查自动调压装臵、微机监控装臵工作状态也进行相应检查。

在由于恶劣天气导致的接地方面,变电站运行人员主要采取定期除尘、除潮等措施。从而避免和降低了由于恶劣天气导致的直流系统接地的故障出现。

在控制柜布线检查与梳理方面,定期对继电保护装臵后柜布线进行检查;对于在检查中发现的导线裸露及绝缘层破损等情况,及时发现及时采取修复措施;对于外露与破损部分及时进行绝缘处理。从而避免直流系统接地故障的发生。

查找直流接地的操作步骤和注意事项有哪些? 根据运行方式、操作情况、气候影响判断可能接地的处所,采取寻找、分段处理的方法,以先信号和照明部分后操作部分,先室外部分后室内部分的原则。在切断各专用直流回路时,切断时间不超过3秒,不论回路接地与否均应合上。当发现某一专用直流回路有接地时,应该及时查找接地点,尽快消除。 查找直流接地的注意事项如下:

⑵ 查找接地点禁止使用灯泡寻找的方法。

⑵ 用仪表检查时,所用仪表的内阻不低于2000Ω/V。 ⑶ 当直流发生接地时,禁止在二次回路上工作。 ⑷ 处理时不得造成直流短路和另一点接地。 ⑸ 查找和处理必须由两人同时进行。

蓄电池也是电力电源系统中直流供电系统的重要组成部分,它作为直流供电电源,主要担负着为电力系统中二次系统负载提供安全、稳定、可靠的电力保障,确保继电保护、通信设备的正常运行。因此,蓄电池的稳定性和在放电过程中能提供给负载的实际容量对确保电力设备的安全运行具有十分重要的意义。

故障现象:

1、 蓄电池组容量不足故障

正常运行时,在进行核对性放电试验,蓄电池组容量均达不到额定容量的80%以上 ,并在控制柜内发出报警声。

2、单个蓄电池电压过高或过低

当监控系统报蓄电池电压过高或过低时,应用万用表实际测量告警蓄电池端电压,若测量值在正常范围内属误报信息,测量值异常,应检查整个蓄电池组的运行情况。

处理方法:

蓄电池组容量不足:为进一步提高和确保蓄电池组安全稳定运行,我风电厂每年作一次核对性放电试验。从而确保在试验过程中蓄电池组容量均达到额定容量的80%以上,保证设备的安全运行。

蓄电池电压低:定期开展蓄电池测试工作,对于在测试中发现的电压低的电池及时记录并采取相应措施对于电压低的蓄电池采取均衡充电工作,确保设备安全稳定运行。

防范措施:

加强了对于过充、过放、渗液、环境温度等隐患的定期巡视和检查工作,确保了设备的安全稳定运行。

第三篇:变电站直流系统设计

变电站中为控制、信号、保护、自动装置以及某些执行机构等供电的直流电源系统,通常称为直流控制电源。为微机、载波、消防等设备供电的交流电源系统,通常称为交流不停电电源。为交换机、远动等通信设备供电的直流电源系统,则称为通信电源。

在变电站中广泛采用的直流控制电源是由蓄电池组和充电装置等设备构成,是一种在正常和事故状态下都能保持可靠供电的直流不停电电源系统。交流控制电源通常是采用由蓄电池组、充电装置和逆变装置构成的交流不停电电源系统,即UPS。通信电源是由模块化的通信专用DC/DC变换器,它是从站内直流控制电源系统的蓄电池组取得直流电,经高频变换输出满足通信设备要求的48 V控制电源。

从90年代开始的变电站综合自动化技术的推广应用,对直流系统提出了更高的技术要求。近年来直流系统的技术和设备发展迅速,阀控铅酸蓄电池、智能型高频开关充电装置等,具有安全可靠、技术先进和性能优越等特点,促进了直流系统的发展。

以下就变电站设计中对直流系统设计有直接影响的因素和变电站直流系统设计方案的选择进行探讨。本文便是以220KV变电站为例设计的变电站直流系统设计。

变电站直流系统功能及重要性

为供给继电保护、控制、信号、计算机控制、事故照明、交流不间断电源等直流负荷供电,220~500 kV变电站应装设由蓄电池等供电的直流系统。直流系统的供电负荷极为重要,对供电的可靠性要求也较高。直流系统的可靠是保障变电站安全运行的决定性条件之一。

目前,变电站的直流相对比较复杂,电源容量需求比较大,因此直流系统所需要费用亦比较高,少则几万,多则几十万人民币,并且由于运行环境、维护工作等方面的原因,蓄电池组的寿命亦有所限制,难以达到设计寿命,通常寿命在5~8年左右,比设计寿命少约40%以上。若蓄电池质量、运行环境、日常维护等不当则3~5年蓄电池组容量则急剧下降,难以满足设备安全生产运行,给变电站的安全生产带来极大隐患。

直流电源系统在变电站中具有以下重要作用。

(1)变电站的直流电源是全站作为控制、信号、继电保护的操作电源,也是重要设备的保安电源及事故照明电源。监视和维护直流设备的完好性对变电站以及整个电力系统的安全可靠运行十分重要。 (2)各类变电站直流电源系统必不可少。对于不同电压等级的变电站往往设计不同电压的直流输出,以满足设备运行的需要。 (3)在变电站中,直流电源系统应满足各类负荷中双重化配置的要求。在变电站内由于被控制设备多,提高直流网络的安全可靠性至关重要。一个变电站的直流控制回路十分庞大,所以网络是否清晰和具有独立性亦十分重要。 (4)阀控密封式铅酸蓄电池和高频开关整流电源(本设计中应用到)在直流系统中的应用可提高直流电源系统的安全可靠性,降低直流系统设计的复杂性,并减小了维护的工作量。

2 直流系统接线

随着科学技术的不断发展,直流系统的接线方式、采用的设备也在逐年的改进和更新。在满足供电可靠的前提下,直流系统的接线应尽可能的简单、运行灵活、经济合理。

直流系统的接线方案具体要求:

(1)在满足供电可靠的前提下,接线尽可能简单,设备尽可能简化; (2)直流系统中选用的设备应是先进、可靠、经济合理; (3)选用的设备其维护工作量尽可能小; (4)供电范围明确以及操作方便。 要保障直流系统可靠地运行,首先必须有一个可靠的直流系统接线方案。其中包括直流母线的接线、直流电源的配置和直流供电网络的构成。其次,要合理地选择直流系统中采用的设备,包括蓄电池、充电和浮充电设备、开关设备、保护设备、动力和控制电缆等。 2.1 直流母线接线

220~500 kV变电站常用的直流母线接线方式有单母线分段和双母线两种。

(1)单母线分段接线的特点:①每回路只需一组母线开关,设备少,投资小, 接线简单、清晰,直流屏内布线方便;②能方便的形成两个互不联系的直流系统,有益于提高直流系统的可靠性。

2.双母线接线的特点:①每回路设有两组母线刀开关(或一组切换式刀开关),可任意接到一组母线上;②供电可靠性较高,但投资较大。 単母分段接线如图1所示。

综上所述,双母线接线比单母线分段接线,母线刀开关用量大,直流屏内设备拥挤,布线困难,检修、维护也不方便。故220KV变电站采用单母线分段接线。 2.2 直流系统的电源配置

直流系统中的主要电源是蓄电池组,其次是充电和浮充电设备。变电站中的蓄电池在正常情况下以浮充电方式运行,直流负荷实际上由浮充电设备供电,蓄电池处于浮充电状态。合理的配置蓄电池及充电浮充电设备有利于提高直流系统的可靠性。

220V和110V直流系统应采用蓄电池组;48V及以下直流系统可采用蓄电池组,也可采用由220V或110V蓄电池组供电的电力直流电源变换器(DC/DC变换器)。 直流系统为单母线分段接线时,蓄电池组及充电装置的连接方式如下: (1)一组蓄电池一套充电装置时,二者应接入不同的母线段;

(2)一组蓄电池两套充电装置时,两套充电装置应接入不同的母线段,蓄电池组应跨接在两段母线上;

(3)两组蓄电池两套充电装置时,每组蓄电池及其充电装置应接入不同的母线段; (4)两组蓄电池三套充电装置时,每组蓄电池及其充电装置应接入不同的母线段,第三套充电装置应经切换电器可对两组蓄电池进行充电。 2.3 直流馈线网络

直流馈线网络有两种供电方式: 辐射供电和环形供电。

为简化设备,220KV变电站直流系统一般采用环形供电网络,即直流动力负荷和控制负荷都采用环形供电网络。在变电站内设动力和控制小母线,在各直流负荷之间形成环形供电网络,每个环的电源回路接到两段母线上。若220KV变电站为全户内式,220 KV及110KV配电装置均采用气体绝缘金属封闭开关设备(GIS),二次设备置于GIS室内,则直流馈线应分别引至各配电装置处各自形成环网。由于GIS二次回路所需直流电源较多,故在设计时应考虑足够的直流馈线数量。

500KV变电站对直流供电网的可靠性要求更高,结合对控制电源双重化的要求,一般采用辐射状供电。为了简化供电网络,减少馈线电缆数量,可在靠近配电装置处设直流分屏,每一分屏由2组蓄电池各用1条馈线供电。

3 直流系统工作电压

220~500KV变电站的强电直流电压为220V或110V,弱电直流电压为48V。强电直流电压选220V还是110V,应根据变电站的具体情况及通过技术经济比较,找出影响直流系统额定电压选择的主要因素。

以往设计的220KV及以下电压等级的变电站,大多数为带电磁操作机构的断路器,需要直流动力合闸电源,在这种情况下,满足直流动力回路电压的要求,降低直流动力电缆的投资,成为影响直流系统额定电压选择的主要因素,因此,以往设计的变电站中多数采用了220 V的直流系统。20世纪80年代以来,在220~500KV变电站中,110KV及以上电压等级的断路器多采用气动或液压操作机构,10KV断路器采用弹簧操作机构,这样就不需要直流系统提供动力合闸电源了,因此,满足直流动力回路电压的要求和降低直流动力电缆投资,就不再是确定直流系统额定电压的主要因素。

但是,根据现在220~500KV变电站的发展及其特点,由于220~500KV变电站占地面积大,被控对象远,控制回路电缆长,所以满足控制回路电压的要求,降低控制电缆的投资就成为确定500KV变电站直流系统额定电压的主要因素。在相同操作功率下,220V控制电缆中的电流比110V控制电缆中的电流要小一倍,同时也降低了控制电缆中的电压降,从而也降低了电缆截面的要求,减少了控制电缆的投资。 由此可见,对于采用220V的直流系统工作电压,不仅可以选用较小的电缆截面,降低电缆的投资,还可以节省有色金属。故对于本系统220KV变电站采用220V的直流系统工作电压。 4 蓄电池选择及容量计算 蓄电池是一种储能装置,它把电能转化为化学能储存起来,又可把储存的化学能转化为电能,这种可逆的转换过程是通过充、放电循环来完成的,而且可以多次循环使用,使用方便且有较大的容量。

4.1 220KV变电站直流系统蓄电池组数的确定 近年来,随着电力系统对直流电源可靠性要求的进一步提高,虽然直流系统在接线方式、网络布置及充放电设备性能要求等方面进行了完善和加强,但现行规定不能满足目前220KV变电站对提供高可靠性直流电源的要求,对掌握蓄电池工作状态及运行、维护不利,在交流失电状态下,可能因蓄电池电源瓶颈问题,而扩大事故。

l. 220KV变电站要求具备高可靠性直流电源的原因

(1)现在大部分220KV变电站建设规模比较大,且为枢纽站。

(2)220KV变电站主保护亦实现双重化,采用两套不同原理、不同厂家装置;断路器跳闸回路双重化;且均要求取自不同直流电源。

(3)线路的两套纵联差动保护、主变压器的主保护和后备保护均分别由独立的直流熔断器供电。

(4)所有独立的保护装置都必须设有直流电源故障的自动告警回路。

(5)变电站综合自动化水平提高,监控系统高可靠运行要求。 2. 目前单组蓄电池运行、维护存在的主要问题

(1)事实证明:要掌握蓄电池运行状态,做到心中有底、运行可靠,必须进行全容量核对试验;然而直流系统配置一组蓄电池,给运行维护造成了极大困难。

(2)就对各发供电单位已运行的各型式蓄电池统计表明,使用寿命一般为7年到10年;且这期间尚需对个别落后电池维护处理才能够保证整组蓄电池使用年限。对于仅一组蓄电池而言,整个更换期间同样要承担风险运行。 3. 220KV变电站直流系统配置两组电池的必要性及优点

(1)由于单组蓄电池不能很好的满足220KV变电站运行可靠性要求,且运行维护困难,故此 220KV变电站直流系统配置两组蓄电池是必要的。

(2)220KV变电站直流系统配置两组蓄电池,完全满足运行要求,采用该系统对增加控制保护设备运行的可靠性有较重要的意义。

(3)220KV变电站配置两组蓄电池组后,从简化母线结构、减少设备造价、节约能源、避免降压装置故障开路造成母线失压,减少了电网事故和更大设备事的发生,使直流系统进一步简化、可靠。

因此, 根据现在220KV变电站对直流电源可靠性要求进一步提高,及蓄电池运行、维护的需要,并考虑220KV变电站直流系统网络与蓄电池直流电源可靠性匹配要求,220KV变电站直流系统应配置两组蓄电池,虽在经济上多投入,但其运行可靠性却得到了大幅度提高,且运行方式灵活、维护简便。 4.2 蓄电池的分类

目前,我国投入运行的变电站中,绝大多数都是采用铅酸蓄电池,也有采用碱性蓄电池。

1.铅酸蓄电池

铅酸蓄电铅酸蓄电池是电力工程中广泛采用的直流电源装置。

它具有适用温度和电流范围大,存储性能好,化学能和电能转换率高,充放电循环次数多,端电压高,容量大,而节省材料,铅资源丰富、造价较低等一系列优点。

铅酸蓄电池又分为防酸隔爆式、消氢式及阀控式密封铅酸蓄电池三大类。阀控式密封铅酸蓄电池与防酸隔爆式和消氢式铅酸蓄电池相比较有很大的优点:阀控式密封铅酸蓄电池在正常充放电运行状态下处于密封状态,电解液不泄露,也不排放任何气体,不需要定期的加水或加酸,维护工作也比较少;防酸隔爆式铅酸蓄电池是属于半封闭型的,当在充电运行状态下产生的气体较多时,会使电池室中才能在爆炸的危险,而且需要定期的往电池中加纯水及维护;消氢式铅酸蓄电池也需要定期进行维护与加水,比较麻烦。 2.碱性蓄电池

采用的碱性蓄电池主要是镉镍蓄电池。

由于单个蓄电池在各种运行状态下电压变化的相对值大于直流母线电压允许变化的相对值,才引起加装端电池,用来调节母线电压。然而,镉镍蓄电池充电末期电压与放电末期电压相差比较大,约1.8~1.9倍,为保持直流母线电压不超过允许的变动范围,镉镍蓄电池组必须采取调压措施,如:加端电池,在蓄电池组与母线之间加调压设备。而铅酸蓄电池的单个蓄电池在各种运行状态下电压变化的相对值小于或等于直流母线电压允许变化的相对值,也就保持了直流母线电压在允许的变化范围之内,故就不需要加装端电池了。由于镉镍蓄电池必须设置调压措施,与无端电池的铅酸蓄电池相比,增加了投资和运行维护的复杂性,特别是蓄电池组容量较大时更为突出。

因此,镉镍蓄电池与铅酸蓄电池相比,在相同容量、相同额定电压下,镉镍蓄电池投资较高,随着容量的增大,投资的差额也增加。这就是影响镉镍蓄电池在工程上大量采用的主要原因。

综上比较,选用铅酸蓄电池中的阀控式密封铅酸蓄电池。 4.3 阀控式密封铅酸蓄电池组的电池个数的选择

1.阀控铅酸蓄电池一般有初充电,浮充电,和均衡充电三种充电方式。

(1)初充电。新安装的蓄电池组进行第一次充电,称为初充电.初充电通常采用定电流,定电压两阶段充电方式。

(2)浮充电。正常运行时,充电装置承担经常负荷电流,同时向蓄电池组补充充电,以补充蓄电池的自放电,是蓄电池以满负荷的状态处于备用。单体阀控电池的浮充电压为2.2~2.3V,通常取2.25V,浮充电流一般为(1~3) /Ah。

(3)均衡充电。为补偿蓄电池在使用过程中产生的电压不均匀现象,为使其恢复到规定的范围内而进行的充电,称为均衡充电。阀控电池的均充电压2.3~2.4V,通常取2.35V均衡充电电流不大于(1~1.25)I10 Ah。 2.电池个数的选择

蓄电池正常按浮充电方式运行,为保证直流负荷供电质量,考虑供电电缆压降等因素,将直流母线电压提高5%Un,蓄电池个数设为N,则

式中 -蓄电池个数;

-直流系统的额定电压;

-单体蓄电池的浮充电电压,阀控蓄电池浮充电电压为2.23~2.27V,一般取2.25。 3.蓄电池放电终止电压校验

在确定蓄电池的个数以后,还应验算蓄电池在事故放电末期允许的最低端口电压值 不应低于蓄电池放电终止电压 (1.75~1.8V)。根据有关规定,动力负荷母线允许的最低电压值不低于87.5% 。考虑直流母线到蓄电池间电缆压降在事故放电时按1% 计算,因此,对于动力负荷专用蓄电池组,事故放电末期允许的最低端口电压值

对于控制负荷专用蓄电池组,事故放电末期允许的最低端口电压

4.4 蓄电池容量的计算 1.铅酸蓄电池的电气特性 (1)铅酸蓄电池的容量特性

电池的容量是表示蓄电池的蓄电能力。充足电的蓄电池放电到规定终止电压(低于该电压放电将影响电池的寿命)时,其所放出的总电量,称为电池的容量。若蓄电池以恒定放电电流I(A)放电,放电到容许的终止电压的时间为t(h),则对应容量C(Ah)为

C=It 反应蓄电池放电到规定的终止电压的快慢称为放电率,放电率用时率(h率)和电流率(I率)表示。

蓄电池的实际容量并不是一个固定不变的常数,它受许多因素的影响,主要有放电率、电解液密度和电解液温度。电解液温度高,容量就大;电解液密度大,容量就也大;放电率对容量的影响更大,例如,某一铅酸蓄电池,当以10A率(10h)进行放电时,到达终止电压1.8V所放出的容量 为100Ah;当以25A率(3h率)进行放电时,到达终止电压1.8V所放出的容量 为75Ah;当以55率(1h率)进行放电时,到达终止电压1.75V所放出的容量 为55Ah。可见,放电电流大,放电时间短,放出电量少,故电池容量少.这是因为放电电流过大时,极板的有效物质很快就形成了硫酸铅,它堵塞了极板的细孔,不能有效地进行化学反应,内阻很快增大,端电压很快降低到终止电压。

我国电力系统常用温度在25摄氏度,10h率放出的容量 作为铅酸蓄电池的额定容量,那么,上述那一铅酸蓄电池的额定容量就是100Ah。 按有关规定蓄电池的额定容量有: 10,20,40,80,100,150,200,250,300,350,400,500,600,800,1000,2000,3000Ah。 蓄电池容量的这种特性用容量系数 表示

式中 -任意时率放电的允许放电容量; -蓄电池的额定容量。 (2)放电特性. 1)持续放电特性.为了分析电池长期使用之后的损坏程度或充电装置的交流电源中断不对电池浮充电时,为核对电池的容量,需要对电池进行放电.阀控电池不同倍率的放电特性曲线如图1-1所示。

图1-1 从图1-1出,蓄电池放电初期1h内的端压 降低缓慢,放电到2h之后端电压降低速率明显增快,之后端压陡降.端电压的改变由于电池电动势的变化和极化作用等因素造成的。 一般以放出80%左右的额定容量为宜,目的使正极活性物质中保留较多的 粒子,便于恢复充电过程中作为生长新粒子的结晶中心,以提高充电电流的效率。 图1-1中I10为10h率放电电流,可见 ~ 放电曲线比 ~ 放电初期端压和中期端压变化速率变化大,其原因是电池极化作用随电流增加而变大。

2)冲击放电特性.冲击放电特性表示在某一放电终止电压下,放电初期或1h放电末期允许的冲击放电电流。冲击电流一般用冲击系数表示,冲击系数表示式 为

式中 -冲击系数;

-冲击放电电流; -10h率放电电流。

图1-2 图1-2中浮充曲线是指电池与充电装置并联运行时,承受短时间冲击放电电流时蓄电池的端电压,其中实线为电池未脱离浮充电系统的端电压,虚线为电池刚脱离浮充电系统的电压。

图1-2中持续放电曲线是指不同放电电流时,立即承受短时间冲击的电压变化曲线,冲击放电曲线的冲击时间为10~15s.曲线中“0”曲线是电池完全充足电后,脱离充电系统,待每个电池电压下降且稳定在2.06~2.10V时,进行冲击放电的电压变化曲线。

从图1-2中可以看出,浮充电状态下放电端电压变化较慢,断开浮充电源立即放电端电压变化较快,而以 电流持续放电下冲击放电电压变化更快,大放电率冲击放电端电压变化最快。

2.220KV变电站蓄电池个数的选择及容量计算

某城区220KV有人值班变电站为集控中心站,主变为4×240MVA,220KV电气主接线为双母线三分段接线,出线10回;110KV电气主接线为双母线双分段接线,出线16回。该变电站继电器室布置在主控楼二层,设有专用蓄电池室,布置在主控楼一层,二者距离约30m,该所直流负荷统计如下: 经常负荷:8KW 事故照明负荷:3KW UPS不间断电源:10KW 断路器合闸:220V,2A 断路器跳闸:220V,2.5A

(1)直流负荷按功能分,有控制负荷和动力负荷。

控制负荷:电气和热工的控制、信号装置、自动装置以及仪表等负荷;

动力负荷:各类直流电动机、断路器操动机构的合闸机构、交流不停电电源装置和事故照明等负荷。

(2)该所直流负荷统计表如下:

序号 负荷名称 计算容量 KW 计算电流A 经常电流A 事故放电时间电流A 随机或事故末期

初期 0-1min 1-60min 1 经常负荷 8 36.4 36.4 36.4 36.4 2 事故照明负荷 3 13.6 13.6 13.6 3 UPS不间断电源 10 45.5 45.5 45.5 4 断路器合闸

2 5 断路器跳闸

2.5

2.5 6 电流统计(A)

=95.5 =95.5 =4.5

7 容量统计(A)

95.5 8 容量累计(Ah)

=95.5 解:1) =1.05×220/2.25=103

为保证蓄电池供电的可靠性,故选N=103+1=104个单体电池。

2)假设该蓄电池组仅带控制负荷,事故放电末期允许的最低端口电压

=0.86×220/104=1.82V

只要对控制负荷专用蓄电池组最低端口电压满足要求,对于动力负荷专用蓄电池组的最低端口也满足要求,因为动力负荷的 ,即其电压系数比较大。

由于蓄电池在事故放电允许的最低端口电压 不应于蓄电池放电终止电压 (1.75~1.8V),即 大于或等于 。又1.82>1.8V,满足大于蓄电池终止放电电压的要求。

3)由事故持续放电1h及放电最低电压1.82查图,可得容量系数 =0.56 , 是以额定容量 为基准的放电容量的标么值,即 。 故蓄电池的容量为

式中: -蓄电池10h放电率计算容量,Ah;

-可靠系数,取1.4;

-事故全停状态下持续放电时间x(h)的放电容量;

-容量系数。

=1.4×95.5/0.56=238.75Ah

所以,选择蓄电池的额定容量 =250Ah。 4)电压校验

① 首先校验事故放电初期(1min)承受冲击放电电流时,蓄电池所保持的电压。

-事故放电初期(1min)冲击放电电流值,A;

-事故放电初期(1min)冲击放电系数;

-蓄电池10h放电率标称电流,A; I10=250/10=25A =1.10×95.5/25=4.2

计算出的 在图1-2的“0”曲线查出的单体电池的放电电压值 , =2.02V,计算蓄电池组出口端电压 为

N-蓄电池组的单体电池个数;

-承受冲击放电时的单体电池的放电电压,V。

=104×2.02=210.08V,为额定电压的95%。故满足86%~111% 蓄电池端电压的要求。

② 校验事故放电末期承受冲击放电电流时蓄电池所能保持的电压。

-任意事故放电阶段,10h放电率电流倍数,即放电系数;

-x事故放电容量;

x-任意事故放电阶段时间,h; t-事故放电时间,h;

-x事故放电末期冲击放电系数;

-x事故放电末期冲击放电电流值,A =1.10×95.5/1×25=4.

2=1.10×4.5/25= 0.2

计算出的放电系数 和冲击放电系数 ,在图1-2中可根据 ,即 值查出相应的曲线,在该曲线上再用 =0.2值,查出单体电池放电电压值 =1.83V,计算蓄电池组出口端电压为

=104×1.83=190.32(V),为额定电压的86.5%,故满足86%~111% 蓄电池端电压的要求。

计算出的端电压值应不小于负荷允许的要求值。如不能满足要求,将蓄电池的容量加大一级,继续校验,直到母线电压满足为止。

第五章 直流充电模块的选择 5.1 充电装置的配置

充电装置的型式有高频开关和晶闸管两种。高频开关自1992年问世以来,技术技能逐步提高,体积小、重量轻、效率高和使用维护方便,并且可靠性和自动化水平高,已得到广泛应用;晶闸管电装置,接线简单,价格也比较便宜,也同样得到应用。设计中可根据具体情况选用。 1.充电装置的配置的要求:充电装置应按蓄电池组配置当变电站仅设一组蓄电池时,应配置两套充电装置;当变电站设有两组相同电压、相同容量的蓄电池时,应配置两套或三套充电装置。 2.充电装置的配置的原则:如果采用晶闸管充电装置,原则上可配置1套备用充电装置,即:1组蓄电池配置2套充电装置,2组蓄电池可配置3套充电装置;高频开关充电装置,其可靠性相对较高,且模块冗余、可更换,所以,原则上不设整套装置的备用,即:1组蓄电池配置1套充电装置,2组蓄电池可配置2套充电装置。

3.充电装置是保证蓄电池可靠运行的主要设备,特别是阀控式蓄电池对充电装置性能的要求更高。以往的变电站的充电装置多采用晶闸管整流装置,近年来越来越多的变电站采用智能型高频开关充电装置,且运行情况良好。智能型高频开关充电装置具有技术先进、性能优越和体积小等优点。

故选用两组高频开关充电装置。 5.2 高频开关充电模块工作原理

高频开关充电模块由交流输入滤波、整流单元、高频逆变单元(DC/AC)、直流输出滤波、PWM脉宽调制单元和监控单元等组成。

交流工作原理:交流电输入到模块后首先进入输入滤波电路,去除交流电上的干扰,然后经过全波整流电路交换成高压直流电(500V左右),再由DC/AC高频逆变电路变换成20KHz可调脉宽的高频脉冲电,经过主功率变压器的降压,再由高频整流电路整流成直流电,最后经过滤波处理输出稳定的直流电。 5.3 充电装置高频开关电源充电模块数量选择

高频开关电源充电模块额定电流有多种规格,220V有

5、

10、

15、20、

25、30、40A。充电装置由多个模块并联组成,一般采用N+1备份冗余方式,这是因为一个模块故障不影响整组充电设备的正常工作。 充电模块数量与充电装置输出电流有关,充电装置最大输出电流满足均衡充电和直流系统经常负荷的供电要求。

本变电站设计配置两组蓄电池和两套充电装置,两套充电装置的容量相同。则有

-每组充电装置的计算电流;

-经常负荷电流; N-电源充电模块数量;

-电源充电模块额定电流;

n-电源模块冗余量,一般模块少于或等于6块时,n=1;大于6块时,n=2。 据以上公式得 =1.4[1.25*25+36.4]=94.71A;N=94.71/20+n=5+1=6。 220V直流系统单母分段接线图,如下所示:

第六章 UPS不停电电源的选择

交流不间断电源系统的英文缩写为UPS(Uninterrupted power supply),以下简称为UPS系统。

6.1 UPS的构成与工作原理

UPS的构成:它由整流器、逆变器、旁路隔离变压器、静态开关、手动切换开关、控制及同步电路、直流输入电路、交流输入电路、交流输出电路等部分构成。

UPS的工作原理:平时由交流工作电源供电,经整流、逆变后提供交流220V恒频、恒压电源;当交流电出现故障时由直流提供能量。因此,只要UPS电源的交流输入和直流输入有一路供电正常,UPS就可输出高品质交流电源为负载提供可靠供电。

6.2 变电站UPS的配置方式

变电站UPS的配置方式:有分散和集中两种配置方式。分散配置,就是根据需要,变电所的计算机监控装置、远动装置、自动化仪表、继电保护等分别设置小容量的UPS,各种装置的UPS之间没有联系;集中配置,就是全所设一套公用的UPS,为所有设备提供不间断的交流电源。这两种配置方式,在实际工程中都有应用。

分散配置的优点:(1)接线简单,投资小;(2)UPS装置故障时影响小。 分散配置的缺点:(1)UPS供电的可靠性不高;(2)小容量(2KW以下)的UPS往往内部自备蓄电池,事故时一般只能保证15min全负荷的供电,不能满足事故供电0.5h的要求;(3)互为备用性差。

集中配置的优点:其容量较大,供电的可靠性较高。对UPS系统的各项技术要求容易满足,整体的可靠性较高。

集中配置的缺点:UPS系统接线复杂。投资较大。

采用哪种配置方式要视工程的具体情况而定。一般情况下,对220KV变电所UPS负荷较大,宜设置全所集中公用的大容量UPS系统,并按双重化原则配置。 6.3 UPS容量选择

在选择UPS的额定容量时,除了按负荷的视在功率计算外,还要计及动态(从0~100%突变)稳压和稳频精度的要求,以及温度变化、蓄电池端电压下降和设计冗余要求等因素的影响。

考虑到以上影响UPS容量的因素,则

式中: -UPS计算容量(KVA);

-动态稳定系数,取1.1~1.15;

-直流电压下降系数,取1.1;

-温度补偿系数,取1.05~1.1;

-设备老化系数及设计裕度系数,取1.05~1.1;

-全部负载的计算功率(KW);

-负载功率因数,为0.7~0.8(滞后)。

则可靠系数 = =1.33~1.530,取可靠系数平均值 =1.43和 =0.7,由公式可得

=2.04 =2.04×10=20.4KVA 6.4 UPS电源系统接线方案

UPS电源依据不同的负载及用户要求,可以组成单机及各种冗余备份电源系统,保证系统运行稳定、可靠,给负载提供优质的不间断电源。

结合220KV系统UPS负载的实际情况以及供电可靠性问题,选用UPS多机N+1并联冗余配置。多个UPS模块按N+1配置,输出并联后接至旁路切换模块,正常时由并联的UPS模块向负载供电,并平均分担负荷电流。当其中一台UPS模块故障时会自动退出运行,不影响其他模块的正常输出;当两台以上UPS模块故障退出,且其余工作模块出现过载时,自动切换到旁路供电。 根据UPS的容量及其接线方案,选择3台型号为SWB—15KT/DC220(3/1)的UPS。(SWB—B系列 ;15K—容量为15KVA; T—直立式架构;DC220—直流输入电压为220V;3/1—输入输出形式为三入单出)

第七章 通信直流变换器的选择

由于本220KV变电站的直流负荷中没有通信负荷,故不需要进行选择,仅是对通信部分进行了解。 发电厂、变电站必须装设可靠的通信直流电源系统,以确保通信设备的不间断电源,尤其要保证在电网或发电厂、变电站发生事故时不中断通信供电。 发电厂、变电站的通信负荷主要是:

(1)生产行政电话机、网络控制室、单元控制室、调度呼叫转移系统等; (2)电力载波机、光纤通信设备、微波和其他通信设备。

根据《220KV—500KV变电站设计技术规程》规定:为保证重要变电所通信设备不间断供电,应根据通信设备的供电电源要求,设置通信专用的蓄电池或由交流不停电电源供电。

通信电源系统主要由四部分构成:交流配电单元、整流单元、直流配电单元、蓄电池直流电源单元。

采用由蓄电池组构成的直流电源系统,具有很高的可靠性,但代价是设备投资增加,并需要专业人员维护。随着变电站综合自动化技术的发展,模块化的通信专用DC/DC变换器在变电站中已得到广泛应用,模块化的通信专用DC/DC变换器是从站内直流控制电源系统的蓄电池组取得直流电,经高频变换输出满足通信设备要求的48V控制电源。

第八章 直流系统中各自开关额定容量的选择

根据有关规定,蓄电池出口回路、充电装置直流侧出口回路、直流馈线回路和蓄电池试验放电回路等,应装设保护电器。 8.1 直流断路器的选择

直流断路器应具有速断保护和过电流保护功能。可带有辅助触点和报警触点。 直流断路器的选择: 原则一:额定电压大于或等于回路的最高工作电压。 原则二:额定电流应大于回路的最大工作电流。

(1)对于此220KV变电站,直流断路器的额定电压大于或等于220V即可。 (2)直流断路器的额定电流 1)充电装置输出回路

断路器的额定电流按充电装置额定输出电流来选择,即

式中 -直流断路器的额定电流,A; -可靠系数,取1.2;

-充电装置额定输出电流。

=1.2×100=120A

故选择型号为GMB225—125A,即额定电流为125A的壳架等级额定电流代号为225的三段保护的固安详微型断路器。 2)蓄电池组出口回路

① 断路器的额定电流按蓄电池的1小时放电率电流选择,即

式中 —蓄电池1小时放电率电流,A,铅酸蓄电池可取5.50I10 =5.5×25=137.5A

② 按保护动作选择性条件,即额定电流应大于直流馈线中断路器额定电流最大的一台来选择,即

式中 -直流馈线中直流断路器最大的额定电流,A; -配合系数,一般可取2.0,必要时取3.0。

=2.0×25=50A 取以上两种情况中电流最大者为断路器额定电流,因此取 =137.5A。 故选择型号为GMB225—140A,即额定电流为140A的壳架等级额定电流代号为225的三段保护的固安详微型断路器。 3)直流馈线回路

对于直流负荷按平均分配于两段母线的原则。

①经常负荷 选择型号为GM5—20A,即额定电流为20A的设计序号为5固安详微型断路器。

②事故照明负荷 选择型号为GM5—10A,即额定电流为10A的设计序号为5固安详微型断路器。

③UPS不间断电源 选择型号为GM5—25A,即额定电流为25A的设计序号为5固安详微型断路器。

4)断路器电磁操动机构的合闸回路和跳闸回路

式中 -直流断路器额定电流,A; -配合系数,取0.3;

-断路器电磁操动机构合闸电流或跳闸电流,A。 ①合闸回路 =0.3×2=0.6A ②跳闸回路 =0.3×2.5=0.75

故合闸回路和跳闸回路都选择型号为GM5—1A,即额定电流为1A的设计序号为5的固安详微型断路器。 8.2 刀开关的选择

原则一:额定电压应大于或等于回路的最高工作电压。 原则二:额定电流应大于回路的最大工作电流。 直流母线联络电器(隔离开关)的选择: (1)对于此220KV变电站,直流母线联络电器(隔离开关)的额定电压大于或等于220V即可。

(2)直流隔离开关,额定电流按以下原则计算

按较大电流的母线上供电的负载工作电流选择,即

(1-24)

式中 -较大电流的母线段上全部负载的工作电流之和; -同时系数,取0.5~0.6。

=0.5×50=25A

故选择型号为GMG—125A,即壳架等级额定电流为125A的固安详隔离开关。

第九章 结论

本次设计题目是220KV变电站直流系统设计。设计方案为:采用单母分段的接线方式;系统电压采用220V;蓄电池采用阀控式密封铅酸蓄电池,浮充电方式运行,浮充电电压为2.35V;蓄电池容量选择250Ah,单体蓄电池个数为104个,电压校验结果满足要求;选取两组高频开关式充电装置,每组充电模块为6,共12个,额定工作电流20A;采用UPS多机N+1并联冗余配置,选择3台型号为SWB—15KT/DC220(3/1)的UPS;蓄电池出口回路、充电装置出口、直流馈线回路、两段母线之间进行了开关的选择。

第四篇:变电站直流系统改造技术

摘 要 由于变电站直流系统的改造难度大,风险高,必须结合变电站实际情况,综合性、系统性、科学性的提出相关改造技术措施,以保证改造过程中电力系统的安全运行,避免相关事故或者缺失的发生,文章主要以110kV变电站直流系统为研究对象,针对当前变电站直流系统运行过程中存在的不足,提出了改造当前变电站直流系统的技术措施。

关键词 变电站;直流系统;改造;问题;方案

中图分类号 TM 文献标识码 A 文章编号 1673-9671-(2011)101-0099-02

直流系统是变电站的动力核心,为继电保护设备、自动装置、监控系统、远动系统等电气设备的正常运行和遥控操作提供直流电源保证。伴随着电力、通信、计算机技术的飞速发展,微机型保护装置和安全自动装置被广泛应用于变电站,这就对站用直流电源提出了更高的要求。目前而言,大部分110kV常规变电站的直流系统为电磁型直流设备(相控硅整流电源),这种直流系统在精准性、可靠性、稳定性、纹波系数、效率等方面都已不能满足电网的发展趋势,以及二次设备的应用要求,变电站直流系统的改造将是不可避免的趋势,也是电力系统持续发展的需要。

1 变电站直流系统运行及改造存在的问题

随着电力技术的发展,许多110kV常规变电站被改造成综合自动化变电站以实现了无人值班,原有直流系统的缺陷逐渐显现出来,这些缺陷是不能适应电网的发展趋势的,所以必须对其进行改造。当前大多数110kV变电站仍采用单电单充直流系统供电模式。传统的变电站直流系统主要呈现出以下几个方面的问题:

1)工作母线结线布置复杂。控制屏中直流母线水平置于屏的中部,屏顶还设有多根小母线主要是控制信号音响等,因结构复杂和设备间距比较小,在设备出现接触不良等与之相关的问题时而难以处理

解决。

2)灯光信号和仪表维护困难。传统的直流屏,由于其屏的正面不使用活动门的方式,这样就不能更换装于屏面上损坏后的仪表、信号等设备。

3)绝缘监察装置动作灵敏度不高。传统的直流系统虽能能正确反映单极明显接地现象,但无法反映出正确的接地回路,因为它主要是采用电磁式绝缘监察装置反映直流系统的接地,才会导致这种现象发生。

4)通讯接口与微机进行联接时无法提供数据。随着电力系统自动化的不断深入,以及电网规模的扩大,必须对存在以上缺陷的变电站直流进行改造,但供电模式下的110kV综合自动化变电站的改造也面临着一些问题:①在一些变电站中,因为服役时间较长,需要日常维护的铅酸蓄电池和直流电源系碱性蓄电池组,已不能适应电力系统继电保护装置,尤其是不能适应微机保护装置对直流电源的安全技术标准。②在更换过程中,如果发生断线、短路或者接地等问题时,都极有可能致使保护装置误动或拒动造成大面积停电发生,更为严重的能造成电网事故。为了保证供电的安全可靠要求在全站不失去直流电源的情况下更换,也就是不停电进行直流系统更换。③直流改造时旧直流屏不能带电移出,新直流屏不能带电就位,以确保设备及人身的安全。新、旧直流屏电路割接的难度大,在旧屏转换为新屏的过程中,如何确保继电保护及开关操作所需的直流电源安全可靠,成为了110kV变电站直流系统改造工程需要解决的关键问题。

2 变电站直流系统改造方案

直流系统改造的目的就是提高直流系统运行的可靠性和供电质量,这是衡量直流电源的重要指标,所以需要综合性、科学性的制定改造

方案。

在变电站直流系统改造过程中对于合闸电源及控制电源需要做出以下情况说明:

1)变电站断路器合闸电源仅在断路器合闸时使用,因为平时空载,所以允许短时的停电,因此在更换过程中不再对合闸电源进行说明,停用各馈线重合闸就可以了。

2)要保证电力设备的安全运行,控制、保护电源及信号电源至关重要,绝不允许中断。因此,主要对控制电源进行情况说明。对原有直流系统馈线网络进行认真的核查后,才能制定更换方案,总体的更换方法是:利用临时系统转接负载来搭建一个简易的临时直流系统,如图1所示。用临时电缆将馈线支路直流,是由这条支路的受电侧电源接入点而引至空气开关的下侧。此时,就相当于把原来的直流电源引至空气开关的下方向。在它具体的实施方法上面临以下两个方案:①先把原来的直流系统断掉,然后把上图中的空气开关和上,这样做的有利之处是两套直流系统间的转换过程简单化。虽然在这种转换过程比较快,但是瞬间的变化直流电压,很容易产生一些严重的后果,例如:电源插件损坏、保护装置误发信号等。为了避免这些问题要提前申请退出全站的保护出口压板,等到直流系统转换完成后再恢复压板,而且必须在新的直流系统安装调试完成后,再重复一次上述的过程,然后拆除临时直流电源。这样至少需要2h左右的操作过程,这是不能允许的,因为在这段时间内,就相当于变电站在没有保护的情况下运行。②首先把空气开关闭合,把临时直流电源合并入系统拆去原来的直流电源,等新的直流屏安装和调试完成后,然后重复以上的方法拆掉临时直流系统就可以。这样做的缺点在于容易导致不同直流系统间产生压差,而且因为蓄电池的内阻较小致使容易产生较大的环流。同时这样做也有很多优点:第一,确保了在更换直流的过程中可以保持对外的直流供电;第二,更换过程中避免了对保护设施压板的操作,所以选用这种方法。避免产生环流,可以调整临时直流系统的电压来把两套直流系统间的电压差缩小,并缩短两套直流系统并联时间,这样就把环流的影响降到了最低程度。

根据上面成功的实验方案,制定了下面直流屏更换“旧直流屏一临时直流电源系统一新直流屏”供电转换施工方法:用临时充电机和电池组搭建一个临时的系统,将直流馈供支路转到临时直流系统空气开关下面;在临时直流系统中引出一组直流电源,然后接到空气开关上方,再把原直流系统的充电机停止使用;切断原来直流屏的馈供支路并合上临时充电机的交流输入电源,合并空气开关,这样负载转到临时直流电源供电;这样使临时直流系统工作正常;切断旧直流屏交流输入电源拆除旧直流屏;新直流屏回到原来的位置,然后安装电池,连线接交流,并调试正常;重复上述方法,就可以把负载接入新的直流屏;核对检查一下各馈供支路极性是否正确,新屏是否运行正常。

3 变电站直流系统改造注意事项

1)事先熟悉现场直流系统设备实际接线图纸、负荷电缆出线走向,核实原直流接线合闸正母线与控制母线是正极还是负极共用,仔细查看工作地点与其他设备运行是否相互联系。

2)更换前,需要对作为临时系统的蓄电池组进行仔细检查,将电池组充好电,测量其输出电压是否满足要求,以保证临时供电系统的可靠性。直流系统大多采用辐射型供电,负载线路多,在切改过程中为了防止出现漏倒的现象,要求我们提前做好负载线路的标识工作,将出线名称与电缆一一对应清楚,并标识明确。

3)临时接线时考虑引线截面,各连接头接触良好、牢固。由于一般的临时充电机只有一路交流电源输入,这样为了不让失去交流电带来的一些问题发生,在更换之前就应对站用低压备用电源自动投入功能进行检查试验。

4)电池容量选择和模块的配置。首先电池容量在选择时要进行直流负荷的整理统计,直流负荷按性质通常分为经常负荷、冲击负荷、事故负荷。经常负荷的作用是保护、控制、自动装置及通信的设置。冲击负荷是指极在短时间内,增加大电流负荷。冲击负荷是指在瞬间时间内来增加的大电流负荷,例如合闸操作、断路器分等。事故负荷是指在停电后,必须采用直流系统供电的负荷,比如:通信设置、UPS等。针对以上三种直流负荷统计分析,就可以把事故状态下的直流放电容量整理计算出。一般直流系统的蓄电池(220kV的变电站)要选用两组电池的容量是150AH~200AH。直流系统的蓄电池(110kV的变电站)要选择一组电池容量是100AH~150AH。直流系统的蓄电池(35kV的变电站)要选择一组电池容量是50AH~100AH。模块数量的配置是要全部模块出额定电流总值要大于或等于最大经常负荷加蓄电池充电电流。例如:100AH的蓄电池组,它的充电电流是0.1c100=10A,在没有计算经常负荷时,选用两台额定电流5A电流的模块就可以满足对蓄电池的充电,要实现N+1冗余总共选择3台5A模块。

5)尽量避免在更换过程中对变电站设备进行遥控分、合闸操作。如必须操作,只能在变电站手动分、合闸。更换过程中密切监视直流系统电压情况。

6)直流系统改造过程中为了确保设备及人身的安全,旧直流屏不能带电移出,所以在拆除旧直流屏前应确保设备不带电。

4 结束语

通过对变电站直流系统改造及对显示模块、告警模块、手动调压、控制方式等方面的测试,各个部分的操作和功能都得到了改善,满足相关技术要求,且蓄电池组放电容量充足,池电压均衡、平稳。改造后的直流系统满足变电站设备对直流系统可靠性、安全性、稳定性等方面的要求。为保证五常变设备的安全运行起到至关重要的作用。

参考文献

[1]贺海仓,朱军.变电站直流系统配置应注意的几个问题[J].铝加工,2011,1.

[2]黄振强,林品凤.110kV变电站直流系统剖析[J].电力学报,2010,6.

第五篇:变电站直流系统接地故障查找

针对直流系统在运行中发生一点接地的各种可能性,结合现场实践经验,提出直流接地查找的方法和步骤。

1、引言

变电站直流系统以蓄电池储存能量,以充电机补充能量,向全站保护、监控、通讯系统源源不断的输送电能,确保其安全、稳定、可靠运行。直流系统是绝缘系统,正常时,正、负极对地绝缘电阻相等,正、负极对地电压平衡。发生一点接地时,正、负极对地电压发生变化,接地极对地电压降低,非接地极电压升高,在接地发生和恢复的瞬间,经远距离、长电缆起动中间继电器跳闸的回路可能因其较大的分布电容造成中间继电器误动跳闸(可采用较大起动功率的中间继电器来避免),除此之外,对全站保护、监控、通讯装置的运行并没有影响。但是,存在一点接地的直流系统,供电可靠性大大降低,因为在接地点未消除时再发生第二点接地,极易引起直流短路和开关误动、拒动,所以直流一点接地时,设备虽可以继续运行,但接地点必须尽快查到,立即消除或隔离。

2、直流接地形式

按接地点所处位置的不同,可将直流接地分为室内和室外两种形式,按引起接地的原因,又可分为以下几种形式:

① 由下雨天气引起的接地。在大雨天气,雨水飘入未密封严实的户外二次接线盒,使接线桩头和外壳导通起来,引起接地。例如瓦斯继电器不装防雨罩,雨水渗入接线盒,当积水淹没接线柱时,就会发生直流接地和误跳闸。在持续的小雨天气(如梅雨天),潮湿的空气会使户外电缆芯破损处或者黑胶布包扎处,绝缘大大降低,从而引发直流接地。

② 由小动物破坏引起的接地。当二次接线盒(箱)密封不好时,蜜蜂会钻进盒里筑巢,巢穴将接线端子和外壳连接起来时,就引发直流接地。电缆外皮被老鼠咬破时,也容易引起直流接地。

③ 由挤压磨损引起的接地。当二次线与转动部件(如经常开关的开关柜柜门)靠在一起时,二次线绝缘皮容易受到转动部件的磨损,当其磨破时,便造成直流接地。

④ 接线松动脱落引起接地。接在断路器机构箱端子排的二次线(如10kV开关机构箱内的二次线),若螺丝未紧固,则在断路器多次跳合时接线头容易从端子中滑出,搭在铁件上引起接地。

⑤ 误接线引起接地。在二次接线中,电缆芯的一头接在端子上运行,另一头被误认为是备用芯或者不带电而让其裸露在铁件上,引起接地。在拆除电缆芯时,误认为电缆芯从端子排上解下来就不带电,从而不做任何绝缘包扎,当解下的电缆芯对侧还在运行时,本侧电缆芯一旦接触铁件就引发接地。

⑥ 插件内元件损坏引起接地。为抗干扰,插件电路设计中通常在正负极和地之间并联抗干扰电容,该电容击穿时引起直流接地。

3、直流接地查找

3.1 查找方法

直流回路数量多、分布广,接地点不好查,相对有效的方法是拉路试探法。即分别对每路空气开关或熔断器拉闸停电,若停电后直流接地现象消失,说明接地点位于本空气开关控制的下级回路中;若现象继续存在,说明下级回路没有接地。通过拉路寻找,可将接地点限定在某个空开控制的直流回路中,再通过解开电缆芯,将接地点限定在室内或室外部分;再通过拔出插件,可将接地点限定在插件内和插件外。经过层层分解、一段段排除,最终可将接地点定位于一段简单回路中,再用摇表对回路中的每根接线摇测绝缘,把接地点进一步限定在几根导线或几颗端子上,通过仔细观察,反复触摸,接地点终会“原形毕露”的。

3.2 查找步骤

直流系统中的空气开关或熔断器是分层分级配置的,一般由总路空开、分路空开串联而成,两级空气开关将直流回路分成了三段。两级空气开关分别是直流屏总路空气开关和各设备分路空气开关,三段回路分别是直流母线及其引出线回路、总路空开馈出的电缆和桥接母线回路、分路空开馈出的保护、控制、监视、储能回路。其中,第三段回路数量最多、接线最复杂、接地几率最高,几乎所有的直流接地都出现在这一段。要想尽快找到接地点所属空开,接地的确切位置和确切原因,就必须对三段回路的构成、作用和现场具体位置十分熟悉,所以查找直流接地的第一步就是熟悉现场直流系统接线。只有熟悉了接线,心中有了数,才能在拉路寻找时不漏拉、不错拉、不重复拉。

3.2.1 定位到总路空气开关

目前直流屏上都安装有微机直流绝缘检测仪,发生直流接地时,绝缘检测仪会报出是哪一极(正极还是负极)接地、接地电阻是多少,随后会报出接地支路号,根据支路号就可将接地点定位到总路空气开关。

如果绝缘检测仪(绝缘监察装置)没有选线功能,又怎样定位到总路空开呢?这种情况下,只有对总路空气开关进行拉路寻找了;如果拉开某路空气开关后,接地极母线对地电压立刻升高到110V左右,则接地点就位于该空开控制的下级回路之中。

3.2.2 定位到分路空气开关 用内阻不低于2000Ω/V万用表或电压表在直流屏监视接地极母线对地电压,然后退出绝缘检测仪。根据现场标示和相关图纸,找出总路空开下级串接的所有空气开关(或熔断器),按照先信号后控制、先室外后室内的原则排出拉路顺序。对于信号回路,如测控装置电源空开、遥信电源空开、通讯电源空开,其不影响故障跳闸,只涉及监控、指挥信号,可最先拉。如果接地点就在这些空开控制的回路,就免除了对重要回路(控制回路、保护回路)的短时停电。对于保护控制回路空开,直接影响到系统安全,拉路时间越短越好,需控制在3秒以内,拉路顺序可按其对应一次设备实时潮流大小来排序,先拉负荷轻的空开,再拉负荷重的空开。如果拉开某路空气开关后,接地极母线对地电压立刻升高到110V左右,则接地点就位于该空开控制的下级回路之中。

3.2.3 找出接地的确切位置和确切原因

定位到分路空开后,应向调度申请,断开该路空开,这样其余直流回路就恢复到正常状态,再拆除监视直流母线对地电压的万用表或电压表,投入绝缘检测仪。由于空开已断开,下级回路不带电,用万用表监视回路对地电压的方法发挥不了作用,所以对下级回路接地点使用摇表来查找。

① 按室内室外分段查找。现场统计资料显示,运行中变电站出现的直流接地点绝大部份在室外,所以分段查找时,重点还是查室外部分。可以先将本回路涉及的二次设备接线盒一一打开,仔细检查,看盒子内有无积水、有无潮气、有无电缆头破损进水、有无芯线绝缘皮裂口、有无动物巢穴、有无接线脱落、有无备用芯搭铁等等,或许就会发现接地点。

本回路中,已没有空气开关可拉,接地点的进一步分区和判断只有靠解开电缆芯线,此时需要注意的是,解线前应将端子排号、端子两侧接线编号详细记录在安全措施票上,防止恢复接线时出错。依次解开控制室到场地直流电缆芯线,每解开一根电缆,就用摇表在端子排测量接地极对地绝缘电阻,若绝缘恢复,说明接地点在本电缆和电缆对侧回路之中。若解开所有电缆后绝缘仍没有变化,说明接地点位于保护屏内部。

② 室外接地点查找。接地点位于场地电缆和电缆对侧回路中时,解开端子箱到开关机构箱直流电缆所有电缆芯,用摇表在端子排测量接地极绝缘电阻,若绝缘恢复,说明接地点在本电缆和开关机构二次回路中。若绝缘没有变化,说明接地点位于端子箱引出电缆和电缆对侧回路中(如刀闸辅助接点)。

按上述方法解开电缆芯对回路进一步分段,摇测绝缘,接地点就限定在开关机构箱、刀闸操作箱、或控制电缆中,用摇表对箱内直流回路的每一根接线摇测绝缘,接地点就限定在几根二次线中,再仔细观察,反复触摸,就可发现接地点。

③ 室内接地点查找。接地点位于保护屏内时,依次拔出装置插件,测量端子排接地极对地绝缘电阻,若绝缘恢复,说明接地点就在对应插件中。若绝缘没有变化,说明接地点位于保护屏端子排、端子排引出屏间直流电缆和屏内布线中,用摇表对屏内直流回路的每颗接线端子摇测绝缘,找出接地的那几颗端子,对端子金属部分、连接线部分仔细观察,反复触摸,找出接地点。

4、接地查找注意事项

防止不正确的查找方法造成的直流系统两点接地。如使用灯泡查找法,使用内阻低于2000Ω/V的万用表和电压表。某些保护如整流型距离保护、晶体管保护在直流拉合时可能会误出口,所以在拉合前应申请退出保护出口压板。

目前绝缘监测装置大都采用带接地选线功能的微机监测仪,这类监测仪都有一个共同的特点,反应相对迟钝:在发生直流接地时,要延迟几秒甚至十几秒才能报“直流接地”信号;而在直流接地消失时,也要延迟几秒甚至十几秒其信号才复归。在拉路寻找时,切断各支路直流的时间只有几秒钟,绝缘监测仪信号来不及复归,致使靠绝缘检测仪判断接地消失的方法找不出接地点。为此,在拉路寻找前,应先使用内阻不低于2000Ω/V万用表或电压表在直流屏监视接地极母线对地电压,然后退出绝缘检测仪(绝缘检测仪会使直流母线对地电压发生较大波动,影响判断),靠万用表或电压表电压值的变化来反映直流接地是否消失。

上一篇:质量管理对食品安全下一篇:中考语文小作文题目