电力滤波装置

2024-05-16

电力滤波装置(精选四篇)

电力滤波装置 篇1

关键词:无功补偿,谐波治理,电抗率,滤波

随着国民经济的快速发展和持续增长,电力建设取得了令人瞩目的成就,同时电力供应的严重不足已制约了国民经济发展的速度。利用无功功率补偿技术来挖掘现有电力资源潜力,是一种能够迅速见效的、切实可行的措施之一,同时也能够节约大量的电力能源。而各种新型电子设备/装置(主要是非线性负载)的安装使用,在大量消耗无功功率的同时还会产生大量的谐波,对公用电网造成了很大的污染。由于谐波的产生和存在,已对电网的安全运行及用电设备的安全带来很大的危害,而由于谐波原因造成的电力事故和经济损失也是有目共睹的。“谐波”这一电网的公害,现已引起相关部门越来越多的关注。

一般的用户选择滤波补偿型较为经济适用。常见电抗率有5.67%、7%、14%。本文通过建模分析补偿装置的电抗率对电网的影响,仿真计算比较各电抗率的滤波效果。

1 滤波补偿电路

若将负载功率因数从cosφ提高到φ2,需要补偿无功功率Q为:

式中,P为该负载有功功率。

补偿无功功率Q主要与补偿电容的电容值有关,当负载的有功功率,补偿前功率因数和目标功率因数确定下来时,需要补偿的无功功率就确定了,补偿电容值也确定了。选择合适电感值的滤波电抗器,对最大限度地吸收谐波电流,同时又能避免电流谐振现象的发生,对确保补偿装置的安全运用有重要意义。

下面为典型的滤波补偿电路,主要由变压器、传输线、补偿装置和负载组成(见图1)。

在实际中,变压器通常采用型等值电路,同时负载运行时,励磁电流相对较小,可以将励磁支路去掉,得到下面的等值电路图(见图2)。

电路中的相关参数如下:

ZT=RT+jXT,变压器短路阻抗;

ZL=Ri+jXT,传输线阻抗;

,补偿电容器的容抗;

XL=ωL,补偿支路串联滤波电抗的感抗;

将各阻抗合并,则

将等值电路图进一步化简

由化简等值电路图得到流入补偿电路的n次谐波电流值:

其绝对值Icn为:

类似,可求出流入电网的n次谐波电流绝对值:

在具体的电网环境下,变压器和电网结构参数均不变,即Xm和Rm均是定值。当补偿容量确定后XC与XL的差值也是定值,

补偿电路中的电阻RC相对于电抗值一般都很小,而且不同的补偿电路RC变化不大,对整个结果影响不大,所以补偿回路中的串联电抗器的感抗(或者电抗率)就基本决定了各次谐波电流在电网和补偿回路中如何分配,将具体参数代入上式,可求得流入电网的谐波电流绝对值的函数曲线:

流入电网中的n次谐波电压:

其绝对值:

同样可以求出流入电网的谐波电压绝对值的函数曲线:

该曲线与流入电网的谐波电流绝对值的函数曲线形状类似,只是纵坐标比例系数不一样。

补偿支路的能量损耗为:

2 实例仿真计算与分析

仿真条件:变压器10 00kV·A,短路压降UT=6.7%,XT=10.51mΩ,RT=2.102mΩ,传输线阻抗为0.0107Ω。

被投入的电抗率5.67%,7%和14%,250kvar滤波装置的参数如表2:

根据上述初始条件,得到流入电网的谐波电流绝对值的函数式(12),其中K为滤波幅度值。K=0,表示完全滤除谐波;K<1,表示部分滤除谐波;K>1,表示放大谐波,恶化谐波污染。

下面根据式(12)计算各种电抗率时对各次主流谐波的滤除情况如表2。

从表2可见,对于n≥5的各次谐波,各种电抗率的滤波补偿装置都可以滤除一定幅度的谐波,达到一定程度的滤波效果。但是对于n=3的三次谐波,不同电抗率的滤波补偿装置表现并不相同,5.67%和7%电抗率装置非但不能滤除三次谐波,相反使得三次谐波分别放大40%和59%,起到恶化三次谐波污染的作用,而14%电抗率装置则能够滤除33%三次谐波,达到削弱三次谐波的效果。

3 总结与结论

由上述分析可见,5.67%和7%电抗率的滤波补偿装置其谐振频率位于三次谐波与五次谐波之间,对于五次及以上谐波呈感性,能够滤除这些谐波,而对于三次谐波则呈容性,会放大三次谐波。14%电抗率对于三次及以上谐波均呈感性,能够滤除各次谐波。对于办公建筑、医院、学校、体育场馆等三次谐波较强的场合应选择14%电抗率产品。

三种电抗率的250kvar滤波补偿装置阻抗曲线如下(见图4):

参考文献

[1]林海雪,孙树勤.电力网中的谐波[M].北京:中国电力出版社,1998.

[2]靳龙章,丁毓山.电网无功补偿实用技术[M].北京:中国水利水电出版社,1997.

电力系统谐波及滤波技术 篇2

摘要:主要针对电力系统谐波的危害及其检测分析技术,归纳总结了目前电力系统中进行谐波抑制常用的方法。

我们知道,在电力系统中采用电力电子装置可灵活方便地变换电路形态,为用户提供高效使用电能的手段。但是,电力电子装置的广泛应用也使电网的谐波污染问题日趋严重,影响了供电质量。目前谐波与电磁干扰、功率因数降低已并列为电力系统的三大公害。因而了解谐波产生的机理,研究消除供配电系统中的高次谐波问题对改善供电质量和确保电力系统安全经济运行有着非常积极的意义。

谐波及其起源

所谓谐波是指一个周期电气量的正弦波分量,其频率为基波频率的整数倍。周期为T=2π/ω的非正弦电压u(ωt),在满足狄里赫利条件下,可分解为如下形式的傅里叶级数:式中频率为nω(n=2,3„)的项即为谐波项,通常也称之为高次谐波。

应该注意,电力系统所指的谐波是稳态的工频整数倍数的波形,电网暂态变化诸如涌流、各种干扰或故障引起的过压、欠压均不属谐波范畴;谐波与不是工频整倍数的次谐波(频率低于工频基波频率的分量)和分数谐波(频率非基波频率整倍数的分数)有定义上的区别。

谐波主要由谐波电流源产生:当正弦基波电压施加于非线性设备时,设备吸收的电流与施加的电压波形不同,电流因而发生了畸变,由于负荷与电网相连,故谐波电流注入到电网中,这些设备就成了电力系统的谐波源。系统中的主要谐波源可分为两类:含半导体的非线性元件,如各种整流设备、变流器、交直流换流设备、PWM变频器等节能和控制用的电力电子设备;含电弧和铁磁非线性设备的谐波源,如日光灯、交流电弧炉、变压器及铁磁谐振设备等。

国际上对电力谐波问题的研究大约起源于五六十年代,当时的研究主要是针对高压直流输电技术中变流器引起的电力系统谐波问题。进入70年代后,随着电力电子技术的发展及其在工业、交通及家庭中的广泛应用,谐波问题日趋严重,从而引起世界各国的高度重视。各种国际学术组织如电气与电子工程师协会(IEEE)、国际电工委员会(IEC)和国际大电网会议(CIGRE)相继各自制定了包括供电系统、各项电力和用电设备以及家用电器在内的谐波标准。我国国家技术监督局于1993年颁布了国家标准GB/T14549-93《电能质量公用电网谐波》,标准给出了公用电网谐波电压、谐波电流的限制值。

如国内某轧钢厂的4000kW交流变频同步电机的调速系统,在某种工况下5次谐波含量达到15.88%,7次谐波含量达7.9%。另外,低于电网频率的次谐波和大量的分数次谐波,使电流总谐波畸变率最高时可达25.87%,电压总谐波畸变率最高时可达6.19%。远高于国家标准GB/T14549-93《电能质量公用电网谐波》,可见,谐波对电网的污染是相当严重的。高次谐波的危害

谐波污染对电力系统的危害是严重的,主要表现在:

(1)谐波影响各种电气设备的正常工作。对如发电机的旋转电机产生附加功率损耗、发热、机械振动和噪声;对断路器,当电流波形过零点时,由于谐波的存在可能造成高的di/dt,这将使开断困难,并且延长故障电流的切除时间。

(2)谐波对供电线路产生了附加损耗。由于集肤效应和邻近效应,使线路电阻随频率增加而提高,造成电能的浪费;由于中性线正常时流过电流很小,故其导线较细,当大量的三次谐波流过中性线时,会使导线过热,损害绝缘,引起短路甚至火灾。

(3)使电网中的电容器产生谐振。工频下,系统装设的各种用途的电容器比系统中的感抗要大得多,不会产生谐振,但谐波频率时,感抗值成倍增加而容抗值成倍减少,这就有可能出现谐振,谐振将放大谐波电流,导致电容器等设备被烧毁。

(4)谐波将使继电保护和自动装置出现误动作,并使仪表和电能计量出现较大误差。

谐波对其他系统及电力用户危害也很大:如对附近的通信系统产生干扰,轻者出现噪声,降低通信质量,重者丢失信息,使通信系统无法正常工作,影响电子设备工作精度,使精密机械加工的产品质量降低;设备寿命缩短,家用电器工况变坏等。

为了有效补偿和抑制负载产生的谐波电流,首先必须对含有的谐波成分有精确的认识,因而需要实时检测负载电流中的谐波分量。现有的谐波电流检测和分析方法主要基于以下几种原理:(1)带阻滤波法

这是一种最为简单的谐波电流检测方法,其基本原理是设计一个低阻滤波器,将基波分量滤除,从而获得总的谐波电流量。这种方法过于简单,精度很低,不能满足谐波分析的需要,一般不用。(2)带通选频法和FFT变换法

带通选频方法采用多个窄带滤波器,逐次选出各次谐波分量。利用FFT变换来检测电力谐波是一种以数字信号处理为基础的测量方法,其基本过程是对待测信号(电压或电流)进行采样,经A/D转换,再用计算机进行傅里叶变换,得到各次谐波的幅值和相位系数。

这两种方法都可以检测到各次谐波的含量,但以模拟滤波器为基础的带通选频法装置,结构复杂,元件多,测量精度受元件参数、环境温度和湿度变化的影响大,且没有自适应能力;后一种检测方法其优点是可同时测量多个回路,能自动定时测量。缺点是采样点的个数限制谐波测量的最高次数,具有较长的时间延迟,实时性较差。(3)瞬时空间矢量法

1983年日本学者赤木泰文提出的瞬时无功功率理论,即“p-q”理论,对电力谐波量的检测做出了极大的贡献,由于解决了谐波和无功功率的瞬时检测和不用储能元件就能实现抑制谐波和无功补偿等问题,使得电力有源滤波理论由实验室的理论研究走向工作应用。根据该理论,可以得到瞬时有功功率p和瞬时无功功率q,p和q中都含有直流分量和交流分量,即:式中分别为p、q的直流分量,即为对应的交流分量。由可得被检测电流的基波分量,将基波分量与总电流相减即得相应的谐波电流。因为该方法忽略了零序分量,且对于不对称系统,瞬时无功的平均分量不等于三相的平均无功。所以,该方法只适用于三相电压正弦、对称情况下的三相电路谐波和基波无功电流的检测。

理论进一步发展和完善了“p-q”理论,该理论提出的检测方法解决了三相电压非正弦、非对称情况下三相电路谐波和基波负序电流的检测。

该方法基于自适应干扰抵消原理,将电压作为参考输入,负载电流作为原始输入,从负载电流中消去与电压波形相同的有功分量,得到需要补偿的谐波与无功分量。该自适应检测系统的特点是在电压波形畸变情况下也具有较好的自适应能力,缺点是动态响应速度较慢。在此基础上,又有学者提出一种基于神经元的自适应谐波的电流检测法。

对于一般的谐波检测,如电力部门出于管理而检测,需要获得的是各次谐波的含量,而对于谐波的时间则不关心,因此,傅里叶变换就满足要求。然而在对谐波电流进行动态抑制时,不必分解出各次谐波分量,只需检测出除基波电流外的总畸变电流,但对出现谐波的时间感兴趣,对于这一点,傅里叶变换无能为力。小波变换由于克服了傅里叶变换在频域完全局部化而在时域完全无局部性的缺点,即它在时域和频域同时具有局部性,因此通过小波变换对谐波信号进行分析可获得所对应的时间信息。

从以上检测方法看,基于瞬时无功功率理论的瞬时空间矢量法简单易行,性能良好,并已趋于完善和成熟,今后仍将占主导地位。基于神经元的自适应谐波电流检测法和小波变换检测法等新型谐波检测方法能否应用于工程实际,还有待进一步验证。

谐波抑制方法

在电力系统中对谐波的抑制就是如何减少或消除注入系统的谐波电流,以便把谐波电压控制在限定值之内,抑制谐波电流主要有三方面的措施:(1)降低谐波源的谐波含量 也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用。具体方法有: ①增加整流器的脉动数整流器是电网中的主要谐波源,其特征频谱为:n=Kp±1,则可知脉冲数p增加,n也相应增大,而In≈I1/n,故谐波电流将减少。因此,增加整流脉动数,可平滑波形,减少谐波。如:整流相数为6相时,5次谐波电流为基波电流的18.5%,7次谐波电流为基波电流的12%,如果将整流相数增加到12相,则5次谐波电流可下降到基波电流的4.5%,7次谐波电流下降到基波电流的3%。②脉宽调制法

采用PWM,在所需的频率周期内,将直流电压调制成等幅不等宽的系列交流输出电压脉冲可以达到抑制谐波的目的。在PWM逆变器中,输出波形是周期性的,且每半波和1/4波都是对称的,幅值为±1,令第一个1/4周期中开关角为γi(i=1,2,3„„m),且0≤γ1≤γ2≤„„≤γm≤π/2。假定γ0=0,γm+1=π/2,在(0,π)内开关角α=0,γ1,γ2,„„,γm,π-γm,„„,π-γ2,π-γ1。PWM波形按傅里叶级数展开,得
    由式可知,若要消除n次谐波,只需令bn=0,得到的解即为消除n次谐波的开关角α值。

③三相整流变压器采用Y-d(Y/Δ)或D、Y(Δ/Y)的接线

这种接线可消除3的倍数次的高次谐波,这是抑制高次谐波的最基本的方法。

(2)在谐波源处吸收谐波电流

这类方法是对已有的谐波进行有效抑制的方法,这是目前电力系统使用最广泛的抑制谐波方法。主要方法有以下几种: ①无源滤波器

无源滤波器安装在电力电子设备的交流侧,由L、C、R元件构成谐振回路,当LC回路的谐振频率和某一高次谐波电流频率相同时,即可阻止该次谐波流入电网。由于具有投资少、效率高、结构简单、运行可靠及维护方便等优点,无源滤波是目前采用的抑制谐波及无功补偿的主要手段。但无源滤波器存在着许多缺点,如滤波易受系统参数的影响;对某些次谐波有放大的可能;耗费多、体积大等。因而随着电力电子技术的不断发展,人们将滤波研究方向逐步转向有源滤波器。

②有源滤波器

早在70年代初期,日本学者就提出了有源滤波器APF(Active Power Filter)的概念,即利用可控的功率半导体器件向电网注入与原有谐波电流幅值相等、相位相反的电流,使电源的总谐波电流为零,达到实时补偿谐波电流的目的。

与无源滤波器相比,APF具有高度可控性和快速响应性,能补偿各次谐波,可抑制闪变、补偿无功,有一机多能的特点;在性价比上较为合理;滤波特性不受系统阻抗的影响,可消除与系统阻抗发生谐振的危险;具有自适应功能,可自动跟踪补偿变化着的谐波。目前在国外高低压有源滤波技术已应用到实践,而我国还仅应用到低压有源滤波技术。随着容量的不断提高,有源滤波技术作为改善电能质量的关键技术,其应用范围也将从补偿用户自身的谐波向改善整个电力系统的电能质量的方向发展。③防止并联电容器组对谐波的放大

在电网中并联电容器组起改善功率因数和调节电压的作用。当谐波存在时,在一定的参数下电容器组会对谐波起放大作用,危及电容器本身和附近电气设备的安全。可采取串联电抗器,或将电容器组的某些支路改为滤波器,还可以采取限定电容器组的投入容量,避免电容器对谐波的放大。④加装静止无功补偿装置

快速变化的谐波源,如:电弧炉、电力机车和卷扬机等,除了产生谐波外,往往还会引起供电电压的波动和闪变,有的还会造成系统电压三相不平衡,严重影响公用电网的电能质量。在谐波源处并联装设静止无功补偿装置,可有效减小波动的谐波量,同时,可以抑制电压波动、电压闪变、三相不平衡,还可补偿功率因数。

(3)改善供电环境

选择合理的供电电压并尽可能保持三相电压平衡,可以有效地减小谐波对电网的影响。谐波源由较大容量的供电点或高一级电压的电网供电,承受谐波的能力将会增大。对谐波源负荷由专门的线路供电,减少谐波对其它负荷的影响,也有助于集中抑制和消除高次谐波。

双工滤波收发装置的研究与应用 篇3

中海油南海海上油气田微波项目在建设过程中遇到了以下问题:

南海油气田约占中海油的40%,且绝大部分离陆地距离超过100公里。

陆地基站干扰严重,链路稳定性无法保障。

油田的数字化和信息化建设对平台的骨干链路提出了扩容需求。

针对以上问题,迫切需要对现有的微波系统基础上进行研发,开发出一套适合中海油特殊应用需求的微波系统。为了节约成本和控制项目进度,在原有微波系统基础上进行二次研发,开发一套双工滤波收发装置,提高信号强度的同时抑制噪声,可以很好的满足项目需求。

二、项目研究内容

根据项目需求,分四个阶段实施:

2014年1月-3月:项目前期论证,收集已开通微波站点数据统计信息,包括电平、丢包率、海况等综合信息;

2014年4月-6月:完成微波功放的优化及高增益天线的研发,完成微波功放、天线和微波设备之间兼容性的测试与改良,提高微波设备信号实际外输的功率,提高微波设备实际接收电平,以满足增加带宽后的链路冗余,所研发成果在实验室进行测试;

2014年7月-9月:在已建成的微波站点对新研究出来的功放以及天线等设备进行测试,通过实际测试的结果发现,研制出来的微波功放效果没有达到预期效果,各项技术指标提高不大,再次返回实验室对微波功放进一步的优化;

2014年10月-12月:将设备进一步的优化及完善,再次在文昌油田群海域进行了测试,整体的测试结果比前期测试的要更加理想,在关键的参数及指标上有明显的提高,达到项目研究的要求;此外,还完成了相应的科研成果报告的提交。

技术背景

在微波传输过程中,需要通过微波天线将微波信号进行传输和接收,目前现有的微波系统只能完成0-40KM之间的距离传输工作,对于长距离的传输,由于空气对微波信号的衰减,现有天线的无法实现传输。另外,现有的微波传输设备只能实现微波信号的单向传输,双向传输必须设置两套设备,一套负责输出,另外一套负责输入,造成设备传输的安装较为复杂。

技术方案

所采用的技术方案如下:双工滤波收发装置,由信号发射器、双工器、功率放大器、隔离器、低噪声放大器滤波器和天线组成,其特征在于,所述信号发射器的输出端通过射频电缆连接双工器一,双工器一的两个端口分别连接功率放大器的输入端和低噪声放大器的输出端,功率放大器的输出端连接隔离器,隔离器的另一端连接双工器二;低噪声放大器的输入端连接有滤波器,滤波器的另一端连接双工器二;双工器二的另一端连接有微波天线。有益效果在于:两个双工器配合功率放大器和低噪声放大器及滤波器工作,实现了信号收发在同一设备内完成。实现微波信号的长距离传输功能。

两个双工器配合功率放大器和低噪声放大器及滤波器工作,在同一端口将频率A的微波信号放大并发射出去,同时可在同一端口将频率为B的信号接收并放大传入设备中。实现了信号收发在同一设备内完成。实现微波信号的长距离传输功能,可实现80KM以上的传输距离。

三、实际应用效果

双工滤波收发装置首次应用于文昌13-6平台与陆地的数据传输,数据带宽双向20M。

站点信息

文昌市铜鼓岭基站(陆地站),基站海波高度330米,天线安装高度335米。

海上端站为文昌13-6平台,天线安装高度约48m,平台有足够空间可安装天线,同时,现场供电、电缆敷设条件也符合安装条件。

站点距离信息

文昌铜鼓岭基站与文昌13-6平台相对位置如下图,根据经纬度通过google earth软件计算距离为115.36公里,微波设备自带软件显示链路距离115.3公里,两者基本一致。

测试方案

采取MOTO PTP 58600系统+双工滤波收发装置作为核心解决方案,在文昌13-6平台和文昌铜鼓岭基站建设一条长距离微波链路,传输距离约115公里。该方案中采取1.5米微波天线,天线增益38db。

测试结果

本次微波测试在文昌铜鼓岭基站上安装1面1.5米的双极化天线,安装高度330米,文昌13-6平台安装1面1.5米双极化天线,天线安装高度48米,微波链路顺利开通,链路带宽达到20M以上,通过链路观察,链路带宽基本可以满足20M以上传输要求。

接收电平分析

设备自动监视15天的接收电平,电平稳定在-61dbm左右,接收电平平稳(最大值-57.2db,最小-66.3db,平均值-61.1db,工作状态非常稳定)。

微波链路统计情况

统计系统15天工作状态:链路的工作在人为限定的QPSK 0.87(single)的调制方式下,信道的带宽为15M,目前的链路的可用率99.7617%,误码率为1.660E-5,数据带宽为17.25Mbps(由于只开通10M,把带宽限制小点,可提高链路的稳定性,实际的带宽超过55Mbps);

传输时延

通过IP 包测试,传输时延5ms左右。

将测试包增大到3000,传输时延增大到15ms,基本在正常范围之内。

Reply from 169.254.1.1: bytes=3000 time=15ms TTL=255

Reply from 169.254.1.1: bytes=3000 time=15ms TTL=255

Reply from 169.254.1.1: bytes=3000 time=15ms TTL=255

Reply from 169.254.1.1: bytes=3000 time=17ms TTL=255

nlc202309040513

Reply from 169.254.1.1: bytes=3000 time=15ms TTL=255

Reply from 169.254.1.1: bytes=3000 time=15ms TTL=255

Reply from 169.254.1.1: bytes=3000 time=15ms TTL=255

Reply from 169.254.1.1: bytes=3000 time=16ms TTL=255

Reply from 169.254.1.1: bytes=3000 time=15ms TTL=255

Reply from 169.254.1.1: bytes=3000

Ping statistics for 169.254.1.1:

Packets: Sent = 197, Received = 196, Lost = 1 (0% loss),

time=15ms Approximate round trip times in milli-seconds:

Minimum = 15ms, Maximum = 20ms, Average = 15ms

TTL=255

传输时延基本稳定,很少有丢包。

链路速率测试结果(采用第三方软件比对)

通过第三方软件IPerf与MOTO设备自身监测的比对,第三方软件速率与MOTO自测带宽基本相等,表明MOTO自测的速率真实可靠。MOTO设备自带软件上显示的速率可以理解为实际速率。

支持的业务种类

数据交互业务

数据业务包括:网络咨询浏览、电子邮件发送、电子文件发送、消息发送和文件共享等。

语音通信类

语音通信类包括:网络电话、电话会议、集团移动电话等。

业务可靠性分析

该微波链路传输采用IP传输,IP传输的TCP协议具备确认和重传机制,即使有少量丢包,重传机制也可以保证数据的可靠到达,目前微波链路具备20M以上的可用带宽,传输时延7ms,可以保证上层应用的可靠性和稳定性,可以保证VoIP、视频、互联网等业务的高质量应用。

测试总结

测试结论:

本次测试结果表明,此链路完全可用,带宽可稳定在20M以上,从数据带宽及技术标方面对平台侧和陆地侧进行双向分析,无线信号稳定,接收电平平稳,无线电干扰对链路的工作影响几乎忽略不计,链路能够稳定运行,完全可以满足微波链路开通需求。

关于链路稳定性的分析

从目前测试情况来看,链路稳定可靠,具体分析如下:

从本次测试情况来看,由于两端的安装高度限制,信号只被小部分遮挡,没有对链路的稳定性造成任何影响。

针对文昌13-6平台至文昌铜鼓岭基站微波链路信号被小部分遮挡的情况,可目前已通过本次研制的微波功放加以弥补,抵消信号被小部分遮挡的影响,基本保持链路处于正常的工作状态。

微波链路使用建议

由于海上长距离海上微波传输的特殊性,受不确定因素影响较多,在其它条件一致的情况下(天线安装高度、天线口径、天线增益、海面状况等),链路的稳定性与带宽的大小成反比,带宽越大,链路的稳定性越差,带宽越小,链路的稳定性越好。

四、推广应用价值

该成果国内首创,海油范围内首次应用,已应用于环海南岛微波一期和二期,取得了良好的效果和用户的一致好评,乐东气田迁址和文昌微波项目,如果没有该项技术的支持就无法实施,对于其它微波链路,该成果为链路扩容提供了技术支持。

电力滤波装置 篇4

【关键词】谐波;有源电力滤波器;应用

一、谐波研究背景

当代世界电力工业中,几乎都采用交流供电方式。在理想情况下,电源以单一且固定频率(50HZ或60Hz)向电网提供正弦变化的电压。电网可以视为一个线性系统,系统中各个点的电压,电流会和电源有相同频率的正弦变化,这些电气量只存在幅值和相位的不同。但随着电力电子技术的发展,电力系统中非线性负荷快速增加,实际系统已经不能近似为理想系统,直接的表现形式就是电压、电流出现了波形的周期性畸变。从频域分析的角度就是说,这些电压,电流的波形之中不仅包含了与电源相同频率的基波正弦分量,还有一系列频率是基波频率整数倍的高频正弦分量。这些高频分量统称为电力系统谐波,当电力系统中谐波含量过高时,也可以说存在较重的谐波污染时,电网的安全性和可靠性将会受到威胁,而传统的理论或方法(如正弦电路向量分析法等)也无法应用。因此,电力谐波已经成为世界各国政府,科学界广泛关注的问题,谐波的研究是很有意义的。

二、谐波产生原因与危害

随着我国改革开放的不断深化,现代电力电子变换技术产品等非线性负载的普及应用,一方面是科技发展的表现,另一方面却对电网产生了诸如谐波含量和无功功率增高的不利影响,这使得电网污染成为日益突出的严重问题,因此需要“实施绿色电力电子、打造绿色电网”,就必须首先解决电网污染的这个难题。根据相关的电路知识,负载的电流与加在两端的电压不呈线性关系,从而形成了非正弦的电流,这些非正弦的电流中就包含有谐波,所以可以得出结论:非线性负载是产生谐波的根本原因。关于电网中谐波的来源,可以概括为以下三个方面:

(一)由于发电源质量问题从而产生谐波,这是因为在制作发电机内部的三相绕组时,几乎不可能做到绝对对称,同样发电机内部的铁心也不会绝对的均匀一致。

(二)输电网以及配电网中由于电力变压器的存在,会不可避免的产生谐波。

(三)由用电设备所产生的谐波,这些用电设备主要是指非线性负载。

电力系统中的谐波会造成许多危害和负面影响,这些危害以及负面影响可以概括为以下几个方面:

(一)电网中各个元件由于谐波产生了附加损耗,降低了输电,用电效率。

(二)谐波会对继电保护装置,自动控制装置等形成干扰甚至造成误动。

(三)谐波可能会在电网局部引起串联谐振或并联谐振,谐波电流将放大几倍甚至几十倍,严重威胁电气设备安全并诱发事故。

(四)电气测量仪表会因谐波产生计量误差,给供电部门和用户造成直接经济损失。

三、波抑制与无功补偿装置

想要解决电网谐波污染的问题,主要的解决方案可以从两个方面入手:一是减少谐波的产生,另一个方法是安装谐波补偿装置用来补偿谐波,此方法对于各种谐波源都是适用的,哪里有消耗就在哪里产生补偿,这个浅显易懂的道理可以视作无功功率补偿方法的基本原理,常用的无功补偿装置主要有以下四类:同步调相机、开关投切固定电容、静止无功补偿器、静止无功发生器。一方面,一种设备或者装置会产生出谐波,那么很有可能它也会消耗无功功率;另一方面,在抑制谐波的同时往往也可以起到补偿无功的作用,因此将无功补偿与谐波抑制的研究结合起来,在现阶段看来是十分有必要的。谐波是原本正弦的信号发生了畸变,无功功率使得同相位的电压与电流出现了相位差,这些现象在物理学中都可以视作为波形问题,可以用综合补偿的方法来处理电力系统中的谐波和无功功率问题,有源电力滤波器就是一种同时集合了谐波抑制和无功补偿功能的新型装置。

四、有源电力滤波器的起源、发展

APF的基本思想最早可以追溯 1969 年Bird和Marsh发表的论文,文中完整地提出具有功率处理能力的有源电力滤波器的概念,这可看作是APF基本思想的萌芽。首次完整地描述APF工作的基本原理的学者是H.Sasaki和T. Machida。1976年美国西屋公司的L.Gyuig正式提出了APF的方案,他所说的APF是采用大功率晶体管PWM逆变器结构,其基本原理就是通过逆变产生与谐波电流等值反向的电流,并注入电网,从而达到滤除谐波,净化电网的目的。

上世纪八十年代末,并联型APF、混合型APF、串联混合型APF等多种拓扑结构的有源电力滤波器相继出现。上世纪九十年代中期至本世纪初,自适应、神经网络、滑模控制、重复控制、遗传算法等现代智能控制方法得到了长足地发展。近几年来,研究APF技术逐渐成为热点,美日等国已经有许多大容量APF相继投入到工业应用中,在谐波抑制以及无功补偿方面都取得良好的效果。

五、APF的原理及分类

并联型的APF主要由电流检测电路以及电流补偿电路两大部分组成,将电路负载电流中的谐波分量以及无功电流分量检测出来是电流检测电路的任务,电流补偿电路通过对逆变电路进行控制,使其产生与谐波电流以及无功电流反向的补偿电流,从而实现补偿电路中由非线性负载所引起负载电流中的谐波分量和无功电流分量的目的。按照接入电网的方式, 有源电力滤波器又可以分为并联型有源电力滤波器、串联型有源电力滤波器和混合型有源電力滤波器。并联型有源电力滤波器结构是最简单、最基本的APF,主电路由逆变器构成,它与电网电压构成并联关系,通过向电网中注入与检测所得谐波大小相等、相位相差1800 的电流信号,将电网中的谐波抵消,实现将非线性负载所产生的谐波滤除,达到净化电网的目的。并联型APF思路清晰,容易实现,因此应用最多。串联型有源电力滤波器用于补偿电压谐波。串联型APF以串入电网的方式向电网中注入谐波电压信号,实现将电网电压变为标准正弦波。但在实际应用中,安装、维护相对复杂,费用较高。

混合型有源电力滤波器,它是将串联型、并联型APF混合起来使用,混合型有源电力滤波器不仅包括串、并联的混合,还包括有源电力滤波器与无源滤波器的混合,混合型APF 的谐波补偿能力是最强的,但是从结构上可以很容易知道,混合型APF需要大量的电力电子器件,安装、使用和维护都非常复杂,使用很不方便,尤其是成本太高,性价比很低,因此使用并不广泛。谐波污染问题向电网供电质量提出了严峻的挑战,本文对电网中存在的谐波以及无功功率的起因、危害、治理措施进行了较为详细地阐述,最后找到了可以同时实现谐波治理和无功功率补偿的功能的办法,那就是应用APF,因此,APF有着广泛的应用空间。

参考文献

[1]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2004.

[2]吴勇.有源电力滤波器若干关键技术研究[D].华中科技大学,2007.

[3]罗安.电网谐波治理[M].北京:中国电力出版社,2006.

作者简介:

马娟(1981—),女,山东鱼台人,学士,鱼台县供电公司继电保护专工,研究方向:继电保护。

上一篇:电动机下一篇:告警处理机制