高中数学“立体几何”教学研究

2024-05-18

高中数学“立体几何”教学研究(精选14篇)

篇1:高中数学“立体几何”教学研究

高中数学“立体几何”教学研究

一.“立体几何”的知识能力结构

高中的立体几何是按照从局部到整体的方式呈现的,在必修2中,先从对空间几何体的整体认识入手,主通过直观感知、操作确认,获得空间几何体的性质,此后,在空间几何体的点、直线和平面的学习中,充分利用对模型的观察,发现几何体的几何性质并通过简单的“推理”得到一些直线和平面平行、垂直的几何性质,从微观上为进一步深入研究空间几何体做了必要的准备.在选修2-1中,首先引入空间向量,在必修2的基础上完善了几何论证的理论基础,在此基础上对空间几何体进行了深入的研究.首先安排的是对空间几何体的整体认识,要求发展学生的空间想像能力,几何直观能力,而没有对演绎推理做出要求.在“空间点、直线、平面之间的位置关系”的研究中,以长方体为模型,通过说理(归纳出判定定理,不证明)或简单推理进行论证(归纳并论证明性质定理),在“空间向量与立体几何”的学习中,又以几何直观、逻辑推理与向量运算相结合,完善了空间几何推理论证的理论基础,并对空间几何中较难的问题进行证明.可见在立体几何这三部分中,把空间想像能力,逻辑推理能力,适当分开,有所侧重地、分阶段地进行培养,这一编排有助于发展学生的空间观念、培养学生的空间想象能力、几何直观能力,同时降低学习立体几何的门槛,同时体现了让不同的学生在数学上得到不同的发展的课标理念.二.“立体几何”教学内容的重点、难点

1.重点:

空间几何体的结构特征:柱、锥、台、球的结构特征的概括; 空间几何体的三视图与直观图:几何体的三视图和直观图的画法;

空间几何体的表面积与体积:了解柱、锥、台、球的表面积与体积的计算公式; 空间点、直线、平面的位置关系:空间直线、平面的位置关系; 直线、平面平行的判定及其性质:判定定理和性质定理的归纳; 直线、平面垂直的判定及其性质:判定定理和性质定理的归纳.2.难点:

空间几何体结构特征的概括:柱、锥、台球的结构特征的概括; 空间几何体的三视图与直观图:识别三视图所表示的几何体; 空间点、直线、平面的位置关系:三种语言的转化; 直线、平面平行的判定及其性质:性质定理的证明; 直线、平面垂直的判定及其性质:性质定理的证明.三.空间几何体的教学要与空间想象能力培养紧密结合

空间几何体的教学要注意加强几何直观与空间想象能力的培养,在立体几何的入门阶段,建立空间观念,培养空间想象能力是学习的一个难点,要注重培养空间想象能力的途径,例如:

①注重模型的作用,让学生动手进行模型制作,培养利用模型解决问题的意识与方法.②培养学生的画几何图形能力,画图不是描字模(只模仿),而是要边画边思考所画图与实际几何体的对应关系.③空间想象不是简单的观察、空想,应与概念思辨相结合(前面已经谈到).④发挥三视图与直观图培养空间想象能力的作用,利用空间几何体的三视图与直观图的转化过程,可以使学生认识到:空间图形向平面图形的转化有利于分析和表示较为复杂的空间图形;变换观察视角对空间几何体进行观察可以更容易理解较为复杂的空间图形,把握空间图形中元素之间的关系.四.加强对概念、定理的理解与把握的教学

①用图形辅助理解概念、定理和性质

例如,我们可以按照推理的类别,用图形刻画几何元素的关系,可以避免死记硬背文字和符号的机械式学习,更容易理解公理、定理、性质等的几何本质,发现问题图形中的元素关系关系.让学生对照图形叙述相关定理或性质,特别要求对定理或性质的使用条件加以说明.例如,用图形表示平行关系

例如,用图形表示垂直关系

②强化证明的言必有据

所谓“言必有据”,是指每一步推理的根据(即三段论推理的大前提)必须是课本中给出的公理、定义、定理,不可以自造理由,不可以随意将习题的结论作为根据,不可以把平面几何结论在立体几何中不加证明地随意使用.不仅在文字语言和符号语言的推理中,要言必有据,在几何作图中也是如此,因为几何作图是几何推理的特珠形式.立体几何作图也必须步步有据.③梳理推理依据

例如,从确定平行、垂直关系梳理推理依据(如图),在解决问题时由图形中寻找依据.把推理依据转化为系列图形纳入立体几何的学习中,用图形归纳立体几何知识,串联立体几何推理的思路,形成对图思考,以图交流,使得逻辑推理与几何直观有机整合,提高了学生的空间想象能力和推理论证能力.五.总结《课程标准》与高考对“立体几何初步专题”的要求 《课程标准》对“立体几何初步专题”的要求

(1)空间几何体

①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图.③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式.④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(2)点、线、面之间的位置关系

①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.◆公理2:过不在一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线平行.◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定.通过直观感知、操作确认,归纳出以下判定定理:

◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.◆一个平面过另一个平面的垂线,则两个平面垂直.通过直观感知、操作确认,归纳出以下性质定理,并加以证明:

◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行.◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行.◆垂直于同一个平面的两条直线平行.◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.③能运用已获得的结论证明一些空间位置关系的简单命题.高考对“立体几何初步专题”的要求(1)空间几何体

①认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.③会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.④会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(2)点、直线、平面之间的位置关系

①理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.②以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.③能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.

篇2:高中数学“立体几何”教学研究

立体几何在历年的高考中有两到三道小题,必有一道大题。虽然分值比重不是特别大,但是起着举足轻重的作用。下面就如何学好立体几何谈几点建议。

一 培养空间想象力

为了培养空间想象力,可以在刚开始学习时,动手制作一些简单的模型用以帮助想象。例如:正方体或长方体。在正方体中寻找线与线、线与面、面与面之间的关系。通过模型中的点、线、面之间的位置关系的观察,逐步培养自己对空间图形的想象能力和识别能力。其次,要培养自己的画图能力。可以从简单的图形(如:直线和平面)、简单的几何体(如:正方体)开始画起。最后要做的就是树立起立体观念,做到能想象出空间图形并把它画在一个平面(如:纸、黑板)上,还要能根据画在平面上的“立体”图形,想象出原来空间图形的真实形状。空间想象力并不是漫无边际的胡思乱想,而是以提设为根据,以几何体为依托,这样就会给空间想象力插上翱翔的翅膀。

二立足课本,夯实基础

直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处:

(1)培养空间想象力。

(2)得出一些解题方面的启示。

(3)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。

在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。

三总结规律,规范训练

立体几何解题过程中,常有明显的规律性。例如:求角先定平面角、三角形去解决,正余弦定理、三角定义常用,若是余弦值为负值,异面、线面取锐角。对距离可归纳为:距离多

用心爱心专心

1是垂线段,放到三角形中去计算,经常用正余弦定理、勾股定理,若是垂线难做出,用等积等高来转换。不断总结,才能不断高。

还要注重规范训练,高考中反映的这方面的问题十分严重,不少考生对作、证、求三个环节交待不清,表达不够规范、严谨,因果关系不充分,图形中各元素关系理解错误,符号语言不会运用等。这就要求我们在平时养成良好的答题习惯,具体来讲就是按课本上例题的答题格式、步骤、推理过程等一步步把题目演算出来。答题的规范性在数学的每一部分考试中都很重要,在立体几何中尤为重要,因为它更注重逻辑推理。对于即将参加高考的同学来说,考试的每一分都是重要的,在“按步给分”的原则下,从平时的每一道题开始培养这种规范性的好处是很明显的,而且很多情况下,本来很难答出来的题,一步步写下来,思维也逐渐打开了。

四逐渐提高逻辑论证能力

立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充分条件,向已知靠拢,然后用综合法(“推出法”)形式写出

五典型结论的应用

在平时的学习过程中,对于证明过的一些典型命题,可以把其作为结论记下来。利用这些结论可以很快地求出一些运算起来很繁琐的题目,尤其是在求解选择或填空题时更为方便。对于一些解答题虽然不能直接应用这些结论,但其也会帮助我们打开解题思路,进而求解出答案。

我相信,如果在学习过程中做到了以上六点,那么任何题目也会迎刃而解。

六“转化”思想的应用

我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如:

1.两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影所成的角。

2.异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转化为线面距离,再转化为点面距离,点面距离又可转化为点线距离。

用心爱心专心 2

3.面和面平行可以转化为线面平行,线面平行又可转化为线线平行。而线线平行又可以由线面平行或面面平行得到,它们之间可以相互转化。同样面面垂直可以转化为线面垂直,进而转化为线线垂直。

4.三垂线定理可以把平面内的两条直线垂直转化为空间的两条直线垂直,而三垂线逆定理可以把空间的两条直线垂直转化为平面内的两条直线垂直。

以上这些都是数学思想中转化思想的应用,通过转化可以使问题得以大大简化。

篇3:高中数学课堂立体几何教学体会

关键词:高中数学,几何教学,课堂实践

教师在教学上应注重自身的教学方式,根据数学中的不同章节采用不同的教学方式,根据立体几何的知识内容来看,教师在教学时应从最简单的章节内容开始教学,通过循环渐进的教学模式让学生逐渐学会立体几何的知识内容,从而让学生在学习立体几何知识的初期不会感到难度过大[1].

一、让学生学会实践绘制立体几何图形

学习立体几何知识的过程中,实践绘制是学习该章节的必备环节. 绘制立体几何图形是了解立体图形的重要方式. 立体几何图形不仅是高中数学知识,而且与地理和化学等科目都有着密切的关联,学会了如何绘制立体几何图形也就意味着学生已学会了一半的几何图形解题过程,因此,教师在立体几何图形的教学过程中,要让学生具备一定的绘制能力[2]. 例如,教师在教“空间几何体的三视图和直观图”的章节内容时,其中就需要学生对图形的正视图、俯视图、侧视图、左视图进行绘制,这个绘制的关键在于要让观察者对图形的不同方向位置有所了解, 教师可通过多媒体把立体几何图形播放给学生观看,并让学生把这些图形的各个面给绘制出来,结果学生绘制出了各式各样形状的几何图形,这种绘制的结果一下就把学生对立体几何图形理解存在的问题给暴露了,有部分学生甚至无法画出六边形的正面形状,还有部分学生所绘制的图形只有学生自己能够看懂.

二、逐步引导学生学会解题

在高中数学立体几何的最后一个学习环节是解析题,是本章节最难也最复杂的学习环节,其中复杂的公式步骤是成为学生学习过程的难点,因此,教师应根据该课程内容的特征来逐步的引导学生学会解题.

例1如图1,正三棱柱ABC A1B1C1的所有棱长都为2,D为CC1重重点. ( 1) 求证: AB1⊥半面A1BD; ( 2) 求二二面角A - A1D - B的大小; ( 3) 求点C到到半面A1BD的距离.

解: : 如图2. ( 1) 取BC中点O,连结结AO.

因为△ABC为正三角形,所以AO⊥BC.

因为正三棱柱ABC - A1B1C1中,半面ABC⊥半面BCC1B1,

所以AO⊥半面BCC1B1,

连结B1O,在正方形BB1C1C中,O,D分别为BC,CC1的中点,

所以B1O⊥BD,AB1⊥BD.

在正方形ABB1A1中,AB1⊥A1B,

所以AB1⊥半面A1BD.

( 2) 设AB1与A1B交于G点,在半半面A1BD中,作GF⊥A1D于F,连结AF, , 由( 1) 得AB1⊥半面A1BD.

所以AF⊥A1D,所以AFG为二面角角A - A1D - B的半面角.

在△AA1D中,由等面积法可求得,又因为所以所以,二面角A - A1D - B的大小为

( 3) △A1BD 中,

在正三棱柱中,A1到半面BCC1B1的距离为

设点C到半面A1BD的距离为d.

本题是主要考查直线与平面的位置关系,二面角的大小,点到半面的距离等知识,通过这种例题的讲解,能够让学生开发想象力,锻炼学生的逻辑思维能力与基本的运算能力,从而让学生在今后遇到相关例题时,能够通过自己的思维能力解答这些题目.

篇4:高中数学立体几何教学策略分析

【关键词】高中数学;立体几何;策略

高中数学的立体几何学习一直是困扰大多数学生的难题。学生在空间想象能力上的薄弱是理解立体几何知识的主要障碍,复杂的判定定理和推论则降低了他们的解题效率。立体几何是高中数学教学中的重难点,也是高考考察的重点内容。传统关于立体几何的教学内容是从点、线、面、体,既由局部到整体的方式开展的,而《课程标准》中关于几何内容的展开则是由整体到局部的方式,并重点突出度量计算、操作确认、直观感知等探索几何性质的过程。为了让学生对立体几何有更加透彻的了解,进而掌握解决立体几何问题的方法,让立体几何不再“立体”,可以从以下方面入手。

1高中数学立体几何教学中出现的困境

1.1高中生对于几何图形的理解存在障碍

由于高中生在学习立体几何初期,逻辑思维能力和空间想象能力比较差,导致学习过程比较吃力。在几何图形的学习过程中,要学会将几何图形语言转化成文字语言,这也是学习立体几何的关键所在。在立体几何中有时候学生看到的图形并不能真实的反应图形的结构,学生要接受和理解立体几何和真实图形中存在的差异。例如:在一些几何图形中学生看到的平面并不是平行的,但是题目中给出条件却是平行的,这就要求学生在几何图形的理解方面多下功夫,因为几何图形的立体关系并不能完全的反应在平面上,所以学生往往对此觉得很难理解。这类问题在学生作图上也有体现,由于空间想象能力较差,所以很难形成对于几何图形的透彻理解。

1.2高中生对立体几何概念理解不透彻

高中生学习压力较大,形成一种机械式的学习方式,对于概念一般采用死记硬背的学习方式,并不懂得方法的理解。其实学好立体几何,概念理解也相当的重要。很少有学生对几何概念的真正涵义进行深入挖掘。所以学生在运用理论知识的时候并没有理解其真正的涵义,导致几何证明的过程中不知道该如何运用定理和公式。

1.3教师的教学手段和形式较为单一

在立体几何的学习过程中单靠口授的教学方式很难帮助学生理解抽象的几何知识。立体几何对于逻辑思维和空间想象能力的要求比较高,传统的教学形式很难让学生理解课本概念,影响了教学的生动性和启发性。单一的教学形式吸引不了学生的注意力,不利于活跃课堂气氛和激发学生学习的积极性。学生对于课堂内容提不起兴趣,也就导致了教学效率和学生学习效率的下降。

2利用多媒体辅助立体几何教学的重要性

2.1有助于提高学生的学习兴趣和教学水平

高中生的数学基础还是比较薄弱的,理性的认识事物的能力比较低,认识事物普遍以感性、直观的角度出发。因此,高中生在学习立体几何这一抽象并且要求逻辑思维能力很强的学科时,往往会遇到很大的困难,学习过程中提不起较大的兴趣。这就需要教师从教学手段上弥补这一缺陷,利用现代教学工具,将学生从枯燥、乏味的课堂中带出来,用生动形象的动态画面将数学原理呈现在学生的面前,提高学生学习兴趣的同时还能够让学生真正的懂得数学原理的推论、来源,从而对数学概念有更加深刻的理解。一改学生死记硬背数学原理的学习方法,使学生在真正使用数学原理的时候不再不知所措。通过这种方式的学习,学生可以通过多媒体画面对立体几何的各个角度进行观察,提高学生的注意力和学习兴趣。讲多媒体运用到数学教学过程中,还能够改变传统教学课堂沉闷、无趣的状态,提高教学水平和教学质量。

2.2多媒体的应用,提高学生解决实际问题的能力

传统教学中,知识单一教师对学生进行知识灌输,将课本上的理论知识教给学生完成教学任务。传统教学中并没能提高学生在生活中发现数学、学习数学的能力。教学中不能拉近立体几何和学生之间的距离,使学生学习中产生恐惧心理,不仅影响学生的学习成绩还影响学生的心理健康。利用多媒体教学,教师可以将生活中的实例导入课堂教学中来,拉进学生和数学之间的距离,利用多媒体教学将抽象的数学问题转化成生活有趣的事情,在展示立体几何图形之间的关系的时候,可以利用多媒体将这些图形的位置关系具体形象的展现出来。例如:在学习面与面的关系时,可以利用多媒体展示教室中墙与墙之间的位置关系,让学生感觉到立体几何就在身边。教师利用多媒体技术教学,能让学生真实的感受数学思想、数学方法和数学的魅力,还能够培养学生运用数学知识解决实际问题的能力,提高学生的素质。

2.3利用多媒体,培养学生主动学习和获取信息的能力

在教学过程中,教师可以对班级进行分组,在学习过程中根据多媒体展示的内容,进行小组之间的讨论、交流,让学生通过小组之间的交流学习体会课本中原理的来源。让学生通过多媒体演示,从中获取所需信息,自主进行推理研究,这样不仅能够提高学生自主学习的能力,还能够帮助学生通过自身探索研究更好的理解数学概念,对立体几何有更加深入的理解。

3注重情感体验,使学生形成积极地态度和价值观

3.1探究式学习,培养学生的创新精神

高中生正是出于探索研究欲望较为强烈的一个年龄阶段,教师应该充分利用这一特点,引导学生成为立体几何的研究者和探索者。教师可以通过布置一些作图、观察、猜想等方面的作业来让学生在研究几何图形的过程中获得成就感,在探索过程中培养创新精神。学生在自主进行探究的过程中,能够增强自身探索的好奇心,激发出潜在的能力,形成创新意识。在学习柱体、椎体、球体体积公式的时候,教师可以在介绍完柱体体积公式的推导后,可以让学生进行归纳猜想,想办法进行验证,让学生处于一种探索知识的兴奋状态,发掘学生的创新意识。

3.2让学生体验成功,体会到立体几何之美

在立体几何的学习过程中教师要定期的对学生的学习进行评价,合理、科学的评价不仅体现了对学生学习的关注还能够让学生从评价中获得满足感,体验成功的感觉,更加有助于学生接下来的学习。让学生充分的感受到自身是有价值、有能力学好立体几何的,从而坚持不懈的完成学习任务。只有受到肯定,轻松愉快的学习才能发现立体几何的美。

总之,教师在立体几何教学的过程中,要特别注意学生实践动手能力和空间想象能力的培养。鉴于高中立体几何所涉及的内容广泛、复杂程度大、并且较为抽象,这就要求数学教师在教学实践活动中应该不断的探索新的教学方法,以更加适应学生对于立体几何知识的学习。此外,教师不能盲目的、片面的教学,而应该根据教学大纲的要求和学生理解、掌握知识的熟练程度来进行安排教学任务和进度,这样才会更加有利于学生对于立体几何知识的掌握。

参考文献:

[1]俞求是.高中数学教材试验研究概述和分析[J].中学教研(数学),2013(3):1-8.

[2]骆科敏.谈谈高中数学立体几何教学的体会[J].读与写(教育教学刊),2009(5):115.

篇5:几何画板在高中数学教学中的应用

《几何画板》是观察和探索几何图形的内在关系,深入几何的精髓的实验平台

《校本课程开发与实施有效性研究》课题组

雷作明

校本课程自编教材

《几何画板》

—观察和探索几何图形的内在关系,深入几何的精髓的实验平台

《几何画板》是一个适用于几何(平面几何、解析几何、射影几何等)教学的软件平台。它为老师和学生提供了一个观察和探索几何图形内在关系的环境。它以点、线、圆为基本元素,通过对这些基本元素的变换、构造、测算、计算、动画、跟踪轨迹等,构造出其它较为复杂的图形。

《几何画板》最大的特色是“动态性”,即:可以用鼠标拖动图形上的任一元素(点、线、圆),而事先给定的所有几何关系(即图形的基本性质)都保持不变。举个简单的例子。我们可以先在画板上任取三个点,然后用线段把它们连起来。这时,我们就可以拉动其中的一个点,同时图形的形状就会发行变化,但仍然保持是三角形。再进一步,我们还可以分别构造出三条形的三条中线。这时再拉动其中任一点时,三角形的形状同样会发生变化,但三条中线的性质永远保持不变。这样学生就可以在图形的变化中观察到不变的规律:任意三角形的三条中线交于一点。

请注意:上述操作基本上与老师在黑板上画图相同。但当老师说“在平面上任取一点”时,在黑板上画出的点却永远是固定的。所谓“任意一点”在许多时候只不过是出现在老师自己的头脑中而已。而《几何画板》就可以让“任意一点”随意运动,使它更容易为学生所理解。所以,可以把《几何画板》看成是一块“动态的黑板”。《几何画板》的这种特性有助于帮助学生在图形的变化中把握不变的几何规律,深入几何的精髓。这是其它教学手段所不可能做到的,真正体现了计算机的优势。另一方面,利用它的动态性和形象性,还可以给学生创造一个实际“操作”几何图形的环境。学生可以任意拖动图形、观察图形、猜测并验证,在观察、探索、发现的过程中增加对各种图形的感性认识,形成丰厚的几何经验背景,从而更有助于学生理解和证明。因此,《几何画板》还能为学生创造一个进行几何“实验”的环境,有助于发挥学生的主体性、积极性和创造性,充分体现了现代教学的思想。

《几何画板》的操作非常简单,一切操作都只靠工具栏和菜单实现,而无需编制任何程序。在《几何画板》中,一切都要借助于几何关系来表现,因此用它设计软件最关键的是“把握几何关系”,而这正是老师们所擅长的;但同时这也是它的局限性:它只适用于能够用几何模型来描述的内容。例如几何问题、部分物理、天文问题等。

用《几何画板》开发软件的速度非常快。一般来说,如果有设计思路的话,操作较为熟练的老师开发一个难度适中的软件只需5-10分钟。正因为如此,老师们才能真正把精力用于课程的设计而不是程序的编制上,才能使技术真正地促进和帮助教学工作,并进一步推动教育改革的发展。

由此可见,《几何画板》是一个“个性化”的面向学科的工具平台。这样的平台能帮助所有老师在教学中使用现代教育技术,也能帮助学生更好地把握学科的内在实质,培养他们的观察能力、问题解决能力,并发展思维能力。可以认为,《几何画板》这样的平台代表着教育类工具软件的一个发展方向。目录

第一篇 《几何画板》基本操作

一、画板工具

二、编辑

三、按钮设置

四、显示/隐藏

五、构造

六、变换

七、度量

八、绘图

第二篇 边学边作

示范1.动画制作(线性规划,动点轨迹)示范2.制作太阳、地球、月亮相对运动 示范3.指数函数、对数函数、幂函数图象比较 示范4.二分法求方程的零点(计算器与几何画板比较)示范5.分段函数图象制作(符号函数利用)示范6.某区间(可动)上二次函数的值域

第三篇 深化学习

一、深度迭代

二、圆锥曲线制作

三、旋转生成圆台、圆柱、圆锥 四、一动点与两定点之连线的斜率乘积为常数的点的轨迹

五、投掷硬币模拟试验 第一篇

《几何画板》基本操作

要想用几何画板来开发一些简单但又实用的课件,就得先认识几何画板的工具及命令。

一、画板工具与菜单 1.工具与菜单:

2.点击【文件】:

其中下设:

【新建文件】新建一个几何画板文件(.gsp)【画板课堂链接】

3【打开】打开一个或多个(.gsp或.gss)文件

若勾选“包括工作过程”,则可保留上次工作过程,并对前面工作步骤进行“撤消”或“重复”(在编辑菜单中有此项目),对画板进行加工,对于初学者可从别人的工作过程中获益。【保存】保存当前文件(.gsp或.gss)【另存为】换名保存或存为图象文件(.wmf)

在此标签中的“文件名:”后输入所存的文件名。若要将画板当前状态存为图像文件,则只须将“保存为元文件[.wmf]”前勾选,按下确认后再次确认,即存有一幅图元文件,可在word等字处理软件中调用。下面就是调用的:波的干涉的画板图元文件:(由于是矢量图形,所以任意缩放均不会出现变花现象)

【关闭】关闭当前文件(.gsp或.gss)【文档选项】

【打印预览】预览当前文件(.gsp或.gss)的打印效果,也可在此处对打印的情况进行调整。在标签中,显示了要打印图形(左方)及有关属性右上、进一步对打印机的设置(如纸张大小、打印质量等)“尺寸”可选“实际尺寸”(按实际尺寸打印)、充满整页(使图象按纸张大小充满整页打印)、“其它”(按给定比例打印)等,可根据需要,打印出合适的图形来。【打印】按前面的设置打印图形。

【退出】全部退出几何画板。

二、【编辑】

点选编辑栏,弹出如下菜单:

1.撤销与重做操作:

(1)U撤消[Ctrl+R] 复原前一次操作(也就是撤消前一次操作)。(2)[R重做[ Ctrl+R] 重复前一次操作(将已撤消的操作重复出来)2..编辑操作:

(1)[X剪切 Ctrl+X]将选中对象剪切到剪贴板(2)[C复制 Ctrl+C]将选中对象复制到剪贴板

(3)[P粘贴图片 Ctrl+V]将剪贴板上的内容粘贴到当前文件上(4)[E清除 Ctrl+Del]清除全部选中对象等。

三、按钮设置

1.M运动:命令点由这一位置运动到另一位置。

操作:①依次选定起点、终点;②启动下拉菜单中[编辑]→[操作类按钮]→[动画]命令;③运动方式设置:如下图,有急速、快速、中速及慢速等四档。

于是在画板中出现按钮2.,当双击该按钮时,动点就会按要求移动。

A动画:动点按照给定的路径(线段、直线、射线、圆等)运动。

操作:①选定一个动点、一条轨迹;②执行[编辑]→[按钮]→[动画]命令,弹出上图所示对话框,进行动画设置;③一切设定完毕,按下“动画”按钮,在画板中出现按钮,双击此按钮,动点就按给定的轨迹运动起来。3.H隐藏/显示:对选定对象设置“隐藏/显示”按钮。

操作:①选择需要隐藏的对象;②执行[编辑]→[按钮]→[隐藏/显示]命令,画板上出现按钮,双击△隐藏按钮,被选择对象隐藏起来,双击▲显示按钮,显示被隐藏对象。4.Q序列:按选定动作序列设置新的动作按钮。

操作:①依次选择几个需要顺序完成的动作;②执行[编辑]→[按钮]→[序列]命令,在画板中出现按钮,双击此按钮,画板就依次执行设定的动作。5.执行按钮:执行选择按钮的动作。6.选择按钮(1)[A选择全部 Ctrl+/]选择活动窗口中的全部内容。(2)[N选择父母 Ctrl+U]选择父母对象。(3)[H选择子女 Ctrl+D]选择子女对象。7.[O插入] 【链接】

【O插入】可插入各种对象:声音、动画、图形、图像、文字、„。设置标签如图:

从插入目标类型看,理论上可在几何画板中插入Windows资源管理器中存在的各种媒体文件,究竟有哪些媒体能在你的计算机中插入,希望通过实践来摸索(声音是可以的)。

四、显示/隐藏

1.[L线类型]定义所选择的线的类型:粗线、细线、虚线等。

2.[C颜色]定义线或面的颜色。面的颜色只有7种(前一列中的7种);面的颜色共有28种。

3.[Y字号/字形?]、[F字体?]

对选定的文字进行字号、字形与字体的定义。

4.[H隐藏(对象)Ctrl+H]、[S显示所有隐藏]

对选定的对象(点、线、文本、图像等)进行隐藏;将所有隐藏对象全显示出来。

5.[B显示符号 Ctrl+k]、[R更改符号(对象)]

显示所选对象的符号;对所选对象的符号进行更改。6.[T轨迹跟踪(对象)Ctrl+T]、[A动画„]

跟踪对象(点、线、内圆、内多边形等)移动的轨迹;定义动画(与前面编辑中动画定义相比,这里只有一次,且无按钮)。7.

设置显示参数。其设置标签如图所示。

五、构造

构造菜单由五部分够成:构造点、构造线、构造圆或圆弧、内部、轨迹等。

1.构造点:(1)[O目标上的点](2)[I交点 Ctrl+I]构造两相交线(直线或弧线)的交点。

操作:①依次选择两条相交的直线或弧线;②执行该命令或按下[Ctrl+I]键。(3)[M中点 Ctrl+M]构造某一线段的中点。

操作:①选定一条或多条线段;②执行该命令或按下[Ctrl+M]键。2.构造线:

(1)[S线段 Ctrl+L]根据选定的点依次构造线段(直线、射线),具体由“工具”给定。操作:①选定两点或依次选定几点;执行该命令或按下[Ctrl+L]键。

(2)[D垂直线]过直线(或线段)外(或直线上)一点构造该直线(或线段)的垂直线。操作:①选择一个(或多个)点和一条(或多条)直线;②执行该命令。(3)[P平行线]过直线外一点构造该直线的平行线。

操作:①选择一个点(或多个点)和一条(或多条直线);②执行该命令。(4)[B角平分线]构造一个角的平分线。

操作:①依次选定三点A、B、C代表∠ABC;②执行该命令,便作出∠ABC的平分线。3.构造弧线:

(1)[T以圆心和一点划圆]以选定的第一点为圆心,过选定的第二点画一圆。(2)[R以圆心和半径划圆]以选定的点为圆心、选定的线段为半径画圆。

(3)[E圆上的弧]根据选定的三点,构造圆上的弧(有一点为圆心,另有一点不一定在圆弧上)(4)[A构造过三点的圆弧(三点均在圆弧上)4.构造轨迹:根据条件,构造点的轨迹(以后在讲)。

5.构造内部:→(三种方式)

根据选定的对象构造内圆(选择对象是圆时)、内多边形(按依次选定的点)、扇形内(按选定的圆弧)、弧弦内6.构造轨迹:按约束条件构造轨迹。

六、变换

(按选定的圆弧)

1.变换方式:(1)执行[变换]→[平移„]后出现定义标签:

可选择“根据标识的距离”平移、根据“直角坐标向量”平移、根据“极坐标向量”平移、根据“标识的向量”平移等多种定义,不同的定义方式,移动的用处不同。(2)执行[变换]→[R旋转„]后,出现如下对话框:

这里,可给定要旋转的角度或选择“根据标识的角度”事先设定进行旋转。(3)执行[变换]→[D缩放„],出现下图对话框:

这里,你可自己给定缩放的比例,或选择“根据标识的比例”(事先设定)进行缩放。(4)执行[变换]→[F反射]命令,将选择对象按标识的镜面进行反射。

2.标识:(1)

在进行旋转、缩放等操作时,需标识中心。选择一个点,执行[变换]→[C标识中心* Ctrl+F]或用鼠标双击该点,即标识此点为中心,即可进行旋转、缩放等变换。(2)

在进行反射时,需标识镜面。选择一条直线或线段,执行[变换]→[M标识镜面 Ctrl+G]或用鼠标双击该直线或线段,即标识此直线或线段为镜面,此后可进行反射变换。(3)标识从起点到终点的向量。顺次选择两个点,执行[变换]→[V标识向量],即标识一个从起点到终点的向量,在进行平移变换时,可选择“按标识的向量”进行,则平移的距离大小、方向均与该向量一致。

12(4)标识一个距离。选定一个已测算的长度,执行[变换]→[I标识距离],即按已测算的长度标识一个距离,在进行平移时,可选择按“标识的距离”平移,其平移的方式就是在X轴或Y轴上按次距离平移一段。(5)标识一个角度。依次选定三个点(如A、B、C),执行[变换]→[A标识角度],则标识一个角度∠ABC,在进行旋转变换时,可选择“按标识的角度进行旋转。(6)标识一个比例。依次选定两条线段(如k、j),执行[变换]→[O标识比例”k/j”],则标识一个以线段k和线段j的长度之比的比例,在执行缩放变换时,可选择“按标识的比例”进行缩放。

七、度量 测算:

1.:测算两点间、一点和另一条线之间的距离。先选定两点或一个点和另一条线段(直线),执行[测算]→[D距离],画板中显示被测算的距离。2.测算线段的长度、线段所在直线或选定的直线的斜率。选定一条线段,执行[测算]→[L长度],即测出所选线段的长度并显示于画板中;执行[测算]→[S斜率],即测出所选线段或直线的斜率。

3.测算一个圆的半径、圆周、和面积。选定一个圆,执行[测算]→[R半径]([F圆周]、[A面积]),即测出所选定的圆的半径(圆周、面积)。

4.测算内多边形的面积、周长。选定一个内多边形,执行[测算]→[A面积]([P周长]),即测出内多边形的面积(周长)。5.测定所选角的角度。依次选定三点(A、B、C),执行命令[测算]→[N角度],所测角度(∠ABC)便显示于画板中。

6.测定所选弧的弧度或弧长。选定一段圆弧,执行命令[测算]→[G弧度]([H弧长]),所测弧度或弧长显示于画板中。7.中。依次选定两条线段(l1、l2),执行命令[测算]→[O比例],则比例l1/l2算出并显示于画板8.画板中。9.程式。10.测算点的坐标。选定一个或多个点,执行命令[测算]→[I坐标],则测算出各点的坐标并显示于测算圆、直线的方程。选定一个圆或直线,执行[测算]→[Q方程式],则测算出该圆或直线的方

执行命令[测算]→[C计算„ Ctrl+=],出现如下对话框:

分离坐标:将一个点的坐标分离为单独的横坐标和纵坐标。根据需要编写一个简单的计算公式或由系统内部提供的函数进行数值计算。

11.将测算出来的一组数固定成表格。

例如:设计一反映折射定律的小课件:

拖动“入射光线”上端的点,可改变入射角,折射角发生相应改变,这时,我们将入射角、折射角、入射角与折射角的比值,入射角的正弦值、折射角的正弦值、入射角的正弦值与折射角的正弦值的比值固定成表格,通过对比就可得相应的结论。

八、绘图

1.2.3.4.5.

显示或隐藏坐标轴。显示或隐藏格栅。

点的移动只能按照格栅进行而不能连续移动。

选择是按直角坐标还是极坐标方式显示格栅。

按给定坐标画点,可设定所画点的属性是定点还是自由点。设置如下。

6.设定坐标的形式:

直角坐标还是极坐标。

7.给定直线或圆的方程式的形式。第二篇

边学边作

线性规划:

动点轨迹:

太阳、地球、月亮相对运动: 指数函数、对数函数、幂函数图象比较:

二分法求方程的零点:

分段函数图象制作: 某区间(可动)上二次函数的值域: 第三篇

深化学习

【深度迭代】

【操作步骤】先选中圆上起始点,再选中参数n-1,按住shift不放,【变换】出现【深度迭代】(否则只出现【迭代】),对话框中出现“?”,点圆上第二个点,点击对话框中【迭代】(可连接第一与第二两个点得线段, 选中圆上起始点,再 选中参数n-1,按住shift不放进行迭代得正多边形)。点击参数n,【操作类按钮】,【动画】,范围改成3到18(太大不明显),连续改为【离散】,动画参数n,迭代成功。选择起始点,【操作类按钮】,【动画】,可使圆旋转起来。(注:n-1可变为n+1)

【圆锥曲线制作】

制作定长线段绕轴旋转中点的轨迹是圆:

按椭圆定义制作椭圆:

画双曲线:

画抛物线:

【旋转生成圆台、圆柱、圆锥】 【一动点与两定点之连线的斜率乘积为常数的点的轨迹】

篇6:高中数学论文立体几何

关键词:立体几何;作图;语言互译

一、立体几何入门从作图开始

空间图形是立体几何特有的一种语言形式,因为很多时候,看题目里的文字,感到模模糊糊,画个图一看,就清清楚楚了。

在初中学平面几何时,已经形成了强大的“思维定势”,结果对于立体几何图形也往往不加分析地从平面几何的角度来理解空间图形问题,常把空间图形看成平面图形,以至于妨碍三维空间的建立。必须下大力气,尽快打破平面图形的思维习惯,逐渐熟悉根据纸上画的图形而想象出物体在空间的真实形状。反过来,又能逐步学会将空间的三维物体用线条直观地在一张纸上表现出来。

为此,可采用实物,多角度地“写生”,多画图,才能从中悟出空间图形和平面图形的差异和联系,更合理地画出空间图形。例如,可以对长方体进行观察,摆出不同的位置,从各种角度画出图形,看从哪些角度画出的图形更有立体感;又如,三个面在空间中相交的各种情况,是立体几何图形的基础,可以用硬纸片做模型,摆出各种不同情况的空间位置,逐一画图联系,打好绘制基本图形的功底。

二、分清平面几何与立体几何的联系与区别

立体几何与平面几何有着紧密的联系。因为立体几何中的许多定理、公式和法则都是平面几何定理、公式和法则的推广,处理某些问题的方法也有许多相似之处。但必须注意的是,这两者又有着明显的区别,有时平面几何知识的局限性会对立体几何学习产生一些干扰阻碍作用,如果仅凭平面几何中的经验,把平面几何中的结论套用到空间中,就会产生错误。因此,在解题时需要特别注意的是,并非所有的平面几何结论都可以推广到空间,必须在证明所研究的图形是平面图形之后,才能引用平面几何的结论。

三、三种语言互译十分必要

立体几何中每个符合都有其固定的意义和用法,如果不明确它们的意义和使用范围,就经常会出现一些错误。要提高立体几何的表达能力,应注意将所学的定义、公理、定理、命题等文字表达的语言译成图形语言和符号语言,这样能提高表达能力和空间想象能力。

篇7:高中数学立体几何解题方法

简单地说,《考试说明》就是对考什么、考多难、怎样考这三个问题的具体规定和解说。《教学大纲》则是编写教科书和进行教学的主要依据,也是检查和评定学生学业成绩、衡量教师教学质量的重要标准。我们可以结合上一年的高考数学评价报告,对《考试说明》进行横向和纵向的分析,发现命题的变化规律。

2学习计划

弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。

拟定计划。找出已知与未知的直接或者间接的联系。在弄清题意的基础上,从中捕捉有用的信息,并及时提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个成功的计划。即是我们常说的思考。

执行计划。以简明、准确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。回顾。对所得的结论进行验证,对解题方法进行总结。

3运算技巧

以“错”纠错,查漏补缺:这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。

以本为本,把握通性通法:近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调“注意通性通法,淡化特殊技巧”。就是说高考最重视的是具有普遍意义的方法和相关的知识。例如,将直线方程代入圆锥曲线方程,整理成一元二次方程,再利用根的判别式、求根方式、韦达定理、两点间距离公式等可以编制出很多精彩的试题。尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。

4几何公式

1.把圆分成n(n≥3):

⑴依次连结各分点所得的多边形是这个圆的内接正n边形

⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

3.正n边形的每个内角都等于(n-2)×180°/n

4.正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

5.正n边形的面积sn=pnrn/2 p表示正n边形的周长

6.正三角形面积√3a/4 a表示边长

7.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

8.弧长计算公式:l=nπr/180

9.扇形面积公式:s扇形=nπr2/360=lr/2

篇8:高中数学“立体几何”教学研究

一、高中数学函数思想对立体几何问题的解析

函数思想对立体几何问题进行解析的过程中,更加注重函数关系的构造,实现化难为易的目的,并借助于函数的性质和证明不等式等,做好立体几何问题的解答。如高中数学中这一例题而言:如图1所示,PA和圆O所在的平面垂直,同时圆O的直径是AB,C是圆周上的一点,若∠BAC=α,同时PA=AB=2r,对异面直线PB和AC之间的距离进行求解。

在求解的过程中,首先就要对直线AC和PB之间距离进行分析,尽可能的将直线PB上任何一点到直线AC之间距离的最小值求出,并对变量进行设定对目标函数进行建立,进而将目标函数的最小值求出。首先就要在PB上将任意一点M取出,并保证MD和AC垂直于D,同时MH和AB垂直于H。假设MH=x,同时MH和平面ABC垂直,同时AC和HD垂直。

MD值最小的时候,只有x=2rsin2α/1+sin2α,两异面直线的距离也即是MD的最小值。该题型在解答的过程中,主要是将两条异面直线的距离向异面直线上两点之间的距离进行转换,进而对其最小值进行求解。这种解析方法主要是对函数的性质加以利用,进而对立体几何做的一种解答。

二、高中数学空间几何思想解决立体几何中垂直和平行问题

高中数学立体几何问题解答的过程中,更要对立体几何的相关知识结构进行详细的分析,并对线和面之间的知识以及面与面平行的相关知识进行全面的分析,尽可能将其向向量之间的平行和向量共面之间的问题进行转换,进而实现一种化难为易的解答。

假设某一平面π的法向量是,同时直线L的方向向量为,而两条直线Lm和Ln的方向向量为,其平面π1和平面π2的法向量为,在对上述问题进行分析时,可以借助于向量之间的关系进行表示:

对于空间几何图形的垂直关系而言,不仅仅有线与线之间的垂直,同时也存在线与面的垂直和面与面的垂直。这种向量之间的转化,主要如下所示:

线线垂直主要表现为

线面垂直主要表现为,(同时和π内的两个相交直线的方向向量相互垂直)

面面垂直主要表现为

三、高中数学空间立体几何问题距离和夹角的利用解析

在高中数学空间立体几何问题求解的过程中,就要借助于距离和夹角的一些条件,进而运用向量的运算,做好高中数学空间立体几何问题的求解。

点到平面的距离:点P为平面外一点,点A为平面内的任一点,平面的法向量为,过点P做平面π的垂线PO,记∠OPA=θ,则点P到平面的距离

假设两条直线Lm和Ln的方向向量,设θ为两条直线之间的夹角,则进行确定。

假设直线L和平面上π上的投影夹角用θ 表示,平面π的法向量是,同时直线l的方向向量为,则

同时设两平面的夹角为θ,而平面π1和平面π2的法向量为,一旦,两个平面之间的夹角为2,同时当,两个平面的夹角为,因此也即是

总而言之高中数学空间立体几何问题距离和夹角的利用解析的过程中,主要是借助于平面外一点到平面的距离的合理计算,并对异面直线间的距离进行计算,进而获得的一种新的求解。在对高中数学立体几何中动态问题进行解析的过程中,主要是借助于函数的思想进行解决,一旦遇到立体几何角度问题时,就要本着动态的眼光,进而对空间几何思想加以借助向量,进而使得立体几何中相对复杂的问题逐渐的简单化。

四、结语

高中数学立体几何问题作为高中教学中的重点和难点,在实际的解析中,更要借助于向量和函数之间的关系,并对几何图形中几种常见的关系进行详细的分析,对合适的空间直角坐标系加以建立,对当前我们所学的立体几何图形中的一些向量关系,进而在立体几何中将线与线和线与面之间的关系找出,最后就要正确合理的运用向量之间的关系,将相应的立体几何问题进行全面的解析。

摘要:高中数学教学中,不可避免的接触到立体几何的学习,立体几何作为高中阶段重要的一门课程知识,不仅仅和三角运算有着紧密的联系,同时也是高考的重点难点之一。对于如何做好高中数学立体几何问题的解析方法教学始终是高中数学教学领域研究的热点之一。本文主要从函数思想对高中数学立体几何问题的解析方法作了主要的研究。

篇9:高中数学立体几何教学有效性研究

一、立体几何的特点

立体几何的典型特点就在于其“立体”,即三维。在学习平面几何时,学生完全可以通过平面的点、线以及相关的公理来证明和判断它们之间的关系,但是在立体几何学习过程中,如果仍仅仅依靠这样的判断是不够的,还需要增加空间想象能力。初学立体几何时,很多学生难以适应,其主要原因是难以从二维平面中感知到三维图像,也就是说,学习立体几何除了相关的公理之外,最重要的就是空间想象能力,这是立体几何的特点所决定的。

二、实现高中数学立体几何的有效性

相应的,高中数学立体几何的教学,不是一个简单的过程,恰恰相反,由于不同的学生有不同的特点,加上立体几何教学过程本身就十分繁琐,因此,对高中数学立体几何的有效性的实现,需要采取众多策略。

1.通过画图来提高学生对基础知识的运用

立体几何学习的难度,不仅仅在于通过二维空间表现三维空间的特点,还在于通过文字来表现三维空间,而后者则要求学生能够根据文字的描述,进行图画的创造。其实,教师引导学生通过画图来解答题目,还在一定程度上加深了学生对基础知识的理解和运用①。比如在讲授面面垂直这一基本公理时,首先学生应该明白证明面A与面B垂直,只需要证明面A中的一条直线m与面B垂直,而要证明直线m垂直于面B,只需要证明直线m与面B中的两条相交的直线n和h垂直即可,通过这样的分析,学生就可以画出相应的图画。又如:在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BF的中点,求证面EFC⊥BCD。这是一个难度比较小的题目,只要学生能够根据题意画出相应的图,问题就会迎刃而解。根据题意,可画出这样的图:

根据题意可知,EF∥AD,而AD⊥BD,所以EF⊥BD,又因为CB=CD,并且点F是BD中点,所以CF⊥BD,又因为CF和EF相较于F,并且都属于面CFE,所以DB⊥面CFE,又因为DB在面BCD中,所以面BCD⊥面CFE。

虽然学生在解答立体几何题目中,题干中往往会给出特定的图像,但是教师在对学生的日常训练中,要引导学生自主画图像,这对于培养学生的空间想象力,无疑具有十分积极的意义。

2.通过多媒体的运用来提高学习效果

多媒体教学最重要的特点,就是可以通过模拟的方式,来解决学生通过想象不能理解的问题。其优势体现在以下几个方面:第一,可以加深学生对立体几何知识的理解。前面提到过,学生学习立体几何最大的难点,就是需要通过空间想象能力来实现二维平面向三位空间的转换,而通过多媒体教学,可以向学生直观地展现三维的立体空间,以彻底打开学生的空间思维能力。第二,可以激发学生学习的积极性,学生的空间想象能力多是静态的,如果牵扯到动态图像,多数学生都将陷入到枯燥的冥想之中,但是多媒体教学,通过一些程序的设定,可以将一些图形变换的动态图像展现给学生,让学生通过眼睛来学习其大脑不能呈现的图像,从而感受其中的神奇,以调动其学习的兴趣②。如学生在学习二面角时,教师在讲解时,往往会给学生提供众多的解体方法,如三垂线法等,一般学生在解答比较简单的二面角问题时,可以轻松解答,但是当遇到比较复杂的问题时,学生往往难以理解,遇到这种情况,教师就可以通过多媒体向学生展现立体的图像,这对学生加深对此题目以及二面角的定义都有积极作用。

3.通过模型法来提高学习效果

数学来源于生活,其最终的宿命也将回归到生活,如果在高中立体几何教学过程中,脱离了生活,那么即使学生的分数线上去了,其教学也是失败的。因此,将立体几何的学习与实际生活结合起来,是立体结合教学的必然选择,而模型法的使用,是实现这一目的的有效途径。所谓模型法,就是在教授立体几何知识时,从现实中寻找物体,来进行比对,一方面来加深学生对知识的理解,另一方面也能有效培养学生将知识运用于现实生活的能力。这就要求教师在使用多媒体教学时,除了运用一些多媒体手段向学生展现动态图像之外,更为重要的是向学生展现一些现实生活中的例子③。

三、总结

高中立体几何教学,有着自己的独特性特点,教师在教学过程中,一方面要以此基础,同时还要善于利用科技信息化新教学技术和手段来有效提高教学质量,此外,更为重要的是,要能够将知识与生活联系起来,以提高学生的综合素质。

【注释】

① 王嘉. 以立体几何教学为例谈高中数学课的有效性[J]. 试题与研究(新课程论坛),2012(30):62.

② 郑燕敏. 浅淡多媒体教学在立体几何中的应用[J]. 金山,2012(7):31.

③ 刘先祥. 谈高中数学立体几何教学[J]. 南北桥,2014(5):162.

篇10:高中数学立体几何知识点

1.空间几何体的三视图:

定义:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右);俯视图(从上向下)。

注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽带;侧视图反映了物体的高度和宽带。

球的三视图都是圆;长方体的三视图都是矩形。

2.空间几何体的直观图——斜二测画法

(1)在已知图形中取互相垂直的x轴和y轴,两轴相较于点O。画直观图时,把它们画成对应的x’轴和y’轴,两轴交于点O’,且使

(2)已知图形中平行于x轴或y轴的线段,在直观图中分别画呈平行于x’轴或y’轴的线段。

(3)已知图形中平行于x轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度为原来的一半。

篇11:高中数学立体几何学习方法总结

新课程标准中多次提到“数学模型”一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。

从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。

篇12:高中数学“立体几何”教学研究

学好立几并不难,空间想象是关键。点线面体是一家,共筑立几百花园。点在线面用属于,线在面内用包含。四个公理是基础,推证演算巧周旋。空间之中两条线,平行相交和异面。线线平行同方向,等角定理进空间。判定线和面平行,面中找条平行线。已知线与面平行,过线作面找交线。要证面和面平行,面中找出两交线,线面平行若成立,面面平行不用看。已知面与面平行,线面平行是必然;若与三面都相交,则得两条平行线。判定线和面垂直,线垂面中两交线。两线垂直同一面,相互平行共伸展。两面垂直同一线,一面平行另一面。要让面与面垂直,面过另面一垂线。面面垂直成直角,线面垂直记心间。

一面四线定射影,找出斜射一垂线,线线垂直得巧证,三垂定理风采显。空间距离和夹角,平行转化在平面,一找二证三构造,三角形中求答案。引进向量新工具,计算证明开新篇。空间建系求坐标,向量运算更简便。知识创新无止境,学问思辨勇攀登。

篇13:高中数学“立体几何”教学研究

1. 几何画板概述

几何画板的工具箱中提供了“选择箭头工具”、“点工具”、“圆规工具”、“直尺工具”、“文本工具”和“自定义画图工具”几种工具。几何画板的主要用途之一是用来绘制几何图形,而通常绘制几何图形的工具是用直尺和圆规,它们的配合几乎可以画出所有的欧氏几何图形。因为任何欧氏几何图形最后都可归结为“点”、“线”、“圆”。这种公理化作图思想因为“三大作图不能问题”曾经吸引无数数学爱好者的极大兴趣,并在数学历史上影响重大,源远流长。从某种意义上讲,几何画板绘图是欧氏几何“尺规作图”的一种现代延伸。因为这种把所有绘图建立在基本元素上的做法和数学作图思维中的公理化思想是一脉相承的。

2. 几何教学存在的问题

2.1 几何画板条件下学生角色的定位问题

目前我国关于几何画板环境下教师角色的研究较多,而对学生角色的研究相对较少。面向未来的人才必须学会生存、学会学习和创造。随着几何画板的迅速发展,数学教学软件的操作逐步走向“傻瓜化”。就数学课来说,它所解决的问题越来越复杂,操作却越来越简单。所以,我们的几何画板教育决不能停留在技术层面,而更多的应该培养高中生利用信息工具获取信息、分析信息、加工信息、表达信息和创造信息的能力。几何画板教育可以通过专门的几何画板课来进行。但有限的课时无法保证几何画板教育目标的实现。所以,几何画板教育更多的应该是融入数学课教学之中进行。

2.2 学生体验时间不够

由于高中学习安排时间紧,在数学几何教学中实验上机时间比较少,一般是通过几何老师在上课时进行演示,学生操作的相对时间少,因此学生对几何画板掌握的熟练程度也低。

2.3 学生后期软件学习不系统

当前教材的习题,大都是封闭式的,这类习题条件完备,结论确定,形式严格,基本上是为使学生巩固知识,引起认知结构同化而设计的,容易使学生在学习过程中以死记替代主动参与。为改变这种状况,可采用编拟一些开放题的方法,使数学教学更多地体现探究性。由于学生家庭经济情况各不相同,不能保证每个学生家里都有电脑来安装几何画板这款软件,因此学生在课余对学校所学习到的几何画板操作在数学中的应用知识不能进行复习和反复训练,对几何画板在学习的应用有一定的影响。

3. 几何画板在高中数学几何教学中的应用

3.1 用图形创设情境

建构主义认为,学习应该在与现实情境相类似的情境中进行,这正应了那句古老的格言:人是环境之子。在实际情境下进行学习,可以使学习者利用自己原有的认知结构中的有关经验,去同化和索引当前要学习的新知识,从而获得对新知识的创造性的理解。几何画板可以帮助我们创造一个良好的数学环境。

例1:两条直线被第三条直线所截而成的角,即“三线八角”。

这个几何问题可以利用几何画板设计一个简单的课件,通过课件中设计的数学情境可形象地提示“三线八角”的规律,在这种背景下让学生去感知,去同化,通过探索,很自然地将“三线八角”的概念融入到教学中。

3.2 让动态图形说话

高中数学几何学习是学生在已有数学认知结构的基础上的建构活动,目的是要建构数学知识及其过程的表征,而不是对数学知识的直接翻版。这就要求我们在教学中,不能脱离学生的经验体系,只重结果而偏废过程。要让几何画板中的动态图形深刻地印在学生的脑海中。如二次函数的应用,是教材的重点,也是难点,如何突破这一难点呢?通过实例利用几何画板制作图形和图像的动画,就可以让学生观察图像的变化过程,找出规律,发现定理。同时,可借助于几何画板强大的测算功能观察图形边长、面积的变化,从而使二次函数的应用及性质一目了然。

3.3 提供数学实验室

要优化数学教学,培养创造能力,必须把学生从传统的教学模式中解放出来,提高学生的学习自主性、主动性和积极性。数学教学是学生创造性活动的过程,仅靠教师传授,远不能使学生获得真正的数学知识。如果针对课本内容设计一些开放性的教学内容,为学生的创造性学习提供必要的素材,就能使学生在对问题的独立思考、积极思索中达到对数学知识的灵活应用。在教学中,要给学生留有足够的思维空间。如引导学生思考:求函数f(x)=x2-2(a-1)+2(a∈R)在[0,1]内的最大值和最小值。先让学生思考,通过配方后发现对称轴含有参数,也就是说对称轴的位置可变,因此相应区间的最大值与最小值就可能有所不同,所以有必要分类讨论(让学生理解分类讨论的必要性)。那么接下来该如何分类呢?这时,教师可以演示课件,并引导学生思考以什么为分类标准。学生通过观察函数的对称轴在不同范围时,闭区间[0,1]内的最值会随之而变化,从而由学生自己总结出应该以对称轴的取值为分类标准。

篇14:高中数学“立体几何”教学研究

【关键词】高中数学;立体几何;问题解析方法;研究

对于高中数学立体几何而言,如何对立体几何问题有效的解析始终是学生和教师关注的问题。立体几何问题作为一种抽象化的问题,其核心主要是距离、垂直、平行以及夹角之间的关系,并依据于相关的定理和概念,对各种几何图形的不同分割加以使用,进而做好立体几何问题的解析。

一、高中数学函数思想对立体几何问题的解析

函数思想对立体几何问题进行解析的过程中,更加注重函数关系的构造,实现化难为易的目的,并借助于函数的性质和证明不等式等,做好立体几何问题的解答。如高中数学中这一例题而言:如图1所示,PA和圆O所在的平面垂直,同时圆O的直径是AB,C是圆周上的一点,若∠BAC=α,同时PA=AB=2r,对异面直线PB和AC之间的距离进行求解。

图1

在求解的过程中,首先就要对直线AC和PB之间距离进行分析,尽可能的将直线PB上任何一点到直线AC之间距离的最小值求出,并对变量进行设定对目标函数进行建立,进而将目标函数的最小值求出。首先就要在PB上将任意一点M取出,并保证MD和AC垂直于D,同时MH和AB垂直于H。假设MH=x,同时MH和平面ABC垂直,同时AC和HD垂直。

MD2=x2+[(2r-x)sinα]2

=(sin2α+1)x2-4rsin2αx+4r2sin2α

=(sin2α+1)[x-2rsin2α/1+sin2α]2+4r2sin2α/1+sin2α

MD值最小的时候,只有x=2rsin2α/1+sin2α,两异面直线的距离也即是MD的最小值。该题型在解答的过程中,主要是将两条异面直线的距离向异面直线上两点之间的距离进行转换,进而对其最小值进行求解。这种解析方法主要是对函数的性质加以利用,进而对立体几何做的一种解答。

二、高中数学空间几何思想解决立体几何中垂直和平行问题

高中数学立体几何问题解答的过程中,更要对立体几何的相关知识结构进行详细的分析,并对线和面之间的知识以及面与面平行的相关知识进行全面的分析,尽可能将其向向量之间的平行和向量共面之间的问题进行转换,进而实现一种化难为易的解答。

假设某一平面π的法向量是 ,同时直线L的方向向量为 ,而两条直线Lm和Ln的方向向量为 m和 n,其平面π1和平面π2的法向量为 1和 2,在对上述问题进行分析时,可以借助于向量之间的关系进行表示:

Lm∥Ln?圳 m∥ n?圳 n=k m,k∈R  (线线平行)

L∥π?圳 ⊥ ?圳 · =0  (线面平行)

π1∥π2?圳 1∥ 2?圳m2=k 1,k∈R  (面面平行)

对于空间几何图形的垂直关系而言,不仅仅有线与线之间的垂直,同时也存在线与面的垂直和面与面的垂直。这种向量之间的转化,主要如下所示:

线线垂直主要表现为Lm⊥Ln?圳 m⊥ n?圳 m· n=0

线面垂直主要表现为L⊥π?圳 ∥ ?圳 =k ,k∈R,(同时 和π内的两个相交直线的方向向量相互垂直)

面面垂直主要表现为π1⊥π2?圳 1⊥ 2?圳 1· 2=0

三、高中数学空间立体几何问题距离和夹角的利用解析

在高中数学空间立体几何问题求解的过程中,就要借助于距离和夹角的一些条件,进而运用向量的运算,做好高中数学空间立体几何问题的求解。

点到平面的距离:点P为平面外一点,点A为平面内的任一点,平面的法向量为 ,过点P做平面π的垂线PO,记∠OPA=θ,则点P到平面的距离

d= = cosθ=  =

假设两条直线Lm和Ln的方向向量 m和 n,设θ为两条直线之间的夹角,则cosθ=cos< m, n>= 进行确定。

假设直线L和平面上π上的投影夹角用θ表示,平面π的法向量是 ,同时直线l的方向向量为 ,则sinθ=cos< , >= 。

同时设两平面的夹角为θ,而平面π1和平面π2的法向量为 1和 2,一旦0≤( 1, 2)≤ ,两个平面之间的夹角为< 1, 2>,同时当( 1, 2)> ,两个平面的夹角为π-< 1, 2>,因此也即是cosθ=cos< 1, 2>= 。

总而言之高中数学空间立体几何问题距离和夹角的利用解析的过程中,主要是借助于平面外一点到平面的距离的合理计算,并对异面直线间的距离进行计算,进而获得的一种新的求解。在对高中数学立体几何中动态问题进行解析的过程中,主要是借助于函数的思想进行解决,一旦遇到立体几何角度问题时,就要本着动态的眼光,进而对空间几何思想加以借助向量,进而使得立体几何中相对复杂的问题逐渐的简单化。

四、结语

高中数学立体几何问题作为高中教学中的重点和难点,在实际的解析中,更要借助于向量和函数之间的关系,并对几何图形中几种常见的关系进行详细的分析,对合适的空间直角坐标系加以建立,对当前我们所学的立体几何图形中的一些向量关系,进而在立体几何中将线与线和线与面之间的关系找出,最后就要正确合理的运用向量之间的关系,将相应的立体几何问题进行全面的解析。

【参考文献】

[1]刘军.无几何不数学——谈高中数学立体几何教学[J].课程教育研究,2014,(19):151-151,152

[2]刘先祥.谈中数学立体几何教学[J].南北桥,2014,(5):162-162

【作者简介】

赵伟婕(1971,10)浙江省宁海县,浙江省宁海县正学中学,一级教师,任教高中数学(人教版)

上一篇:应急演练四年级作文下一篇:瓮安县交通运输局2014年上半年工作总结及下半年工作安排