风力发电机组并网技术

2024-04-19

风力发电机组并网技术(精选6篇)

篇1:风力发电机组并网技术

风力发电机组并网技术

20世纪90年代,L.Xu, Bhowink, Machromoum, R.Pena等学者对双馈电机在变速恒频风力发电系统中的应用进行了理论、仿真分析和试验研究,为双馈电机在风力发电系统中的应用打下了理论基础。同时,电力电子技术和计算机技术的高速发展,使得采用电力电子元件(IGBT等)和脉宽调制(PWM)控制的变流技术在双馈电机控制系统中得到了应用,这大大促进了双馈电机控制技术在风电系统中的应用。八十年代以后,功率半导体器件发展的主要方向是高频化、大功率、低损耗和良好的可控性,并在交流调速领域内得到广泛应用,使其控制性能可以和直流电机媲美。九十年代微机控制技术的发展,加速了双馈电机在工业领域的应用步伐。近十年来是双馈电机最重要的发展阶段,变速恒频双馈风力发电机组已由基本控制技术向优化控制策略方向发展。其励磁控制系统所用变流装置主要有交交变流器和交直交变流器两种结构形式:(1)交交变流器的特点是容量大,但是输出电压谐波多,输入侧功率因数低,使用功率元件数量较多。(2)采用全控电力电子器件的交直交变流器可以有效克服交交变流器的缺点,而且易于控制策略的实现和功率双向流动,非常适用于变速恒频双馈风力发电系统的励磁控制。

为了改善发电系统的性能,国内外学者对变速恒频双馈发电机组的励磁控制策略进行了较深入的研究,主要为基于各种定向方式的矢量控制策略和直接转矩控制策略。我国科研机构从上世纪九十年代开始了对变速恒频双馈风力发电系统控制技术的研究,但大多数研究还仅限于实验室,只有部分研究成果在中,在小型风力发电机的励磁控制系统中得到应用。因此,加快双馈机组的励磁控制技术的研究进度对提高我国风电机组自主化进程具有重要意义。

除了上面提到的双馈风力发电系统励磁控制技术研究以外,变速恒频双馈风力发电系统还有许多研究热点包括:

(I)风力发电系统的软并网软解列研究

软并网和软解列是目前风力发电系统的一个重要部分。一般的,当电网容量比发电机的容量大得多的时候,可以不考虑发电机并网的冲击电流,鉴于目前并网运行的发电机组已经发展到兆瓦级水平,所以必须要限制发电机在并网和解列时候的冲击电流,做到对电网无冲击或者冲击最小。

(2)无速度传感器技术在双馈异步风力发电系统应用的研究

近年,双馈电机的无位置以及无速度传感器控制成了风力发电领域的一个重要研究方向,在双馈异步风力发电系统中需要知道电机转速以及位置信息,但是速度以及位置传感器的采用提高了成本并且带来了一些不便。理论上可以通过电机的电压和电流实时计算出电机的转速,从而实现无速度传感器控制。如果采用无传感器控就可以使发电机和逆变器之间连线消除,降低了系统成本,增强了控制系统的抗干扰性和可靠性。

(3)电网故障状态下风力发电系统不间断运行等方面

并网型双馈风力发电机系统的定子绕组连接电网上,在运行过程中,各种原因引起的电网电压波动、跌落甚至短路故障会影响发电机的不间断运行。电网发生突然跌落时,发电机将产生较高的瞬时电磁转矩和电磁功率,可能造成发电机系统的机械损坏或热损坏,所以三相电网电压突然跌落时的系统持续运行控制策略的研究是目前研究焦点问题之一。

此外,双馈风力发电系统的频率稳定以及无功极限方面也是目前研究的热点。

在大型风力发电系统运行过程中,经常需要把风力发电机组接入电力系统并列运行。发电机并网是风力发电系统正常运行的“起点”,也是整个风力发电系统能够良好运行的前提。其主要要求是限制发电机在并网时的瞬变电流,避免对电网造成过大的冲击,并网过程是否平稳直接关系到含风电电网的稳定性和发电机的安全性。当电网的容量比发电机的容量大的多(大于25倍)的时候,发电机并网时的冲击电流可以不考虑。但风力发电机组的单机容量越来越大,目前己经发展到兆瓦级水平,机组并网对电网的冲击已经不能忽视。比较严重的后果不但会引起电网电压的大幅下降,而且还会对发电机组各部件造成损害;而且,长时间的并网冲击,甚至还会造成电力系统的解列以及威胁其它发电机组的正常运行。

因此必须通过合适的发电机并网方式来抑制并网冲击电流。

目前,实现发电机并网的方式主要有两种,一种被称为准同期方式,另一种被称为自同期方式。准同期方式是将已经励磁的发电机在达到同期条件后并入电网;自同期方式则是将没有被励磁的发电机在达到额定转速时并入电网,随即给发电机加上励磁,接着转子被拉入同步。自同期方式由于当发电机合闸时,冲击电流较大,母线电压跌落较多而很少采用。因此,现在发电机的主要并网方式为准同期方式,它能控制发电机快速满足准同期条件,从而实现准确、安全并网。

异步风力发电机组并网

异步发电机投入运行时,由于靠转差率来调整负荷,其输出的功率与转速近乎成线性关系,因此对机组的调速要求不像同步发电机那么严格精确,不需要同步设备和整步操作,只要转速接近同步转速时就可并网。但异步发电机的并网也存在一些问题。例如直接并网时会产生过大的冲击电流(约为异步发电机额定电流的4~7倍),并使电网电压瞬时下降。随着风力发电机组电机容量的不断增大,这种冲击电流对发电机自身部件的安全以及对电网的影响也愈加严重。过大的冲击电流,有可能使发电机与电网连接的主回路中自动开关断开;而电网电压的较大幅度下降;则可能会使低压保护动作,从而导致异步发电机根本不能并网。另外,异步发电机还存在着本身不能输出无功功率、需要无功补偿、过高的系统电压会造成发电机磁路饱和等问题。

目前,国内外采用异步发电机的风力发电机组并网方式主要有以下几种。

(1)直接并网方式

这种并网方法要求并网时发电机的相序与电网的相序相同,当风力机驱动的异步发电机转速接近同步转速(90%一100%)时即可完成自动并网,见图(2-6)所示,自动并网的信号由测速装置给出,然后通过自动空气开关合闸完成并网过程。这种并网方式比同步发电机的准同步并网简单,但并网瞬间存在三相短路现象,并网冲击电流达到4~5倍额定电流,会引起电力系统电压的瞬时下降。这种并网方式只适合用于发电机组容量较小或与大电网相并的场合。

(2)准同期并网方式

与同步发电机准同步并网方式相同,在转速接近同步转速时,先用电容励磁,建立额定电压,然后对已励磁建立的发电机电压和频率进行调节和校正,使其与系统同步。当发电机的电压、频率、相位与系统一致时,将发电机投入电网运行,见图(2-7)所示。采用这种方式,若按传统的步骤经整步到同步并网,则仍须要高精度的调速器和整步、同期设备,不仅要增加机组的造价,而且从整步达到准同步并网所花费的时间很长,这是我们所不希望的。该并网方式合闸瞬间尽管冲击电流很小,但必须控制在最大允许的转矩范围内运行,以免造成网上飞车。

(3)降压并网方式

降压并网是在异步发电机和电网之间串接电阻或电抗器或者接入自祸变压器,以便达到降低并网合闸瞬间冲击电流幅值及电网电压下降的幅度。因为电阻、电抗器等元件要消耗功率,在发电机进入稳态运行后必须将其迅速切除。显然这种并网方法的经济性较差。

(4)晶闸管软并网方式

这种并网方式是在异步发电机定子与电网之间通过每相串入一只双向晶闸管连接起来,来对发电机的输入电压进行调节。双向晶闸管的两端与并网自动开关K2的动合触头并联,如图2-9所示。

接入双向晶闸管的目的是将发电机并网瞬间的冲击电流控制在允许的限度内。图(2-9)示出软并网装置的原理。通过采集US和IS的幅值和相位,对晶闸管的导通角进行控制。具体的并网过程是:当风力发电机组接收到由控制系统微处理机发出的启动命令后,先检查发电机的相序与电网的相序是否一致,若相序正确,则发出松闸命令,风力发电机组开始启动;当发电机转速接近同步转速时(约为99 %-100%同步转速),双向晶闸管的控制角同时由180度到0度逐渐同步打开,与此同时,双向晶闸管的导通角则同时由0度到180度逐渐增大,此时并网自动开关K2未动作,动合触点未闭合,异步发电机即通过晶闸管平稳地并入电网,随着发电机转速的继续升高,电机的转差率趋于零,当转差率为零时,双向晶闸管已全部导通,并网自动开关K2动作,短接双向晶闸管,异步发电机的输出电流将不再经双向晶闸管,而是通过已闭合的自动开关K2流入电网。在发电机并网后,应立即在发电机端并入补偿电容,将发电机的功率因数(cos }p)提高到0.95以上。由于风速变化的随机性,在达到额定功率前,发电机的输出功率大小是随机变化的,因此对补偿电容的投入与切除也需要进行控制,一般是在控制系统中设有几组容量不同的补偿电容,根据输出无功功率的变化,控制补偿电容的分段投入或切除。这种并网方法的特点是通过控制晶闸管的导通角,来连续调节加在负载上的电压波形,进而改变负载电压的有效值。目前,采用晶闸管软切入装置((SOFT CUT-IN)已成为大型异步风力发电机组中不可缺少的组成部分,用于限制发电机并网以及大小电机切换时的瞬态冲击电流,以免对电网造成过大的冲击。

晶闸管软并网技术虽然是目前一种较为先进的并网方法,但它也对晶闸管器件以及与之相关的晶闸管触发电路提出了严格的要求,即晶闸管器件的特性要一致、稳定以及触发电路可靠,只有发电机主回路中的每相的双向晶闸管特性一致,并且控制极触发电压、触发电流一致,全开通后压降相同,才能保证可控硅导通角在0度到180度范围内同步逐渐增大,才能保证发电机三相电流平衡,否则会对发电机

不利。

适合交流励磁双馈风力发电机组的并网技术

目前,适合交流励磁双馈风力发电机组的并网方式主要是基于定子磁链定向矢量控制的准同期并网控制技术,包括空载并网方式,独立负载并网方式,以及孤岛并网方式。另外,对于垂直轴型的双馈机组,由于不能自动起动,所以必须采用“电动式”并网方式。下面对各种并网方式的实现原理分别给予了简要介绍。

(1)空载并网技术

所谓空载并网就是并网前双馈发电机空载,定子电流为零,提取电网的电压信息(幅值、频率、相位)作为依据提供给双馈发电机的控制系统,通过引入定子磁链定向技术对发电机的输出电压进行调节,使建立的双馈发电机定子空载电压与电网电压的频率、相位和幅值一致。当满足并网条件时进行并网操作,并网成功后控制策略从并网控制切换到发电控制。如图(2-10)所示。

(2)独立负载并网技术

独立负载并网技术的基本思路为:并网前双馈电机带负载运行(如电阻性负载),根据电网信息和定子电压、电流对双馈电机和负载的值进行控制,在满足并网条件时进行并网。独立负载并网方式的特点是并网前双馈电机已经带有独立负载,定子有电流,因此并网控制所需要的信息不仅取自于电网侧,同时还取自于双馈电机定子侧。

负载并网方式发电机具有一定的能量调节作用,可与风力机配合实现转速的控制,降低了对风力机调速能力的要求,但控制较为复杂。

(3)孤岛并网方式

孤岛并网控制方案可分为3个阶段。第一阶段为励磁阶段,见图(2-12)所示,从电网侧引入一路预充电回路接交—直—交变流器的直流侧。预充电回路由开关K1、预充电变压器和直流充电器构成。

当风机转速达到一定转速要求后,K1闭合,直流充电器通过预充电变压器给交—直—交变流器的直流侧充电。充电结束后,电机侧变流器开始工作,供给双馈电机转子侧励磁电流。此时,控制双馈电机定子侧电压逐渐上升,直至输出电压达到额定值,励磁阶段结束。

第二阶段为孤岛运行阶段。首先将Kl

断开,然后启动网侧变流器,使之开始升压运行,将直流侧

升压到所需值。此时,能量在网侧变流器,电机侧变流器以及双馈电机之间流动,它们共同组成一个孤岛运行方式。

第三阶段为并网阶段。在孤岛运行阶段,定子侧电压的幅值、频率和相位都与电网侧相同。此时闭合开关K2,电机与电网之间可以实现无冲击并网。并网后,可通过调节风机的桨距角来增加风力机输入能量,从而达到发电的目的。

(4)“由动式”并网方式

前面介绍的几种并网方式都是针对具有自起动能力的水平轴双馈风力发电机组的准同期并网方式,对于垂直轴型的双馈机组(又称达里厄型风力机)由于不具备自启动能力,风力发电机组在静止状态下的起动可由双馈电机运行于电动机工况来实现。

如图(2-13)所示,为实现系统起动在转子绕组与转子侧变频器之间安装一个单刀双掷开关K3,在进行并网操作时,首先操作K3将双馈发电机转子经电阻短路,然后闭合K1连接电网与定子绕组。在电网电压作用下双馈电机将以感应电动机转子串电阻方式逐渐起动。通过调节转子串电阻的大小,可以提高起动转矩减小起动电流,从而缓解机组起动过程的暂态冲击。当双馈感应发电机转速逐渐上升并接近同步转速时,转子电流将下降到零。在此条件下,操作K3断开串联电阻后将转子绕组与转子侧变频器相连接,同时触发转子侧变频器投入励磁。最后在成功投入励磁后,调节励磁使双馈发电机迅速进入定子功率或转速控制状态,完成机组起动过程。

这种并网方式实现方法简单,通过适当的顺序控制就能够实现不具备自起动能力的双馈发电机组的起动与并网的需要,如果电机转子侧安装有“CrowBarProtection”保护装置,则通过控制器投切“CrowBar Protection”就可以实现系统的起动与准同期并网。

空载并网方式并网前发电机不带负载,不参与能量和转速的控制,所以为了防止在并网前发电机的能量失衡而引起的转速失控,应由原动机来控制发电机组的转速。独立负载并网方式并网前接有负载,发电机参与原动机的能量控制,表现在一方面改变发电机的负载,调节发电机的能量输出,另一方面在负载一定的情况下,改变发电机转速的同时,改变能量在电机内部的分配关系。前一种作用实现了发电机能量的粗调,后一种实现了发电机能量的细调。可以看出,空载并网方式需要原动机具有足够的调速能力,对原动机的要求较高;独立负载并网方式,发电机具有一定的能量调节作用,可与原动机配合实现转速的控制,降低了对原动机调速能力的要求,但控制复杂,需要进行电压补偿和检测更多的电压、电流量。孤岛并网方式是一种近年来才提出的比较新颖的一种并网方式,在并网前形成能量回路,转子变换器的能量输入由定子提供,降低了并网时的能量损耗。

其中空载并网方式由于具有控制策略简单,控制效果好,而在实际机组中广泛采用,而负载并网方式、孤岛并网方式以及“电动式”并网方式由于存在控制系统较为复杂,系统稳定性差等缺点目前仍然停留在理论探索阶段。

双馈发电机并网控制与功率控制的切换

双馈风力发电系统并网控制的目的是对发电机的输出电压进行调节,使建立的DFIG的定子空载电压与电网电压的幅值、频率、和相位保持一致,当满足并网条件时进行并网操作,并网成功后进行最大风能追踪控制

.并网成功后一方面变桨距系统将桨叶节距角置于0以获得最佳风能利用系数,与此同时转子励磁系统开始进行最大功率点跟踪(Maximum Power pointTracking,MPPT)控制,以捕获最大风能。并网切换前后控制策略有较大差异,如果直接切换,则控制系统重新从零开始调节,必然引起转子电压的突变,从而造成并网瞬间系统产生振荡,这种振荡可能短时间内使系统输出有很大的偏差,致使控制量超过系统可能的最大允许范围,容易造成发电机损坏,而这在实际的并网过程中是十分不利的。为此,要达到发电机顺利、安全并网的目的还必须实现控制策略的无扰切换,使转子输出电压平稳的过渡到新的稳定状态。

双馈发电机的解列控制

基于双馈电机的变速恒频风力发电系统,在风速达到最低启动风速(切入风速)后开始进行并网控制使空载定子电压跟随电网电压,风电机组平稳的并入电网,运行发电。在风力机并入电网后会根据风速大小的不同实施不同的控制策略,包括MPPT控制、恒转速控制及恒功率控制。当高于停机风速(切出风速)时,便会将风机从电网中切出,即解列控制。解列控制的要求是在断网瞬间定子电流为零。由于在断网前双馈电机实施恒功率控制,所以在解列控制中一方面要通过变桨距系统将桨叶节距角刀调至90,即顺桨状态,以减少风轮吸收的机械能降低转子的转速,另一方面通过转子励磁系统控制转子电流的转矩分量和励磁分量逐渐减小到零,从而使得双馈电机的定子电流逐渐变化到零,最后在零电流状态下与电网脱开,完成软切出过程。oo

篇2:风力发电机组并网技术

摘要:本文综合了几种常用风力发电机的并网控制技术,分析比较了它们各自应用于风力发电上的优缺点,并指出风力发电技术今后的发展趋势为:无刷双馈发电机将在变速恒频风力发电系统中得到广泛应用,最后对在鄱阳湖风力发电机组中应用无刷双馈发电机的具体案例进行了分析。

关键词:风力发电并网技术无刷双馈电机

一.引言

近年来,全球化能源危机日趋严重,资源短缺和环境恶化,使各国开始重视开发和利用可再生、无污染的能源。风能,是当今可再生的、资源丰富的清洁能源。由于电力电子技术的飞速发展和广泛应用,使许多新的风力发电系统技术不断提出,如异步发电机、同步发电机、磁阻电机等,但由于这些系统成本比较高,在增加风能捕获能力的同时,要求系统增加更多成本,是的额外的捕获风能变得意义不大。目前,交流励磁变速恒频发电技术在理论上是最优化的一种调节技术。此方法通过在双馈发机转自侧施加三相交流电进行励磁,来调节励磁电流的幅值、频率和相位,使定子侧输出恒频恒压。这样不但可以大大提高能量转换效率,还能实现有功和无功功率的解耦控制,提高电力系统的调节能力和稳定性。因此,运用该技术进行风力发电系统的并网控制,具有非常重要的意义。

二.风力发电机组的并网控制技术

1.同步发电机组的并网

在并网发电系统中普遍应用的是同步发电机。它在运行中,既能输出有功功率,又能提供无功功率,输出的电能质量高,已被电力系统广泛应用。不过,把它移植到风力发电机组使用时,效果却不够理想,这是因为风速随机变化,作用在转子上的转矩很不稳定,使得并网时其调速性能达不到期望的精度,使得并网比较难。图1为其常见的原理图。

图1 同步发电机并网结构图

2.异步发电机的并网

异步发电机投入运行时,由于靠转差率来调整负荷,因此对机组的调速精度要求不高,只要转速接近同步转速就可并网,而且并网后不会产生震荡和失步,运行非常稳定。同时也存在一些问题,如直接并网时产生的过大冲击电流造成电压大幅度下降,对系统安全运行构成威胁;它本身不发无功功率,需要无功补偿等。图2为其总体发电结构图。

图2 异步电机并网结构图

3.无刷双馈发电机的并网

无刷双馈电机(BDFM)作为一种新型电机,结构与运行机理异于传统电机。它的定子上有两套级数不同的绕组。一个为功率绕组,直接接电网;另一个为控制绕组,通过双向变频器接电网。其转子结构为笼型结构,无需电刷和滑环,但流过定子励磁绕组的功率仅为无刷双馈电机总功率的一小部分。采用无刷双馈发电机的控制方案后,不仅可实现变速恒频控制,降低变频器的容量,还可在矢量控制策略下实现有功和无功的灵活控制,起到无功补偿的作用。无刷双馈发电机取消了电刷和滑环,结构简单,坚固可靠,适用于风力发电的工作环境,保障了并网后风力发电机组的安全运行。输出侧直接接电网而不经过变频器,使得并网后的电能质量更好。图

3为无刷双馈电机风力发电系统的原理图。

图3无刷双馈电机风力发电系统的原理图

如上图所示,无刷双馈发电机的变速恒频控制,就是根据风力机转速的变化相应的控制转子励磁电流的频率,使无刷双馈发电机输出的电压频率与电网保持一致。传统的风力发电机组多采用异步发电机,并网时对电网的冲击大,而无刷双馈发电机可通过对转子励磁电流的控制,实现软并网,避免并网时发生电流冲击和电压波动。在并网前用电压传感器分别检测出电网和发电机功率绕组的频率、幅值、相位和相序,并通过双向变流器调节控制绕组的励磁电流,使功率绕组输出的电压与电网相应电压频率、幅值和相位一致,这就满足了自动并网运行。

三.无刷双馈发电机在鄱阳湖风力发电机组中的应用

1.无刷双馈发电机的发电系统原理图

图4无刷双馈发电机的发电系统原理图

由图4可知,整个发电系统由风机、齿轮箱、无刷双馈发电机、变换器及其控制构成。其中无刷双馈发电机和变换器是发电系统的主要部分。

2.变换器电路的结构

图5为变换器的结构图。

图5变换器电路拓扑结构

3.发电系统的网侧变换器

图6为网侧变换器的结构图。

图6 变换器的结构图

由图可知,变流器结构包括6个电力电子开关器件组成的逆变环节、输出滤波器和其它辅助控制环节。

4.无刷双馈电机调速系统的仿真

(1)仿真模型的建立

图7为假想的鄱阳湖风力发电机组调速系统的仿真模型。由该图可知,本系统是双闭环串级调速系统,它由速度调节器、电流调节器、触发电路、速度变换等部分组成,其中整流器和逆变器是主要电能转换部分。

图7 无刷双馈电机的调速系统仿真模型

其中子系统为变流器和电机部分的仿真图。结构如图8所示。

图8变流器及电机的仿真模型

(2)仿真结果

参数设置:假定给定转速n=1500r/min,转矩T=15N*m,电压u=220v交流电。仿真结果如图9所示。从上到下为转速n和转子电流i的波形。由图可知,在1s时进行了调速,使转速n下降,转子电流i基本保持不变。

图9 仿真结果

四.结论

篇3:并网型风力发电机组控制技术综述

但目前我国风电比例仅为总装机容量的0.4%, 风力发电设备出现产能过剩, 主要原因之一就是风电并网控制环节没有解决好。如何通过改善并网技术环节, 为电网提供高质量高可靠性的电能仍将是风电技术研究的热点。

相对于传统的恒速恒频风力发电系统, 变速恒频风力发电系统的优点突出。 (1) 风力机可以最大限度地捕获风能, 因而发电量较恒速恒频风力发电机大; (2) 转速运行范围较宽, 可以适应因风速变化而引起的风力机转速的变化, 减少机械部件的负荷或机械部件的数量; (3) 采用一定的控制策略可以灵活地调节系统的有功功率和无功功率; (4) 可以抑制电力谐波, 减小系统损耗, 提高系统效率。因而, 现阶段风电并网研究的重点主要集中在直驱型和双馈型两类变速恒频风力发电系统。

1 直驱型风力发电机组并网控制技术

采用永磁同步发电机的直驱风力发电系统无需电刷、滑环和齿轮箱, 因此减少了系统的维护费用并提高了系统的可靠性。从控制结构来看主要分为PWM整流控制及并网控制。

1.1 直驱型风力发电机组的输入P WM整流控制

对于PWM整流控制被动整流拓扑, 研究内容主要集中在升压斩波器的设计与控制方面。由于网侧变流器能够控制中间直流电压, 因此升压斩波器一般采用电流控制模式, 基本控制策略包括峰值电流控制和平均电流控制两类。为减小输入电压扰动对斩波器控制的影响, 文[2]研究了基于输入电压前馈的升压斩波器控制策略。在兆瓦级风电机组中, 为增加输出功率, 减小总电流纹波, 升压斩波器常采用多重交错并联结构。文[3]研究了交错并联升压斩波器控制策略, 文[4]则分别讨论了交错并联拓扑的电流纹波和主电路设计问题。对于主动整流拓扑, 研究内容主要集中在永磁同步电机的建模与控制方面。文[5]给出了同步旋转坐标系下永磁同步电机数学模型, 文[6]则分别讨论了永磁同步电机的矢量控制, 和直接转矩控制策略。同时, 研究人员针对永磁同步电机运行性能的改善方法, 提出了以端口功率因数最优、转矩电流最优、或效率最优等为目标的改进型控制策略。为提高风电机组可靠性, 实际风电机组多采用无速度传感器方案[8], 因此, 永磁同步电机的无速度传感器控制策略也成为了目前的研究热点之一, 但主要适合于中、高速运行, 且算法本身对电机参数敏感。

1.2 直驱型风力发电机组的并网控制

目前直驱型风力发电机组主要采用三相电源型PWM变流器 (VSR) 。VSR因其具有允许能量双向流动、网侧电流谐波小以及并网功率因数可控等优点, 被广泛应用于电机驱动、蓄电池管理和并网发电等场合。它的设计方法、数学模型和控制策略也成为相关领域的研究热点之一。

三相VSR的控制策略按照电流控制方式可分为“间接电流控制”和“直接电流控制”两种[8~9]。由于“间接电流控制”实际上控制的是变流器交流侧输出电压的幅值和相位, 不做电流反馈, 因此难以避免网侧电流动态响应慢、对系统参数变化敏感等缺点, 目前已逐步被“直接电流控制”所取代, “直接电流控制”具有快速的电流响应, 系统鲁棒性也较“间接电流控制”有了很大提高, 是目前主流的控制策略。随着研究的不断深入, “直接电流控制”被赋予了越来越丰富的内涵, 大体上可分为线性控制和非线性控制两类。线性控制包括PI调节控制、状态反馈控制、预测电流控制等;非线性控制包括滞环电流控制、模糊控制、神经网络控制等。以上控制算法还可以和电压、电流估算方法相结合, 形成三相VSR无电压、电流传感器控制策略, 进一步提高系统可靠性。

1.3双P WM控制———AC/DC/AC电压型变换器

基于双PWM变换器的永磁同步发电系统能够实现变速恒频发电运行, 并能实现并网有功功率和无功功率的独立控制, 因此发电效率高, 结构较为简单, 运行稳定性好。然而, 这类系统目前大都采用一个体积大、价格贵的电解电容作为中间直流环节, 以便整流器和逆变器彼此基本解耦并可独立控制。为减小这个电容, 诸多学者提出了一体化控制策略, 有通过测量或估计逆变器输入电流实现前馈补偿的一体化控制策略;也有采用线性反馈技术实现直流电压快速调节的一体化控制策略。文[10]在假定前级输入功率控制可以快速跟踪输出后级功率输出变化的基础上, 提出一种基于李亚普诺夫直接法的一体化瞬时功率控制策略, 在相同的开关频率下, 这种控制策略理论上可获得更高的直流电压闭环带宽。该策略依据李亚普诺夫直接法进行设计, 具有内在的渐近稳定性。

2 双馈型风力发电系统的并网控制技术

国内外学者对双馈风力发电机系统的模型及其运行特性进行了大量的研究和试验。文[11]详细介绍了双馈风力发电系统的模型, 转子回路中采用背靠背的PWM电压源换流器;采用了矢量控制技术, 不仅实现了有功功率和无功功率的独立控制, 也使发电机的转速可在较宽的范围内运行;研究最大功率跟踪策略, 风速变化时实现了最大风能捕捉;并通过一个7.5 k W的双馈风电系统的实验平台, 验证了双馈风电系统的优越特性。文献[12]通过采用空间矢量控制等不同的控制措施, 建立了双馈机组的模型, 并对双馈风电系统的运行特性进行了详细的研究。文献[13]针对双馈风力发电系统控制措施中的定向问题进行了讨论, 对采用定子磁链定向和采用电网磁链定向两种控制措施进行了比较研究。文献[14]探讨了PQ解耦控制下及保持恒功率输出的双馈机组的静态稳定性, 研究表明, 双馈机组具有广泛的静态稳定运行区域。

文献[15]建立了双馈机组的详细模型, 并分析了当电网发生短路故障时, 双馈风力发电机组的暂态过程。而且认为当故障不严重时, 转子电路的保护可不动作, 双馈风电系统的控制措施正常运行;等故障消除后, 系统有能力降低转速, 并使机端电压恢复到故障前水平。文[16]建立了双馈发电机的暂态模型, 并针对传统的控制方法提出了改进措施, 并仿真对比分析了此改进措施的有效性。

3 风力发电机组并网方式的比较

3.1 拓扑与元件数量比较

目前永磁同步直驱与双馈异步并网机组的主流控制方案都采用背靠背的双PWM全控拓扑结构, 分别用于主回路电能变换与励磁调节, 文[17]中提到了将矩阵式变流器引入到两种发电机组的并网控制中来, 它是一种不经过直流环节的电流变换器, 将一定电压和频率的交流电变换成不同电压和频率的交流电。矩阵式变流器只需一次变流, 且使用电网电压换相, 具有较高的变流效率, 在低频时的输出波形质量非常好, 因此常用于电机的变频调速系统中, 尤其满足作为双馈异步发电机低频励磁电源的要求, 但该方法控制较为复杂, 可控器件要求数量众多, 目前实际应用不多。两种并网机组的变流器中都使用了先进的电力电子开关器件, 在双PWM拓扑下元件数量同为6, 从结构和器件性能上来看两种方式基本一样。

3.2 并网控制技术难点比较

从控制方法来看, 两种方法都借助了矢量控制及智能控制技术, 都是在瞬时无功理论的基础上实现三相电能变换。但是二者在控制目标和整体控制对象的数量上大不相同。前者直接以向电网输出高质量电能并协调输入有功调节为目标, 后者以调节励磁电流实现异步发电机输出有功无功可控为目标, 二者虽然都需要协调整流与逆变环节, 都要控制输出电能的功率因数, 但前者直接检测电网电压及输出电流, 而后者要通过对发电机参数的辨识调整输出, 另外还增加了并网同期环节, 异步发电机要通过普通并网同期装置将其牵入同步或通过电力电子同期装置实现软并网。双馈发电机参数受温度﹑频率﹑磁饱和程度﹑集肤效应﹑杂散损耗﹑控制方式和负载条件等因素的影响, 其中变化最明显的参数是发电机定﹑转子电阻。要正确地控制双馈发电机的有功功率和无功功率, 必须综合考虑这些因素, 在原有矢量控制的基础上增添新的控制策略, 给予必要的修正和补偿。

3.3 并网控制效果比较分析

在双馈风力发电机的并网调节中, 风力机起动后带动发电机至接近同步转速时, 由循环变流器控制进行电压匹配、同步和相位控制, 以便迅速地并入电网, 并网时基本上无电流冲击。风力发电机的转速可随风负载的变化及时做出相应的调整, 使风力发电机组以最佳叶尖速比运行, 产生最大的电能输出。双馈发电机励磁可调量有励磁电流的频率、幅值和相位。调节励磁电流的频率, 保证发电机在变速运行的情况下发出恒定频率的电力, 通过改变励磁电流的幅值和相位, 可达到调节输出有功功率和无功功率的目的。当转子电流相位改变时, 由转子电流产生的转子磁场在电机气隙空间的位置有一个位移, 从而改变了双馈电机定子电动势与电网电压向量的相对位置, 也即改变了电机的功率角, 同时实现了有功、无功功率的调节。

在永磁直驱风力发电系统中, 随着风速的变化, 定子电流随之调节, 发电机转速维持额定转速不变, 叶尖速比随之变化, 机组输出功率稳定变化, 其并网控制可实现较好的稳态和动态性能。通过调节逆变器输出电压使其与电网电压完全相同实现软并网, 而通过保持电压幅值不变调节电压的相位及发电机输出功率, 实现了最大风能跟踪。通过新型滤波器的设计有效降低了并网的谐波电流。

通过不断地研究改进, 二者在理论及数字、物理仿真实验上都实现了对风速变化的快速响应, 无冲击的并网, 输出电能可实现有功无功解耦调节, 但是前者在发电机参数辨识, 后者在并网谐波电流的抑制上尚有待改进。在现场复杂环节下, 如何实现双PWM的协调控制仍有待继续研究。

3.4 前景分析

双馈发电方式, 突破了机电系统必须严格同步运行的传统观念, 使原动机转速不受发电机输出频率限制, 而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响, 机电系统之间的刚性连接变为柔性连接。基于上述诸多优点, 由双馈发电机构成的并网型变速恒频风力发电系统已经成为目前风力发电方面的研究热点和发展趋势。

而直驱型风电机组因其具有能量转换效率高、系统可靠性高、并网功率控制灵活等优点, 成为了我国风电领域重要的研究和发展方向, 另外, 无齿轮箱的直驱方式能有效减少由于齿轮箱问题而造成的机组故障, 可有效提高系统的运行可靠性和寿命, 大大减少了维护成本, 得到了市场的青睐。

从整体来看, 未来风力发电将形成以异步双馈及永磁直驱两种并网技术为代表的风电发展格局。

4 结语

本文探讨了变速恒频风力发电系统中的两种主要并网发电技术, 通过对比分析阐述了异步双馈及永磁直驱两种发电机组并网控制的特点及技术上的难点。二者相对于传统的恒速恒频风力发电系统有着显著的优点, 这将使其成为今后风力发电中发展的热点, 并有望成为我国风电技术实现自主创新的突破口。

摘要:综合分析了变速恒频风力发电系统中的2种主要并网发电技术, 通过比较研究阐述了异步双馈及永磁直驱两种发电机组并网控制的特点及技术上的难点, 并指出了未来风力发电并网控制技术的发展方向。

篇4:风力发电并网技术与电能质量控制

关键词:风力发电 并网技术 电能质量控制

中图分类号:TM62 文献标识码:A 文章编号:1674-098X(2016)05(a)-0041-02

风力发电是我国电能的主要来源之一。如今,风力发电厂的容量不断增加,开始对电网系统整体造成一定影响。由于风力发电厂往往处于人口数量较少的区域,并不位于供电网络的中心区域,故而不会承受大量的冲击力。因此,风力发电可能会使配电网出现谐波污染或是闪变等问题。且风力发电的随机性也会导致发电过程受到影响。因此,风力发电并网技术的应用便成为各企业关注的热点,如何控制电能质量也成为各企业关注的问题。

1 风力发电并网技术简介

1.1 同步风力发电机组并网技术

风力发电并网技术的选用极为重要,该技术需要发电机所输出的电压频率、幅值及相位方面都同电网系统的电压保持一致。若风力发电机机组整体容量不断上升,风力发电在并网过程中针对电网所产生的冲击力也会相应增加。若并网冲击力过大,不仅会使得电力系统的电压值有所下降,同时也会导致发电机、塔架以及机械部分形成一定的磨损。若是并网冲击时间过长,甚至会导致系统被瓦解,其他挂网机组的运行也会受到不同程度的影响。故而,企业应选用合适的并网技术。

同步发电机在实际工作时,不仅能够输出有功功率,同时也可形成无功功率,确保周波稳定,所形成的电能质量较高,故而被大部分企业应用于电力系统当中。然而在实际应用过程中,由于风速难以控制,使得转子的转矩难以保持稳定运行,并网过程中,转矩调速性能难以符合同步发电机所需要的精度,若实现并网之后,工作人员未对其进行控制,尤其处于重载状态下,则有几率出现无功振荡或是失步等问题。这也成为阻碍同步风力发电机组并网技术应用的主要障碍。如今,电力电子技术日趋完善,部分企业可借助技术以避免上述问题的产生,如将变频装置安设于电机与电网之中。

1.2 异步风力发电机组并网技术

相比同步风力发电机组并网技术,异步风力发电在实际工作当中,并不需要机组调速具有较高的精度,也无需与设备保持同步或是整步操作,只需转速与同步转速基本相同,便可实施并网。因为异步风力发电机只需依靠转差率,便能完成对负荷的调节。风力发电机组搭配异步发电机使用的最大优势在于该搭配无需复杂的控制装置。实现并网之后,也不会形成无振荡或是失步等问题,运行较为稳定,可靠性强。然而,该技术同样存在一定缺陷:第一,如工作人员直接进行并网操作,容易形成大冲击电流,进而令电压逐渐下降,对系统的稳定运行造成不利影响。第二,系统自身无法形成无功功率,因此需要工作人员补偿一定无功功率。第三,不稳定系统频率值超过上限,使得同步转速也相应加快,进而导致异步发电机自发电状态转化为电动状态。倘若不稳定系统频率值下降,也会令异步发电机电流大幅增加,从而形成过载现象。因此,若企业选用异步风力发电机组并网技术,需有工作人员采取一定措施确保异步风力发电机组处于稳定运行的状态。

2 风力发电并网技术对电能质量的影响

由于近些年来风力发电机组并网的应用规模不断扩大,其对电能质量的影响也随之增加,其中,部分影响并不利于电网电能质量的提高。较为常见的问题便是电压波动以及闪变。电压风力资源本身具备不稳定性,加之风力发电机组自身运行特点,导致风力发电机组自身输出功率难以稳定,进而对电网电能质量造成不利影响。如今,风力发电机组往往使用软并网方式实现并网,但在设备启动过程中依旧会形成冲击电流,且电流值较大。若切出风速低于风速,则处于出力工作状态下的风机会自动停止运行。不仅如此,风速难以控制与风机所形成的塔影效应也会对风机处理造成影响,使得风机出力出现波动现象,且波动值处于可以形成电压闪变的范围当中。故而,即使風机正常运行,也会令电网出现闪变现象。

3 控制电能质量的具体策略

3.1 抑制谐波

工作人员可通过抑制谐波的方式完成对电能质量的控制,即将静止无功补偿设备添加于系统当中。静止无功补偿设备中包含有电抗器、可投切电容器等多个装置,该设备最主要的优势在于其反应速度较快,能够及时确认无功功率是否出现变化,并适时跟踪处于变化状态的无功功率。针对由风速不稳定引发的电压起伏现象,该设备也可以对电压进行有效调节,进而消除谐波,确保电网电能质量不会受到风力发电机组运行的影响。

3.2 抑制电压波动以及闪变

第一,将有源电力滤波设备添加于系统当中。实际工作当中,工作人员若要避免电压发生闪变现象。便需要在发生负荷电流出现剧烈波动时,及时补偿由于负荷变化所形成的无功电流,令其可以及时补偿负荷电流。不仅如此,因为有源电力滤波设备所使用的电子零件为可关断电子设备,所以,工作人员可以使用电子控制设备替换系统电源,并将畸变电流传输至电压负荷,借此确保系统将正弦基波电流只提供给负荷。有源电力滤波设备具备如下优点:其一,反应速度快,能够在短时间内响应。其二,所形成的电压波动范围大。其三,具有较高的闪变补偿率。其四,设备可靠性强,能够稳定运行。

第二,将动态电压恢复设备添加于系统当中。若配电网属于中低压类型配电网,则有功功率在高速波动过程中,同样会发生电压闪变的问题。此时,需要补偿装置的性能更为优秀,不仅需要补偿装置提供无功功率的补偿,还需要其补偿一定数值的有功功率。由于补偿设备自身带有储能单元,所以可以有效提高电能整体质量。故而,大部分企业开始利用带有储能单元的补偿设备替代原有无功补偿设备。动态电压恢复设备自带储能单元,可于一定范围内按常规电压同故障电压之间的差额,将电压输入系统当中。该类型补偿方法能够及时避免系统形成电压波动,使得客户可以正常使用电能。就目前而言,于系统当中添加动态电压恢复设备是解决谐波以及电压波动等电能质量问题最为有效的方式。除此以外,工作人员还需对电能质量控制设备与其余补偿设备进行统一。若要使统一补偿得以实现,需在系统当中添加综合类补偿设备。工作人员可将电能质量控制设备进行统一,并将其串联补偿设备与并联补偿设备有机结合。如此一来,补偿设备当中既包含有储能单元的串联组合,也包含有储能单元的并联组合,不仅可以将其添加于配电系统当中,使其发挥补偿谐波的作用,同时也可以有效提高电能质量。

4 结语

电力电子技术的发展较为成熟,企业使用电力电子技术对风电机组进行控制以及改善电能整体质量,对我国电能的发展具有极为重要的意义。然而,风力发电并网技术的应用尚存在部分问题,导致风力发电无法广泛运用于各发电企业。作为发电企业,应加大对风能的研究力度,积极提高风力发电设备的工作效率,避免风力发电并网过程中形成冲击电流以及谐波,从而提升我国风力发电水平,为我国提供更为丰富的电力能源。

参考文献

[1]张国新.风力发电并网技术及电能质量控制策略[J].电力自动化设备,2012(6):130-133.

[2]马昕霞,宋明中,李永光.风力发电并网技术及其对电能质量的影响[J].上海电力学院学报,2013(3):283-286,291.

[3]常耀华.对风力发电并网技术与其电能质量控制策略浅论[J].电子制作,2014(1):266.

[4]齐洁,常耀华.对风力发电并网技术与其电能质量控制策略浅论[J].企业研究,2014(2):153.

篇5:风力发电机组并网技术

l 定桨距失速调节型风力发电机组

定桨距是指桨叶与轮载的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速69,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行的,采用小电机使桨叶具有较高的气动效率,提高发电机的运行效率。失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。变桨距调节型风力发电机组

变桨距是指安装在轮载上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到45”,当转速达到一定时,再调节到0“,直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持在0°位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用OptitiP技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。主动失速调节型风力发电机组

将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速肘,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出,随着风速的不断变化,桨叶仅需要微调维持失速状态。制动刹车时,调节桨叶相当于气动刹车,很大程度上减少了机械刹车对传动系统的冲击。主动失速调节型的优点是其言了定奖距失速型的特点,并在此基础上进行变桨距调节,提高了机同频率后并入电网。机组在叶片设计上采用了变桨距结构。其调节方法是:在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,通过变桨距系统调节限制风力机获取能量,保证发电机功率输出的稳定性,获取良好的动态特性;而变速调节主要用来响应快速变化的风速,减轻桨距调节的频繁动作,提高传动系统的柔性。变速恒频这种调节方式是目前公认的最优化调节方式,也是未来风电技术发展的主要方向。变速恒频的优点是大范围内调节

篇6:风力发电机组的运行维护技术

风力发电机组的运行维护技术

摘要:风力发电机是集电气、机械、空气动力学等各学科于一体的综合产品,各部分紧密联系,息息相关。风力机维护的好坏直接影响到发电量的多少和经济效益的 高低;风力机本身性能的好坏,也要通过维护检修来保持,维护工作及时有效可以发现故障隐患,减少故障的发生,提高风机效率。

随着科技的进步,风电事业的不断发展。风能公司下属的达坂城风力发电场的规模也日益扩大,单机容量从30kW逐渐升至600kW,风机也由原来的引进 进口设备,发展到了如今自己生产、设计的国产化风机。伴随着风机种类和数量的增加,新机组的不断投运,旧机组的不断老化,风机的日常运行维护也是越来越重 要。现在就风机的运行维护作一下探讨。

一.运行

风力发电机组的控制系统是采用工业微处理器进行控制,一般都由多个CPU并列运行,其自身的抗干扰能力强,并且通过通信线路与计算机相连,可进行远程控制,这大大降低了运行的工作量。所以风机的运行工作就是进行远程故障排除和运行数据统计分析及故障原因分析。

1.远程故障排除

风机的大部分故障都可以进行远程复位控制和自动复位控制。风机的运行和电网质量好坏是息息相关的,为了进行双向保护,风机设置了多重保护故障,如电网 电压高、低,电网频率高、低等,这些故障是可自动复位的。由于风能的不可控制性,所以过风速的极限值也可自动复位。还有温度的限定值也可自动复位,如发电 机温度高,齿轮箱温度高、低,环境温度低等。风机的过负荷故障也是可自动复位的。

除了自动复位的故障以外,其它可远程复位控制故障引起的原因有以下几种:

(1)风机控制器误报故障;

(2)各检测传感器误动作;

(3)控制器认为风机运行不可靠。

2.运行数据统计分析

对风电场设备在运行中发生的情况进行详细的统计分析是风电场管理的一项重要内容。通过运行数据的统计分析,可对运行维护工作进行考核量化,也可对风电场的设计,风资源的评估,设备选型提供有效的理论依据。

每个月的发电量统计报表,是运行工作的重要内容之一,其真实可靠性直接和经济效益挂钩。其主要内容有:风机的月发电量,场用电量,风机的设备正常工作时间,故障时间,标准利用小时,电网停电,故障时间等。

广州绿欣风力发电机提供更多绿色环保服务请登录查询

风机的功率曲线数据统计与分析,可对风机在提高出力和提高风能利用率上提供实践依据。例如,在对国产化风机的功率曲线分析后,我们对后三台风机的安装 角进行了调节,降低了高风速区的出力,提高了低风速区的利用率,减少了过发故障和发电机温度过高故障,提高了设备的可利用率。通过对风况数据的统计和分 析,我们掌握了各型风机随季节变化的出力规律,并以此可制定合理的定期维护工作时间表,以减少风资源的浪费。

3.故障原因分析

我们通过对风机各种故障深入的分析,可以减少排除故障的时间或防止多发性故障的发生次数,减少停机时间,提高设备完好率和可利用率。如对150kW风 机偏航电机过负荷这一故障的分析,我们得知有以下多种原因导致该故障的发生,首先机械上有电机输出轴及键块磨损导致过负荷,偏航滑靴间隙的变化引起过负 荷,偏航大齿盘断齿发生偏航电机过负荷,在电气上引起过负荷的原因有软偏模块损坏,软偏触发板损坏,偏航接触器损坏,偏航电磁刹车工作不正常等。又如,在 对Jacobs系列风机控制电压消失故障分析中,我们采用排除实验法,将安全链当中有可能引起该故障的测量信号元件用信号继电器和短接线进行电路改造,最 终将故障原因定位在过速压力开关的整定上,将该故障的发生次数减少,提高了设备使用率,减少了闸垫的更换次数,降低了运行成本。

二.维护

上一篇:幼儿园中班数学好教案《找相邻数》含反思下一篇:文明校园创建学习材料