汽车材料性能测试

2022-07-11

第一篇:汽车材料性能测试

材料力学性能试验标准及测试方法

1. 拉伸实验

[1] 标准

金属拉伸试件按国标GB/T6397-1986《金属拉伸试验试样》[1] 标准ASTM D3039-76用于测定高模量纤维增强聚合物复合材料面内拉伸性能;ASTM D638用于测定试件的拉伸强度和拉伸模量[2]; 2. 压缩试验

[1] 标准

压缩试件按国标GB/T7314-1987《金属压缩实验试样》[1] ASTM D3410-75(剪切荷载法测定带无支撑标准截面的聚合体母体复合材料压缩特性的试验方法) [3]。 3. 弯曲试验

[1] 标准

ASTM D7624用于测定聚合物基复合材料的弯曲刚度与强度性能[2]。

4. 剪切试验

[1] 标准

ASTM D5379适用大部分的纤维增强型复合材料[2]。

5. 层间断裂

[1] 标准

ASTM D5528和JIS K7086,仅适用于单向分层测试。其他的还未有相关标准[2]。 6. 冲击试验

[1] 标准

金属材料按照GB/T229-1994加工成V形缺口或U形缺口[1] 目前复合材料在冲击后的损伤性能表征主要是损伤阻抗( Damage Resistance) 和损伤容限( Damage To tolerance)。

目前关于损伤阻抗和损伤容限的测试标准有ASTM D6264-98(04)和ASTM D7136 /D7136M-05标准。D6264-98用来测量纤维增强复合材料对集中准静态压痕力的损伤阻抗;D7136用来测量材料对落锤冲击试件的损伤阻抗[2]。 7. 疲劳试验

[1] 疲劳极限测试标准

单点试验按照航标HB5152-1980规定;升降试验法按照国标GB/T3075-1982和GB/T4337-1984[1]。

参考文献

[1] 金保森.材料力学实验.2005 [2] 郑锡涛.液体成形复合材料力学性能测试方法研究进展.2010 [3] JM 惠特尼.纤维增强复合材料试验力学.1990 [4] J.M.霍奇金森.先进纤维增强复合材料性能测试.2005

第二篇:聚合物材料的动态力学性能测试

DMA 测量形状记忆高聚物性能原理及应用

聚合物材料的动态力学性能测试

在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。这些物理量是决定聚合物使用特性的重要参数。同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。 实验原理

高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。能量的损耗可由力学阻尼或内摩擦生成的热得到证明。材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。

如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。图2-61(b)是典型的黏弹性材料对正弦应力的响应。正弦应变落后一个相位角。应力和应变可以用复数形式表示如下。 σ*=σ0exp(iωt) γ*=γ0 exp[i (ωt-δ) ]

式中,σ0和γ0为应力和应变的振幅;ω是角频率;i是虚数。用复数应力σ*除以复数形变γ*,便得到材料的复数模量。模量可能是拉伸模量和切变模量等,这取决于所用力的性质。为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个90o的相位角,如图2-61(c)所示。对于复数切变模量

E*=E′+iE″

(2-60) 式中

E′=∣E*∣cosδ E″=∣E*∣sinδ

显然,与应力同位相的切变模量给出样品在最大形变时弹性贮存模量,而有相位差的切变模量代表在形变过程中消耗的能量。在一个完整周期应力作用内,所消耗的能量△W与所贮存能量W之比,即为黏弹性物体的特征量,叫做内耗。它与复数模量的直接关系为

=2π =2πtanδ

(2-61) 这里tanδ称为损耗角正切。

聚合物的转变和松弛与分子运动有关。由于聚合物分子是一个长链的分子,它的运动有很多形式,包括侧基的转动和振动、短链段的运动、长链段的运动以及整条分子链的位移各种形式的运动都是在热能量激发下发生的。它既受大分子内链段(原子团)之间的内聚力的牵制,又受分子链间的内聚力的牵制。这些内聚力都限制聚合物的最低能位置。分子实际上不发生运动,然而随温度升高,不同结构单元开始热振动,并不断外加振动的动能接近或超过结构单元内旋转位垒的热能值时,该结构单元就发生运动,如移动等,大分子链的各种形式的运动都有各自特定的频率。这种特定的频率是由温度运动的结构单元的惯量矩所决定的。而各种形式的分子运动的开始发生便引起聚合物物理性质发生变化而导致转变或松弛,体现在动态力学曲线上的就是聚合物的多重转变(如图2-62所示)。 线形无定形高聚物中,按温度从低到高的顺序排列,有5种可能经常出现的转变。 δ转变侧基绕着与大分子链垂直的轴运动。

γ转变主链上2~4个碳原子的短链运动——沙兹基(Schatzki)曲轴效应(如图2-63)。

β转变主链旁较大侧基的内旋转运动或主链上杂原子的运动。 α转变由50~100个主链碳原子的长链段的运动。

TⅡ转变液-液转变,是高分子量的聚合物从一种液态转变为另一种液态,两种液态都是高分子整链运动. 在半结晶高聚物中,除了上述5种转变外,还有一些与结晶有关的转变,主要有以下转变。

Tm转变:结晶熔融(一级相变)。 Tcc转变:晶型转变(一级相变),是一种晶型转变为另一种晶型。 Tac转变:结晶预溶。

通常使用动态力学仪器来测量材料形变对振动力的响应、动态模量和力学损耗。其基本原理是对材料施加周期性的力并测定其对力的各种响应,如形变、振幅、谐振波、波的传播速度、滞后角等,从而计算出动态模量、损耗模量、阻尼或内耗等参数,分析这些参数变化

与材料的结构(物理的和化学的)的关系。动态模量E′、损耗模量E″、力学损耗tanδ=E″/ E′是动态力学分析中最基本的参数。 实验设备和材料 (1)仪器

DMA Q800是由美国TA INSTRUMENTS公司生产的新一代动态力学分析仪(见图2-64)。它采用非接触式线性驱动马达代替传统的步进马达直接对样品施加应力,以空气轴承取代传统的机械轴承以减少轴承在运行过程中的摩擦力,并通过光学读数器来控制轴承位移,精确度达1nm;配置多种先进夹具(如三点弯曲、单悬臂、双悬臂、夹心剪切、压缩、拉伸等夹具),可进行多样的操作模式,如共振、应力松弛、蠕变、固定频率温度扫描(频率范围为0.01~210Hz,温度范围为-180~600℃)、同时多个频率对温度扫描、自动张量补偿功能、TMA等,通过随机专业软件的分析可获得高解析度的聚合物动态力学性能方面的数据。(测量精度:负荷0.0001N,形变1nm,Tanδ0.0001,模量1%)。本实验使用单悬臂夹具进行试验 (2)试样

聚甲基丙烯酸甲酯(PMMA)长方形样条。试样尺寸要求:长a=35~40mm;宽b≤15mm;厚b≤5mm。准确测量样品的宽度、长度和厚度,各取平均值记录数据。 4. 实验步骤

(1)仪器校正(包括电子校正、力学校正、动态校正和位标校正,通常只作位标校正)将夹具(包括运动部分和固定部分)全部卸下,关上炉体,进行位标校正(position calibration),校正完成后炉体会自动打开。

(2)夹具的安装、校正(夹具质量校正、柔量校正),按软件菜单提示进行。 (3)样品的安装

1)放松两个固定钳的中央锁螺,按“FLOAT”键让夹具运动部分自由。 2)用扳手起可动钳,将试样插入跨在固定钳上,并调正;上紧固定部位和运动部位的

中央锁螺的螺丝钉。

3)按“LOCK”键以固定样品的位置。

4)取出标准附件木盒内的扭力扳手,装上六角头,垂直插进中央锁螺的凹口内,以顺时针用力锁紧。对热塑性材料建议扭力值0.6~0.9N.m。 (4)实验程序

1)打开主机“POWER’’键,打开主机“HEATER”键。

2)打开GCA的电源(如果实验温度低于室温的话),通过自检,“Ready”灯亮。

3)打开控制电脑,载进“Thermal Solution”,取得与DMA Q800的连线。

4)指定测试模式(DMA、TMA等5项中1项)和夹具。

5)打开DMA控制软件的“即时讯号”(real time signal)视窗,确认最下面的。“Frame Temperature”与“Air Pressure”都已“OK”,若有接GCA则需显示“GCA Liquid Level:XX%full”。

6)按"Furnace"键打开炉体,检视是否需安装或换装夹具。若是,请依标准程序完成夹具的安装。若有新换夹具。则重新设定夹具的种类,并逐项完成夹具校正 (MASS/ZERO/COMPLIANCE)。若沿用原有夹具,按“FLOAT”键,依要领检视驱动轴漂动状况,以确定处于正常。

7)正确的安装好样品试样,确定位置正中没有歪斜。对于会有污染、流动、反应、黏结等顾忌的样品,需事先做好防护措施。有些样可能需要一些辅助工具,才能有效地安装在夹具上。

8)编辑测试方法,并存档。

9)编辑频率表(多频扫描时)或振幅表(多变形量扫描时),并存档。

10)打开“Experimental Parameters”视窗,输入样品名称、试样尺寸、操作者姓名及一些必要的注解。指定空气轴承的气体源及存档的路径与文件名,然后载入实验方法与频率表或振幅表。

11)打开“Instrument Parameters”视窗,逐项设定好各个参数。如数据取点间距、振幅、静荷力、Auto-strain、起始位移归零设定等。

12)按下主机面板上面的“MEASURE”键,打开即时讯号视窗,观察各项讯号的变化是否够稳定(特别是振幅),必要时调整仪器参数的设定值(如静荷力与Auto-Strain),以使其达到稳定。

13)确定好开始(Pre-view)后便可以按“Furnace”键关闭炉体,再按“START”键,开始正式进行实验。

14)只要在连线(ON-LINE)状态下,DMA Q800所产生的数据会自动的、一次次的转存到电脑的硬盘中,实验结束后,完整的档案便存到硬盘罩。

15)假定不中途主动停止实验.刚会依据原先载入的实验方法完成整个实验,假如觉得实验不需要再进行的话。可以按“STOP”键停止(数据有存档)或按“SCROL-STOP”或“REJECT”键停止(数据不存档)。

16)实验结束后,炉体与夹具会依据设定之“END Conditions”回复其状态,若有设定“GCA AUTO Fill”,则之后会继续进行液氮自动充填作业。

17)将试样取出,若有污染则需予以清除。

18)关机。步骤如下。按“STOP”键,以便贮存Position校正值。等待5s后,使驱动轴真正停止。关掉”HEATER”键。关掉“POWER”键,此时自然与电脑离线。关掉其他周边设备,如ACA、GCA、Compressor等。进行排水(Compressor气压桶、空气滤清调压器、GCA)。 应用

高聚物的耐热性主要是指聚合物受热下的变形,高聚物的耐热性主要指玻璃化温度、软化温度等。有机玻璃在玻璃态下使用,而超过这个温度将变为高弹态或黏流态,此时即使受到较小的力也会产生较大的形变而不能保持其外形尺寸。玻璃化转变温度是在恒定的较小负荷下测得的温度形变曲线上发生玻璃化转变较窄温度范围的中间值。在实际使用中,高聚物总是处于受力的情况下,因此不是以静态的玻璃化温度作为耐热温度,而是测量高聚物在一定外力下达到一定形变值时的温度作为耐热温度,常用的有马丁耐热温度、维卡软化温度及热变形温度。 玻璃化转变温度是聚合物材料的一种普遍现象,它是一种聚合物材料使用的上限温度,因此玻璃化转变温度是聚合物的一个非常重要的性能指标。玻璃化转变的实质是链段运动随温度的降低被冻结或随温度的升高被激发的结果。在玻璃化转变前后分子的运动模式有很大的差异。因此,当聚合物发生玻璃化转变时,其物理和力学性能必然有急剧的变化。除形变和模量外,聚合物的比热容、比容积、热膨胀系数、折射率和介电常数等都表现出突变或不连续的变化。因此,根据这些性质上的变化,可以对聚合物的玻璃化转变进行实验测量。常用的测定聚合物玻璃化转变的方法有静态热机械法 TMA(如膨胀计法、温度形变曲线法等)、动态力学测量法DMA(如扭辫法和扭摆法等)、热力学方法(如示差扫描法 DSC或差热分析法DTA)等。

玻璃化转变是高分子材料玻璃态与高弹态之间的转变过程,它直接与纤维的纺织加工和使用性能有关。在化纤制造以及织物的染整过程中,许多加工条件都要根据纤维的玻璃化温度来决定。合成纤维(如涤纶、锦纶等)的该转变点已有大量研究,而检测天然纤维及再生纤维的玻璃化转变却还缺乏可靠的方法。因此,极少有文献从玻璃化转变的角度论述天然纤维染整加工的有关原理,相关的讨论分析也都只停留在宏观定性层面,这使得有关天然纤维加工原理的研究分析受到相当大的限制。

动态力学分析(Dynamic Mechanical Analysis,简称DMA)通常是在程序控制温度下,测量物质在振动负荷下的动态模量或力学损耗与温度的关系,从而确定材料的粘弹性。因为高聚物的玻璃化转变和交联等结构变化都与分子运动状态的变化密切相关,而分子运动的变化又能灵敏地反映在动态力学性能上,因而动态力学分析是研究高聚物结构——分子运动——性能的一种有效手段。动态力学分析已广泛应用于复合材料、橡胶和树脂等领域里,而其在天然纺织纤维里的应用还鲜少见到。因此利用动态力学分析对天然纤维的玻璃化转变点进行检测,探索研究该转变与材料加工原理的关系具有重要意义。

毛纤维通过干态下DMA温度扫描,虽然可以获得形似玻璃化转变的损耗因子突变,但由于测得的损耗因子峰值非常接近纤维的熔融断裂点,因此难以判断其真实性;而储存模量的转折温度点较低,在214℃左右,也许能作为玻璃化转变温度用于分析羊毛性能变化,但还有待进一步试验证实。在试验温度范围内,粘胶长丝和棉线干态下的DMA温度扫描均没有检测到玻璃化转变点。羊毛纤维和粘胶长丝通过湿态下DMA温度扫描,不同湿度下没有显现出明显确定的玻璃化转变点,而棉线在高湿度下产生了玻璃化转变点,在低湿度时没有出现,说明足够量的水分才可能影响其玻璃化转变。通过DMA等温湿度扫描,首次发现羊毛纤维和粘胶长丝都存在个以湿度为变量的玻璃化转变点。当温度为35℃时(接近人体体温),这个玻璃化转变出现的相对湿度分别为84.94%和86.56%。该转变点的相对湿度值随温度的升高而降低。这对于通过粘弹性能变化,研究纤维湿处理加工机理和应用效果可能具有一定的理论意义。

试验结果表明:通过湿度谱可以检测到常规染色后染料对纤维性能有微小影响;交联处理可以很大程度上改变纤维的力学性能,但是对玻璃化转变点的影响并不十分显著。染料分子的进入使粘胶长丝发生玻璃化转变时的相对损耗tanδ峰减小,转变湿度略有增加,可能是因为染料分子的疏水部分在纤维内部阻碍了部分纤维链段吸附水分;而交联粘胶长丝的相对损耗tanδ峰值高于未交联粘胶长丝,表明在玻璃化转变时交联粘胶分子运动消耗的能量较高,应该是分子间发生了交联,对分子链运动产生了一定的限制作用。染色对棉线温/湿度谱的力学性能转变点基本没有影响,但交联处理使棉线储能模量值相对减小,损耗因子值相对增大,可能是由分子交联限制分子链基团和链段运动造成的,这些发现对染整加工中的应用意义仍有待进一步研究。

第三篇:汽车性能总结

第二章

汽车的动力性

1、汽车动力性的含义和三个评价指标。

汽车的动力性是指汽车在良好路面上直线行驶时,由汽车受到的纵向外力决定的、所能达到的平均行驶速度。

评价指标:最高车速、加速时间、最大爬坡度

2、汽车的四类行驶阻力以及道路阻力包含的内容。 滚动阻力Ff、空气阻力Fw、坡度阻力Fi、加速阻力Fj 内容:滚动阻力和坡度阻力。滚动阻力 Ff = G*cosα*f;坡度阻力 Fi=G*sinα, 因 sinα≈ i;从而Fi=G*i.; f+i= ψ: ψ为道路阻力系数 3.影响滚动阻力系数的因素

(1)车速ua 车速越高,滚动阻力越大

(2)轮胎结构

子午线轮胎比斜交轮胎的滚动阻力小20%~30%

(3)气压

气压越高,轮胎变形及由其产生的迟滞损失就越小,滚动阻力也越小 硬路面:轮胎气压越高,滚动阻力也越小;塑性路面:轮胎气压越高,滚动阻力也越大

(4)驱动力

驱动力系数的增加,滚动阻力系数迅速增加。硬路面:驱动力越大,滚动阻力系数越大;气压越高,滚动阻力系数越大

(5)路面条件

上高速公路时,轮胎气压应该适当高一些。在松软路面、泥泞路面、雪地行驶时,可适当降低轮胎气压

(6)转向

离心力导致前、后轮产生侧偏力,侧偏力沿行驶方向产生分力使滚动阻力增加。

4. 空气阻力的分类及各阻力产生的原因。(汽车直线行驶时受到的空气作用力在行驶方向的分力称为空气阻力。)P52

分类:压力阻力(形状阻力、干扰阻力、内循环阻力、诱导阻力)、摩擦阻力

压力阻力(占91%):作用在汽车外形表面上的法向压力的合力在行驶方向上的分力。

形状阻力(58%):汽车行驶时,前部空气被压缩压力升高,后部形成涡流区产生负压使压力降低,前后压力差便形成了形状阻力。

干扰阻力(14%):车辆行驶时车表面突起物引起的空气阻力。

内循环阻力(12%):冷却发动机、车内通风等所需空气流经车体内部时形成的阻力。 诱导阻力(9%):汽车上部和下部空气压力不同,其差值在水平方向上的分力即为诱导阻力 摩擦阻力(9%):由于空气粘性作用在车身表面产生的切向力的合力在行驶方向的分力 5.写出用汽车结构参数和使用参数表示的汽车行驶方程式。

6.

附着率、附着力定义。

附着率:汽车直线行驶时,充分发挥驱动力作用时要求的最低附着系数

地面对轮胎切向反作用力的极限值(最大值)即为附着力。 7.影响附着系数的因素。

主要取决于路面的种类和状况,还与轮胎结构和气压、车速、车轮运动状况等有一定的关系

8、会应用“汽车的驱动与附着条件“ (计算题)P57

9、掌握三大平衡图的组成,以及利用三大平衡图分析汽车动力性的方法。(填空、选择题)P63.

10、分析主减速器传动比对汽车动力性和燃油经济性的影响。(简答题)(P78图2-34) 主减速器的传动比即传动系统的最小传动比,决定汽车的最高车速Vamax。

i01>i02>i03处在同一档时,i01的后备功率最大、燃油经济性最差;i03的后备功率最小、燃油经济性最好。i01的Vamax/Vp>1,动力性好,燃油经济性差;i02的Vamax/Vp=1,动力性和燃油经济性都比较好;i03的Vamax/Vp< 1,动力性差,燃油经济性好。(Vp-发动机最大功率对应的车速)

第三章

汽车的燃油经济性

1、等速百公里燃油消耗量的计算公式。

Q 燃油消耗率b,发动机功率Pe,燃油密度γ

2、写出汽车的后备功率方程式,分析后备功率对汽车动力性和燃料经济性的影响。 后备功率方程式:Pe=1/ŋT(Pf+Pw)

对动力性的影响:后备功率可用来使汽车加速或爬坡,以及拖带挂车,故后备功率越大,汽车的动力性越好。

对燃料经济性的影响:后备功率越小,负荷率越大,汽车燃料经济性就越好。通常负荷率约 80%~90%时,汽车燃料经济性最好。但负荷率太大会造成发动机经常在全负荷工况下工作,反而不利于提高汽车燃料经济性。

3、分析影响汽车燃油经济性的主要因素。 提示:六个主要因素:燃油消耗率、行驶阻力、传动效率、停车怠速油耗、汽车附件消耗和制动能量损失。

燃油消耗率:主要和发动机负荷率及发动机自身的种类、设计制造水平有关。发动机负荷率越低,燃油消耗率b显著增高,发动机后备功率大,动力性好,但此时 燃油经济性差。

行驶阻力:减轻汽车质量、降低空气阻力有利于节省燃油,提高汽车燃油经济性。

传动效率:其越高,油耗越低,汽车燃油经济性越好。提高传动系统的设计水平、制造装配工艺、按规程进行维修保养,以及尽可能使用直接挡行驶等措施,都可以提高传动效率。

停车怠速油耗:不熄火的怠速停车,会在不增加行驶里程的情况下消耗燃油,降低燃油经济性。 汽车附件消耗:它的能量,最终也来自燃油,会降低燃油经济性。 制动能量损失:频繁的加速、减速制动,会增加油耗,降低燃油经济性。

4、分析如何从汽车的结构方面入手提高汽车的燃油经济性。

缩减尺寸与轻量化、提高发动机设计水平、增加传动系档位数(并提高效率)和优化汽车外形与轮胎。

5、分析如何从汽车的使用方面入手提高汽车的燃油经济性。

中速行驶、尽量使用高挡、合理拖挂、正确的保养与调整:(1)制动器间隙要合适(2)轮毂轴承预紧度调整要正常(3)轮胎气压要合适(4)各部件间的润滑情况

6、分析为什么在接近于低速的中等车速时汽车的燃油经济性比较好。

低速时Fw↓ ,Ff↓,但负荷率↓ ,b ↑;高速时Fw↑ ,Ff↑,但负荷率↑ ,b ↓

第五章

汽车的制动性

1、制动性的三个评价指标,制动效能的两个评价指标,制动时汽车方向稳定性的三个方面。 三个评价指标:制动效能;制动效能恒定性;制动时的方向稳定性。 两个评价指标:制动距离与制动减速度。

三个方面:制动中不发生跑偏、侧滑或前轮失去转向能力的性能。

2、地面制动力、制动器制动力和附着力Fϕ三者之间的关系。 地面制动力Fτ=/r ,

;制动器制动力Fμ=

/r,Fµ取决于制动器的类型、结构尺寸、制动器摩擦副的摩擦因数及车轮半径,并与踏板力成正比,与附着力Fϕ无关。 足够的制动器制动力+较高的附着力(切向力)=较高的地面制动力

3、制动距离的含义,汽车的制动过程包括的四个过程(匀速运动、变减速运动、匀减速运动、停止运动。),影响制动距离的因素。

在良好路面上,汽车以一定初速(100km/h)从踩到制动踏板至停车经过的距离即为制动距离。

影响制动距离的因素:路面条件、载荷条件、制动初速度;踏板力(或者制动系管路压力)、地面的附着情况、车辆载荷有关,制动器的热工况。

4、影响制动效能恒定性的两个因素,汽车制动跑偏的两个因素。 制动效能恒定性的两个因素:制动器摩擦副材料及制动器结构

汽车制动跑偏的两个因素:1.左右车轮制动力不相等2.悬架导向杆系与转向系拉杆在运动学上不协调

5、纵向附着系数、侧向附着系数和滑动率之间的关系图(P155图5-7),利用该图会分析ABS的基本原理。 左侧:地面附着力随汽车制动力矩的增加,能提供足够的地面制动力,此时的侧向力系数也较大,具有足够的抗侧滑能力,—稳定区。右侧:随制动力矩的增大,地面制动力减小,抱死侧滑。

ABS系统:用滑移率作为参数,通过调节制动压力来控制车轮的转速,达到防抱死的目的。汽车在制动时,将汽车车轮的滑移率控制在15%~20%之间,制动车轮始终在纵向峰值附着系数最大处附近的狭小滑移率范围内滚动,既保证了转向操纵和制动方向的稳定性,又获得最小制动距离。同时又可以获得较大的侧向力系数(也就是说,能兼顾相对最大的纵向制动力和横向抓地力),从而使汽车获得最佳的制动效能和方向稳定性。

6、会利用汽车的结构参数求解汽车的同步附着系数,在此基础上,分析汽车的制动过程(哪个车轮先抱死)。 1.)某汽车前轴轴质量为满载总质量的40%,轴距为2.6m,质心高度为0.9m,该车制动力分配系数为0.6,求该车的同步附着系数。

2. )已知某汽车质量为m=4000kg,前轴负荷1350kg,后轴负荷为2650kg,hg=0.88m,L=2.8m同步附着系数为0.6,试确定前后制动器制动力分配比例。

1)前轮先抱死拖滑,然后后轮抱死拖滑;稳定工况,但丧失转向能力,附着条件没有充分利用。2)后轮先抱死拖滑,然后前轮抱死拖滑;后轴可能出现侧滑,不稳定工况,附着利用率低。3)前、后轮同时抱死拖滑;可以避免后轴侧滑,附着条件利用较好。

7、P161页汽车在不同附着系数的路面上的制动过程要求会分析。(前后轮的地面制动力和制动器制动力怎么变化)

从图中看,同步附着系数是ϕo=0.39;ϕ<ϕo前轮先抱死,ϕ>ϕo后轮先抱死,ϕ=ϕo前、后轮同时抱死。

第六章

汽车的操纵稳定性

1、轮胎的侧偏特性。

侧偏特性是指侧偏力、回正力矩与侧偏角的关系,它是研究汽车操纵稳定性的基础。

2、影响侧偏特性的因素。

轮胎尺寸、型式和结构参数:大尺寸、钢丝子午线;轮胎的扁平率:适当小;轮胎气压:适当高;垂直载荷:适当大;地面切向反作用力:FX 适当大,FY 适当小;路面干湿状态:越湿,最大侧偏力越小

3、稳态转向特性的五个表征参数。(会计算稳定性因数、会求汽车的特征车速或临界车速等) 转向半径、前后轮侧偏角之差、稳定性因数 K、特征车速与临界车速、静态储备系数

稳定性因数:

特征车速:临界车速:

第四篇:喷漆性能测试

6.4 喷漆性能测试(样品数量:每种颜色6套外壳)

试验条件:物理测试需要在注塑完成,产品放置72小时以后进行,化学测试则需6天以后。喷涂干燥 硬化后应在常温下放置48小时以后再进行试验。

试验方法:

1)把滤纸放于酸性(PH=2.6)溶液中充分浸透;

2)用胶带将浸有酸性溶液的滤纸分别粘在两套喷涂样品表面,确保滤纸与样品喷漆 表面充分接触,将样品放入试验箱。

3)测试时间以试验箱达到所需温湿度条件时开始计算。在24小时与48小时分别取 出一套样品,揭下滤纸,并放置2小时后,检查样品表面喷涂。

检验标准:样品表面无变色、起气泡、起皮、脱落、褪色以及其他与测试前状态不一致的现象。

6.4.5 镜面划伤测试

测试环境:室温(20~25° C);

测试目的:验证镜面耐硬物划伤性能的可靠性

样品数量:不少于2个

试验方法:将实验样品固定在划伤试验机上,接触部分为直径为1mm的碳化钨球,硬度为90.5~ 91.5,用载重(load)为500g的力在样品表面往复划伤50次,划线速度为3~4cm/秒,接触部分与被测面成90度角,对样品的X和Y轴两个轴向进行测试。每10次对镜面进行外观检查,并对镜面表面进行清洁。检验标准:镜面表面划伤宽度应不大于100μm(依靠目视分辨、参照缺陷限度样板)

6.4.6 紫外线照射测试

测试环境:50° C

测试目的:验证喷涂抗紫外线照射的可靠性

样品数量:不少于1套壳体

试验方法:在温度为50° C,紫外线为340W/mm2的光线下直射油漆表面48小时。

试验结束后 将手机外壳取出,在常温下冷却2小时后检查喷漆表面。

检验标准:印刷、电镀无褪色、变色、纹路、开裂、剥落以及与测试前不一致的现象。

6.4.7盐雾测试

测试环境:35° C

测试目的:测试样机抗盐雾腐蚀能力

试验方法:a. 溶液含量:5%的氯化钠溶液b. 将手机关机放在盐雾试验箱内,合上翻盖,样机用绳子悬挂起来,以免溶液喷洒 不均或有的表面喷不到。c. 样机需要立即被放入测试箱。实验周期是48个小时。实验过程中样机不得被中途 取出,如果急需取出测试,要严格记录测试时间,该实验需向后延迟相同时间。d. 取出样机,放置48小时进行常温干燥,对其进行外观检查。

检验标准:外观检查无异常:表面喷涂、丝印、电镀、装饰件、标牌等无脱落、起泡、腐蚀以及与测试前不一致的现象。

试验环境:温度20~25度,湿度65+/-20% 6.4.1 耐磨测试测试环境:室温(20~25° C);测试目的:喷涂/印刷等抗摩擦性能的可靠性 样品数量:不少于1套壳体

试验方法:将最终喷涂的手机外壳固定在RCA试验机上,用175g力队同一点进行摩擦试验。对于表面摩擦300cycles,侧面和侧棱摩擦150 Cycles。特殊形状的手机摩擦点的确定由测试工程师和设计工程师共同确定

检验标准:对于喷涂、电镀、IMD等,涂层不能脱落,不可露出底材质地;对于表面印刷类,印刷图案、字体不能出现缺损、不清晰现象。

6.4.2 附着力测试

测试环境:室温室温(20~25° C);高低温箱

测试目的:喷涂附着力测试

样品数量:不少于1套壳体

试验方法:选最终喷涂的手机外壳表面,使用百格刀刻出25个1mm2方格,划线应深及底材;使用毛刷将划线处的喷漆粉屑清除干净;再用3M610号胶带纸完全粘贴在方格面,1分钟后迅 速以90度的角度撕下胶带,检查被测区域表面。

检验标准:有涂层脱落的方格数应不大于总方格数的3%;单个方格涂层脱落面积不大于单个方格总面积的50%。

6.4.3 硬度测试

测试环境:室温(20~25° C);

测试目的:表面喷涂硬度的可靠性

样品数量:不少于1套壳体

试验方法:将铅笔芯削成圆柱形并在400目砂纸上磨平后,装在铅笔硬度测试仪上,以500g 的

力度,铅笔与水平面的夹角为45度,在样品表面从不同方向划出30~50mm长的线条3~5条。对于喷漆表面的硬度标准为2H(三菱牌),500g的载荷;对于Lens表面的硬度标准为3H(三菱牌),500g的载荷;每划完一次都应将铅笔磨平。

检验标准:用橡皮擦去铅笔痕迹,目视喷漆、印刷、电镀、Lens表面无划痕。

6.4.4 汗液测试

测试环境:60° C,95%RH

测试目的:表面抗汗液腐蚀的能力

样机数量:不少于2套

注:部品由于使用场所、材质、色泽等有特殊要求时可以考虑采用其他标准。

7.2 整机状态下的可靠性试验

温度冲击测试(Thermal shock)

测试环境:低温箱:-40° C ;高温箱:+80° C

试验方法:将手机设置成关机状态放置于高温箱内持续30分钟后,在15秒内迅速移入低温箱并持续30分钟,为一个循环,共循环27次。实验结束将样机从温度冲击箱中取出,并在 室温下恢复2小时,进行外观、机械和电性能检查。

试验标准:手机各项功能正常;外观检验:壳体表面喷涂、丝印、电镀无气泡、褶皱、裂纹、起皮、 脱落;装饰件无翘起、脱落以及其他与测试前状态不一致的现象。 跌落试验(Drop Test)测试条件:1.5m高度,20mm大理石板。

试验方法:将手机处于开机状态,进行6个面的自由跌落实验,每个面的跌落次数为1次,跌 落之后进行外观、机械和电性能检查。对于翻盖手机,在跌翻盖一面时,应将一半样品合上翻盖跌,一半样品打开翻盖跌。

试验标准:手机各项功能正常;

外观检查:壳体表面无明显掉漆,无裂纹、破损、冲击痕以 及其他与测试前不一致的现象。振动试验(Vibration test)

测试条件:振幅:0.38mm;振频:10~30Hz;振幅:0.19mm;振频:30~55Hz;

试验方法:将手机开机放入振动箱。X、Y、Z三个轴向分别振动1个小时之后取出,然 后进行外观、机械和电性能检查。

试验标准:振动前5分钟内手机内存和设置没有丢失现象,后55分钟可以出现关机现象,手机各项功能正常,尤其是显示和SPL,外壳无严重损伤(如掉漆),内部元件无脱落。

湿热试验(Humidity test)

测试环境:60oC,95%RH

试验方法:将手机处于关机状态,放入温度实验箱内的架子上,持续60个小时之后 取出,恢复2小时,然后进行外观、机械和电性能检查。

试验标准:手机各项功能正常;外观检查:外观测试无异常(壳体、Lens表面无裂纹、气泡;Lens 无被腐蚀现象;金属、电镀壳体或装饰件无变色、腐蚀,以及无其他与测试前不一致的现象)。

高温/低温参数测试(Parametric Test)

测试环境:-10oC/55oC

试验方法:将手机处于开机状态,放入温度实验箱内的架子上。持续2个小时之后(与 环境温度平衡),然后在此环境下进行电性能检查,检查项目见附表1。

试验标准:手机电性能指标满足要求,功能正常,表面喷涂、电镀无裂纹等。高温高湿参数测试(Parametric Test)

测试环境:+45oC,95%RH

试验方法:将手机处于开机状态,放入温度实验箱内的架子上。持续48个小时之 后,然后在此环境下进行电性能检查。

试验标准:手机电性能指标满足要求,功能正常;结构检查:装饰件、Logo及机壳 等无脱落,壳体卡钩无脱出、断裂,外壳无变形;

外观检查:壳体表面无明显掉漆,无裂纹、破损、冲击痕以及其他与测试前状态不一致现象。高温/低温功能测试(Functional test)

测试环境:-40oC/+70oC

第五篇:LoadRunner性能测试流程及测试标准

loadRunner性能测试 1. 什么是性能测试

软件的功能:对一个软件基本功能能够实现,比如:银行卡能够正常转账成功(用户数=1) 软件的性能:要求软件性能更好,一般关注多用户的使用情况,软件的响应时间。 响应时间例子:登录一个软件,点击“登录”按钮时,多久能够显示成功登录的页面。

性能问题: 1. 每秒平均浏览量:2200次/秒

浏览量(PV, Page View):即页面访问量或点击量,用户每次刷新即被计算一次 购票申请:20万张/秒以上

自身设计浏览量100万次/小时 浏览量280次/秒

2. 响应时间的358原则:

3秒之内,客户比较满意 5秒之内,客户可以接受 8秒之内,客户可以忍受 大于8秒,无法忍受

3. 一般进行性能测试之前,要对系统尤其是数据库进行备份

负载测试是一种

正常 的测试(在正常测试的指标下测出最大的负载量)

指标或者某种资源达到某种指标,比如响应时间达到多少,比如CPU负载100%等

压力测试和负载测试二者的区别:

负载测试强调系统在正常工作情况下的性能指标

压力测试的目的是发现在什么条件下系统的性能变得不可接受,发现应用程序性能下降的拐点

影响系统性能的主要因素

(1) 硬件: CPU,内存,硬盘,网卡及其他网络设备【最好解决】 (2) 操作系统 (3) 网络

(4) 中间件(又叫应用服务器),web服务器 (5) 数据库服务器 (6) 客户端

(7) 变成语言,程序实现方式,算法【最难解决】

客户端=服务端(Web服务器)=应用服务器=数据库服务器

性能测试主要关心两个部分:web服务器和应用服务器。 客户端向服务器发送请求

服务器端向客户端返回应答(响应response)

性能测试的常用术语: 并发(Concurrency):所有用户在同一时刻(一个时间点,可以精确到毫秒级)做同一件事情或操作,一般针对同一类型的业务

例如:在信用卡审批业务中,一定数目的用户在同一时刻对已经完成的审批业务进行提交 做并发的测试就称为“并发测试”。【发测试不包含睡眠时间】 在线(OnLine):多用户在一段时间内对系统执行操作【包含睡眠时间】

并发测试与在线测试对系统的压力不同,一般来讲并发测试的压力和在线测试的压力的比值是10:1 。例如:200用户并发测试相当于2000用户在线测试。

并发测试一定是多用户。

请求响应时间

指从客户端发送一个请求开始计时,到客户端接到从服务器端返回的响应结果计时结束。 在一些工具中,请求响应时间通常被称为TTLB 即“Time to Last Byte”,意思是从开始发送第一个请求开始,到客户端收到最后一个字节的响应为止所耗费的时间。 请求响应时间的单位一般为“秒”或者“毫秒”

再复杂的响应时间都可以分为3段:请求的响应时间=客户端的响应时间+网络的响应时间+服务器的响应时间

一般测试放在内网里,带宽,网络不会成为瓶颈。只用分析客户端的响应问题和服务器的响应问题。一般客户端的响应很少有问题,一般只分析服务器响应问题即可。

事务响应时间:用户完成某个具体事务(如跨行取款事务)所需要的时间。 事务可能包含多个请求。比如点击“登录”按钮,到登录进页面。

事务的响应时间和请求响应时间的区别?

一个事务包含一个或多个请求(一般,一个请求指的是一个http请求)。

点击率:

每秒钟用户向web服务器提交的http请求数。 ---点击率越大,对服务器的压力也越大

---注意:点击不是指鼠标的一次“单击”操作。因为在一次“单击”操作中,客户端可能向服务器发出多个HTTP请求(比如跳转页面需要更新展示图片等)。

点击量的计算:假如单击“登录”按钮,请求一个页面登录后的欢迎页面中包含3个图片,则每个图片都需要重新发送一个http请求,所以,单击鼠标一次产生的http请求总数为4=1(登录请求)+3(图片请求) 点击率=点击量/时间

吞吐量:

用户在任意给定一秒从服务器端获得的全部数据量,单位是字节 吞吐量/传输时间=吞吐率

吞吐率很重要,反应了服务器的处理速度和性能,也是衡量网络性能的重要指标。 TPS(事务数/秒)

在性能测试过程中,要监控服务器系统的各项资源情况,比如:CPU,内存,磁盘及网络等情况。

吞吐率和点击率的区别:

吞吐率:指服务器每秒处理的数据量。反应了服务器的处理能力,吞吐率越大,服务器处理能力越强。

点击率:客户端每秒向服务器发送请求的数量。反应了服务器的压力,点击率越大,服务器的压力越大

吞吐率受点击率影响,也受服务器性能的限制。

完美的吞吐率是:在带宽充足的情况下,吞吐率随着点击率的增加而增加。

资源利用率

指对不同的资源系统的使用程度,包括web服务器,操作系统,数据库服务器,网络,硬件,是测试和分析瓶颈的主要参数

-如:服务器cpu利用率,磁盘利用率等

它是分析系统性能指标进而改善性能的主要依据,因此是web性能测试工作的重点。

性能测试的策略(即方法):重点测试方法:基准测试,并发测试,综合场景测试,疲劳强度测试,极限测试,递增测试

基准测试:一般做的是单用户测试(Benchmark Testing)

----指测试环境确定以后,对业务模型中涉及的重要业务做单独的测试。

----目的是获取单用户执行时的各项性能指标,为多用户并发和综合场景等性能测试分析提供参考依据。

并发测试:就是多用户的并发测试某个测试点。并发测试对系统要求比较严格,因为要模拟一个瞬间压力。并且要忽略系统的睡眠时间(思考时间)。

递增测试:

A)指每隔一定时间段(如5秒,10秒)加载不同数目的虚拟用户执行测试点操作,对测试点进行递增用户压力加载测试。原因:所有用户(5000)共同登陆可能会导致系统压力过大,进而影响到后面关心的测试点(buy)的性能,导致关心的测试点结果不准确,所以采取递增,分散一下前面的压力,使系统关心的测试点能够正常的测试。(这里是递增着登陆) B)测试一个测试点(如:购票),先测试单用户,再测试20用户,40用户等情况,有利于分析,也称为递增测试。(这里是递增着全套测试)

综合场景测试【重难点】:

通过对系统结构和功能的分析,对用户的分布和使用频率的分析,来构造系统综合场景的测试模型,模拟不同用户执行不同操作。

如10%的用户执行浏览首页,50%的用户执行查询订单,40%的用户执行订购机票,最大限度地模拟系统的真实场景,使用户预知系统投入使用后的性能水平。 没特别指明的话,一般都是指在线的。

Login不适合放在综合场景中运行。

综合场景:号称能最真实的模拟实际的生产环境。如测试时间为50分钟,则综合场景中的每个脚本都是在循环执行。所以综合场景中不宜加入login测试点,因为不能真实模拟实际的生产环境。

疲劳强度测试:是一种特殊的强度测试(压力测试)。指在一定的压力下(如:相同的用户数)长时间(疲劳)对系统进行测试,并监控服务器的各项资源情况。如:7x24小时,24小时(如移动电信银行的服务器)。 测试其服务器的稳定性:指长时间的运行过程中,系统的各项资源及时间等指标表现是否正常。

内存泄露:系统的服务器内存都被占用,而没有释放。导致系统没有可用内存。

内存泄露测试:通过LR监控时查看具体的几项指标,或者通过其它的专门内存泄露检测工具测试。

数据容量测试:查看系统服务器能否实现大数量下使用情况,系统的各项资源表现情况。如:200G,或者3个T。

极限测试:也叫“摸高测试”,测试系统的极限,如系统最大能承受的用户数,吞吐量等。

虚拟用户:Virtual Users 控制台:Controller 分析工具:Analysis

LoadRunner的三大组件:

虚拟用户脚本生成器(Virtual User Generator)---Creat/Edit Scripts【Generator:生成器】 压力调度控制台(Controller)---Run Load Tests 压力结果分析器(Analysis)---Analyze Test Results

QTP(功能自动化的工具)和LR(性能测试工具)的区别: QTP关心的是功能方面,LR关心的是性能方面。

QTP关心界面的控件属性(对象,对象的属性,属性值等)等,LR关心的是客户端和服务器之间往来的数据包。

LR的工作原理:

录制时,LR记录客户端和服务器二者之间的所有对话(数据包),形成脚本,回放时,LR模拟真实的客户端,向服务器发送请求。并验证服务器的响应。

LR是怎么记录下数据包的: (1)基于局域网的广播原理。【这种用的很少】 (2)基于一种嗅探原理sniffer。【目前在用的方式】

虚拟用户脚本生成器:是用来生成脚本的

LR的常用术语:

虚拟用户(Virtual User 【简称VU】):在场景中,loadRUnner用VU代替实际用户。Vuser模拟实际用户执行操作。一个场景可以包含几十,几百甚至几千个Vuser。(每个虚拟用户是一个进程或者线程,一般用的是线程)

Vuser脚本(Virtual User Script):用于描述VU在场景中执行的操作。(记录的客户端发送的请求。)

事物(Transaction):为度量服务器的性能,需要定义事务。事务表示要度量的最终用户业务流程或操作。

为何要定义事务:因为脚本中将关心的操作(如购票)定义为一个事务,则结果报告中(analysis)就会返回事务的响应时间。不关心的操作就不需要定义成事务。

场景(Scenario):场景是一种文件,用于根据性能要求定义在每一个测试回话运行期间发生的事件。模拟真实环境中,用户运行的情况。【将脚本放到控制台去运行(包括设置各种参数)】

综合场景:将不同的脚本,至少3个放到控制台去共同运行一段时间。具体定义见PPT。

测试注意:

----设置IE(清楚浏览器缓存):进入工具Internet选项常规设置每次访问此页面时检查

----LR中修改参数:进入ControllerRunTime SettingTnternet Protocol Proxy,选择No Proxy。

Jojo /bean

LR基本测试流程:

制定性能测试计划(部分)创建测试脚本编译,运行测试脚本【VUG】创建场景运行,监控场景,收集数据【Con 控制台】生成测试报告,分析测试结果【analysis】

最好用英文命名

小技巧: 弹出结果

日志文件

Transaction 事务

将一个操作设置成事务的目的:获取操作的响应时间(在analysis报告里)

在带宽充足的情况下,完美的吞吐率应该随着点击率的升高而升高。反过来,当服务器压力过大服务器处理能力不足时,吞吐率会随着点击率的增高而保持恒定或者降低,那么点击率也会受到相应影响而变慢。

即吞吐率和点击率是相互影响的。

脚本生成器可以模拟1个用户,多用户一定要用控制台来实现。(控制台就是来生成管理多用户的。)

基准测试是单用户测试,可用脚本生成器(生成的调试结果是没有响应时间的),但是也还是需要控制台。因为结果要写到报告里。(结果生成器analysis得出单用户测试的结果,比如响应时间等等)

疲劳测试和综合场景测试的区别就是时间的长短,疲劳测试运行的时间会长一些。

只要业务逻辑不变(操作不变),则不需要重新调试脚本,回归测试中可以直接利用原来脚本。

调试脚本时请频繁保存副本,因为LR回退键效果不是很好。

脚本必须现在脚本生成器进行运行,执行通过将脚本放入控制台,在控制台执行完毕后生成结果报告

总的吞吐率

服务水平等级协议

报告中事务响应时间的标准方差值:越趋近于0,说明系统越稳定(每一项事务的响应时间非常相似)

90percent:表示90%的事务都可以在该响应时间内完成。代表一个大多数情况。

HTTP状态码: 200表示成功

4XX表示客户端的失败 5XX表示服务器的失败

当场景设定的duration时间结束时,所有的虚拟用户需要运行完当前的transaction以及action再结束。

基准测试执行方法

单用户执行脚本操作1分钟 单用户执行脚本操作5次

B/S脚本必须要有登陆,有退出(否则假退出其实链接还没断开,会影响测试结果)

Replay log:脚本执行日志 Recording log:录制时的日志

Generation log:所有客户端和服务器二者之间的对话

快捷键:

ctrl+G

Go to Line 跳到某一行

跳到对应的日志

基准测试:单用户测试。 3.4 1.7 1.8 1.6 为了规避第一次测试的不准确性,则有两种测试方法: (1) 设置循环5次(N次)

Run-time Setting 循环5次,或者持续运行1分钟。(取平均值) Run logic:循环次数----设置为5 Pacing:两次循环之间的步长值(时间间隔)----随机值2-4秒 Think time:ignore(忽略思考时间),因为对结果没什么影响

Pacing:步长值,为了更真实的模拟环境(断开连接,释放资源),一般选随机值

基准测试单用户对服务器压力不大,一般可以ignore think time。

监控资源:监控服务器的资源

客户端的资源:自己随时把握一下,不要成为测试的瓶颈即可。

(2)持续运行1分钟

当duration和run_time setting中循环(run logic)都有值的话,duration的优先级比较高【二者循环的位置都为action】 Run logic:循环次数----设置为1

Pacing:步长值,为了更真实的模拟环境(断开连接,释放资源),一般选随机值 基准测试单用户对服务器压力不大,一般可以ignore think time。 监控资源:监控服务器的资源

客户端的资源:自己随时把握一下,不要成为测试的瓶颈即可。

并发测试执行方法: 脚本添加集合点

在控制台设置并发策略

注意:refresh中有两个选择,看情况使用。

脚本和控制台的run-time setting都设置的话,哪个优先级高?控制台的优先级高! 脚本中的run-time setting 何时使用?运行脚本的时候使用

并发测试有两个步骤:

1) 脚本中加并发点(即集合点)

2) 在控制台设置:5个虚拟用户(VU),可以设置递增(不设也可),设置并发策略。

Run-time Setting ---忽略休息时间,因为需要瞬间压力。

上一篇:品质检查工作计划下一篇:青奥会志愿者招募